1
|
Janke LJ, Imai DM, Tillman H, Doty R, Hoenerhoff MJ, Xu JJ, Freeman Z, Allen P, Fowlkes NW, Iacobucci I, Dickerson K, Mullighan CG, Vogel P, Rehg JE. Development of Mast Cell and Eosinophil Hyperplasia and HLH/MAS-Like Disease in NSG-SGM3 Mice Receiving Human CD34+ Hematopoietic Stem Cells or Patient-Derived Leukemia Xenografts. Vet Pathol 2021; 58:181-204. [PMID: 33208054 PMCID: PMC8414369 DOI: 10.1177/0300985820970144] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Immunocompromised mouse strains expressing human transgenes are being increasingly used in biomedical research. The genetic modifications in these mice cause various cellular responses, resulting in histologic features unique to each strain. The NSG-SGM3 mouse strain is similar to the commonly used NSG (NOD scid gamma) strain but expresses human transgenes encoding stem cell factor (also known as KIT ligand), granulocyte-macrophage colony-stimulating factor, and interleukin 3. This report describes 3 histopathologic features seen in these mice when they are unmanipulated or after transplantation with human CD34+ hematopoietic stem cells (HSCs), virally transduced hCD34+ HSCs, or a leukemia patient-derived xenograft. The first feature is mast cell hyperplasia: unmanipulated, naïve mice develop periductular pancreatic aggregates of murine mast cells, whereas mice given the aforementioned human cells develop a proliferative infiltrative interstitial pancreatic mast cell hyperplasia but with human mast cells. The second feature is the predisposition of NSG-SGM3 mice given these human cells to develop eosinophil hyperplasia. The third feature, secondary hemophagocytic lymphohistiocytosis/macrophage activation syndrome (HLH/MAS)-like disease, is the most pronounced in both its clinical and histopathologic presentations. As part of this disease, a small number of mice also have histiocytic infiltration of the brain and spinal cord with subsequent neurologic or vestibular signs. The presence of any of these features can confound accurate histopathologic interpretation; therefore, it is important to recognize them as strain characteristics and to differentiate them from what may be experimentally induced in the model being studied.
Collapse
Affiliation(s)
- Laura J. Janke
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Denise M. Imai
- Comparative Pathology Laboratory, University of California, Davis, California, USA
| | - Heather Tillman
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | | - Mark J. Hoenerhoff
- In Vivo Animal Core, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jiajie J. Xu
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Zach Freeman
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Portia Allen
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Natalie Wall Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Kirsten Dickerson
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Hematological Malignancies Program, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Peter Vogel
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jerold E. Rehg
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
2
|
Gbyli R, Song Y, Halene S. Humanized mice as preclinical models for myeloid malignancies. Biochem Pharmacol 2020; 174:113794. [PMID: 31926939 DOI: 10.1016/j.bcp.2020.113794] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
Humanized mice have proven to be invaluable for human hematological translational research since they offer essential tools to dissect disease biology and to bridge the gap between pre-clinical testing of novel therapeutics and their clinical applications. Many efforts have been placed to advance and optimize humanized mice to support the engraftment, differentiation, and maintenance of hematopoietic stem cells (HSCs) and the human hematological system in order to broaden the scope of applications of such models. This review covers the background of humanized mice, how they are used as platforms to model myeloid malignancies, and the various current and potential approaches to further enhance their utilization in biomedical research.
Collapse
Affiliation(s)
- Rana Gbyli
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Yuanbin Song
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Chen Q, Wang J, Liu WN, Zhao Y. Cancer Immunotherapies and Humanized Mouse Drug Testing Platforms. Transl Oncol 2019; 12:987-995. [PMID: 31121491 PMCID: PMC6529825 DOI: 10.1016/j.tranon.2019.04.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer immunotherapy is a type of treatment that restores and stimulates human immune system to inhibit cancer growth or eradicate cancer. It serves as one of the latest systemic therapies, which has been approved to treat different types of cancer in patients. Nevertheless, the clinical response rate is unsatisfactory and the response observed is mostly a partial response in patients. Despite the continuous improvement and identification of novel cancer immunotherapy, there is a pressing need to establish a robust platform to evaluate the efficacy and safety of pre-clinical drugs, simulate the interaction between patients’ tumor and immune system, and predict patients’ responses to the treatment. In this review, we summarize the pros and cons of existing immuno-oncology assay platforms, especially the humanized mouse models for the screening of cancer immunotherapy drugs. In addition, various emerging trends and progress of utilizing humanized mouse models as the screening tool are discussed. Of note, humanized mouse models can also be used for further development of personalized precision medicines to treat cancer. Collectively, these highlight the significance of humanized mouse models as the important platform for the screening of next generation cancer immunotherapy in vivo.
Collapse
Affiliation(s)
- Qingfeng Chen
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Jiaxu Wang
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Wai Nam Liu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Yue Zhao
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore.
| |
Collapse
|