1
|
Ford KL, Arends J, Atherton PJ, Engelen MPKJ, Gonçalves TJM, Laviano A, Lobo DN, Phillips SM, Ravasco P, Deutz NEP, Prado CM. The importance of protein sources to support muscle anabolism in cancer: An expert group opinion. Clin Nutr 2022; 41:192-201. [PMID: 34891022 DOI: 10.1016/j.clnu.2021.11.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022]
Abstract
This opinion paper presents a short review of the potential impact of protein on muscle anabolism in cancer, which is associated with better patient outcomes. Protein source is a topic of interest for patients and clinicians, partly due to recent emphasis on the supposed non-beneficial effect of proteins; therefore, misconceptions involving animal-based (e.g., meat, fish, dairy) and plant-based (e.g., legumes) proteins in cancer are acknowledged and addressed. Although the optimal dietary amino acid composition to support muscle health in cancer is yet to be established, animal-based proteins have a composition that offers superior anabolic potential, compared to plant-derived proteins. Thus, animal-based foods should represent the majority (i.e., ≥65%) of protein intake during active cancer treatment. A diet rich in plant-derived proteins may support muscle anabolism in cancer, albeit requiring a larger quantity of protein to fulfill the optimal amino acid intake. We caution that translating dietary recommendations for cancer prevention to cancer treatment may be inadequate to support the pro-inflammatory and catabolic nature of the disease. We further caution against initiating an exclusively plant-based (i.e., vegan) diet upon a diagnosis of cancer, given the presence of elevated protein requirements and risk of inadequate protein intake to support muscle anabolism. Amino acid combination and the long-term sustainability of a dietary pattern void of animal-based foods requires careful and laborious management of protein intake for patients with cancer. Ultimately, a dietary amino acid composition that promotes muscle anabolism is optimally obtained through combination of animal- and plant-based protein sources.
Collapse
Affiliation(s)
- Katherine L Ford
- Human Nutrition Research Unit, Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| | - Jann Arends
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Philip J Atherton
- MRC Versus Arthritis Centre of Excellence for Musculoskeletal Ageing Research, Centre of Metabolism & Physiology (COMAP), University of Nottingham, Derby, UK
| | - Mariëlle P K J Engelen
- Center for Translational Research in Aging & Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA
| | - Thiago J M Gonçalves
- Department of Nutrology and Clinical Nutrition, Sancta Maggiore Hospital, Prevent Senior Institute, São Paulo, Brazil
| | - Alessandro Laviano
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Dileep N Lobo
- Gastrointestinal Surgery, Nottingham Digestive Diseases Centre, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Queen's Medical Centre, Nottingham, UK; MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | | | - Paula Ravasco
- Catolica Medical School and Centre for Interdisciplinary Research in Health (CIIS), Universidade Católica Portuguesa, Lisbon, Portugal; Centre for Interdisciplinary Research Egas Moniz (CiiEM), Egas Moniz Cooperativa de Ensino Superior, CRL, Almada, Portugal
| | - Nicolaas E P Deutz
- Center for Translational Research in Aging & Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA.
| | - Carla M Prado
- Human Nutrition Research Unit, Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada.
| |
Collapse
|
2
|
Important determinants to take into account to optimize protein nutrition in the elderly: solutions to a complex equation. Proc Nutr Soc 2020; 80:207-220. [PMID: 33198824 DOI: 10.1017/s0029665120007934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
During ageing, skeletal muscle develops anabolic resistance towards the stimulation of protein synthesis induced by dietary amino acids. The stimulation of muscle protein synthesis after food intake remains insufficient, even with a protein intake recommended for healthy adults. This alteration is one of the mechanisms known to be responsible for the decrease of muscle mass and function during ageing, namely sarcopenia. Increasing dietary protein intake above the current RDA(0⋅83 g/kg/d) has been strongly suggested to overcome the anabolic resistance observed. It is also specified that the dietary protein ingested should be of good quality. A protein of good quality is a protein whose amino acid (AA) composition covers the requirement of each AA when ingested at the RDA. However, the biological value of proteins may vary among dietary sources in which AA composition could be unbalanced. In the present review, we suggest that the quality of a dietary protein is also related to several other determinants. These determinants include the speed of digestion of dietary proteins, the presence of specific AA, the food matrix in which the dietary proteins are included, the processes involved in the production of food products (milk gelation and cooking temperature), the energy supply and its nature, and the interaction between nutrients before ingestion. Particular attention is given to plant proteins for nutrition of the elderly. Finally, the timing of protein intake and its association with the desynchronized intake of energetic nutrients are discussed.
