1
|
Sifuna PM, Mbinji M, Lucas TO, Onyango I, Akala HM, Waitumbi JN, Ogutu BR, Hutter JN, Otieno W. The Walter Reed Project, Kisumu Field Station: Impact of Research on Malaria Policy, Management, and Prevention. Am J Trop Med Hyg 2024; 110:1069-1079. [PMID: 38653233 PMCID: PMC11154051 DOI: 10.4269/ajtmh.23-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 02/16/2024] [Indexed: 04/25/2024] Open
Abstract
The Walter Reed Project is a collaboration between the Walter Reed Army Institute of Research of the United States Department of Defense and the Kenya Medical Research Institute. The Kisumu field station, comprising four campuses, has until recently been devoted primarily to research on malaria countermeasures. The Kombewa Clinical Research Center is dedicated to conducting regulated clinical trials of therapeutic and vaccine candidates in development. The center's robust population-based surveillance platform, along with an active community engagement strategy, guarantees consistent recruitment and retention of participants in clinical trials. The Malaria Diagnostic Center, backed by WHO-certified microscopists and a large malaria blood film collection, champions high-quality malaria diagnosis and strict quality assurance through standardized microscopy trainings. The Malaria Drug Resistance Laboratory leverages cutting-edge technology such as real-time Polymerase Chain Reaction (qPCR) to conduct comprehensive research on resistance markers and obtain information on drug efficacy. The laboratory has been working on validating artemisinin resistance markers and improving tracking methods for current and future antimalarial compounds. Finally, the Basic Science Laboratory employs advanced genomic technology to examine endpoints such as immunogenicity and genomic fingerprinting for candidate drugs and vaccine efficacy. Herein, we examine the site's significant contributions to malaria policy, management, and prevention practices in Kenya and around the world.
Collapse
Affiliation(s)
- Peter M Sifuna
- Kenya Medical Research Institute, Kisumu, Kenya
- U.S. Army Medical Research Directorate-Africa, Kisumu, Kenya
| | - Michal Mbinji
- Kenya Medical Research Institute, Kisumu, Kenya
- U.S. Army Medical Research Directorate-Africa, Kisumu, Kenya
| | - Tina O Lucas
- Kenya Medical Research Institute, Kisumu, Kenya
- U.S. Army Medical Research Directorate-Africa, Kisumu, Kenya
| | - Irene Onyango
- Kenya Medical Research Institute, Kisumu, Kenya
- U.S. Army Medical Research Directorate-Africa, Kisumu, Kenya
| | - Hoseah M Akala
- Kenya Medical Research Institute, Kisumu, Kenya
- U.S. Army Medical Research Directorate-Africa, Kisumu, Kenya
| | - John N Waitumbi
- Kenya Medical Research Institute, Kisumu, Kenya
- U.S. Army Medical