Collapse
|
3
|
Jarzaguet M, Polakof S, David J, Migné C, Joubrel G, Efstathiou T, Rémond D, Mosoni L, Dardevet D. A meal with mixed soy/whey proteins is as efficient as a whey meal in counteracting the age-related muscle anabolic resistance only if the protein content and leucine levels are increased. Food Funct 2019; 9:6526-6534. [PMID: 30475369 DOI: 10.1039/c8fo01903g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
With aging, skeletal muscle becomes resistant to the anabolic effect of dietary proteins and sarcopenia develops. Animal proteins, which are rich in leucine, are recommended for the elderly, but it is not known whether their replacement by plant proteins would maintain the health and physical independence of this population. Aged rats were fed with animal proteins (casein and whey proteins) with different leucine contents and compared to rats fed with diets in which whey was substituted with soy proteins and by increasing the total protein content or not. Our results clearly showed that the meal with mixed soy/whey proteins allowed the anabolic response of skeletal muscle during aging only if the protein content was increased by 25%. Indeed, if the protein content of the soy/whey diet was decreased to a similar protein content such as a whey diet, i.e. 13%, the anabolic effect decreased. The same observation was recorded if the whey proteins were totally substituted with soy proteins.
Collapse
Affiliation(s)
- Marianne Jarzaguet
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, PFEM, MetaboHUB-Clermont, CRNH Auvergne, F-63000 Clermont-Ferrand, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Mosoni L, Jarzaguet M, David J, Polakof S, Savary-Auzeloux I, Rémond D, Dardevet D. Post Meal Energy Boluses Do Not Increase the Duration of Muscle Protein Synthesis Stimulation in Two Anabolic Resistant Situations. Nutrients 2019; 11:E727. [PMID: 30934871 PMCID: PMC6520703 DOI: 10.3390/nu11040727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/11/2019] [Accepted: 03/27/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND When given in the long term, whey proteins alone do not appear to be an optimal nutritional strategy to prevent or slow down muscle wasting during aging or catabolic states. It has been hypothesized that the digestion of whey may be too rapid during a catabolic situation to sustain the anabolic postprandial amino acid requirement necessary to elicit an optimal anabolic response. Interestingly, it has been shown recently that the duration of the postprandial stimulation of muscle protein synthesis in healthy conditions can be prolonged by the supplementary ingestion of a desynchronized carbohydrate load after food intake. We verified this hypothesis in the present study in two different cases of muscle wasting associated with anabolic resistance, i.e., glucocorticoid treatment and aging. METHODS Multi-catheterized minipigs were treated or not with glucocorticoids for 8 days. Muscle protein synthesis was measured sequentially over time after the infusion of a 13C phenylalanine tracer using the arterio-venous method before and after whey protein meal ingestion. The energy bolus was given 150 min after the meal. For the aging study, aged rats were fed the whey meal and muscle protein synthesis was measured sequentially over time with the flooding dose method using 13C Valine. The energy bolus was given 210 min after the meal. RESULTS Glucocorticoid treatment resulted in a decrease in the duration of the stimulation of muscle protein synthesis. The energy bolus given after food intake was unable to prolong this stimulation despite a simultaneous increase of insulin and glucose following its absorption. In old rats, a similar observation was made with no effect of the energy bolus on the duration of the muscle anabolic response following whey protein meal intake. CONCLUSIONS Despite very promising observations in healthy situations, the strategy aimed at increasing muscle protein synthesis stimulation by giving an energy bolus during the postprandial period remained inefficient in our two anabolic resistance models.
Collapse
Affiliation(s)
- Laurent Mosoni
- Unité de Nutrition Humaine, INRA, Université Clermont Auvergne, UMR1019, F-63000 Clermont-Ferrand, France.
| | - Marianne Jarzaguet
- Unité de Nutrition Humaine, INRA, Université Clermont Auvergne, UMR1019, F-63000 Clermont-Ferrand, France.
| | - Jérémie David
- Unité de Nutrition Humaine, INRA, Université Clermont Auvergne, UMR1019, F-63000 Clermont-Ferrand, France.
| | - Sergio Polakof
- Unité de Nutrition Humaine, INRA, Université Clermont Auvergne, UMR1019, F-63000 Clermont-Ferrand, France.
| | - Isabelle Savary-Auzeloux
- Unité de Nutrition Humaine, INRA, Université Clermont Auvergne, UMR1019, F-63000 Clermont-Ferrand, France.
| | - Didier Rémond
- Unité de Nutrition Humaine, INRA, Université Clermont Auvergne, UMR1019, F-63000 Clermont-Ferrand, France.
| | - Dominique Dardevet
- Unité de Nutrition Humaine, INRA, Université Clermont Auvergne, UMR1019, F-63000 Clermont-Ferrand, France.
| |
Collapse
|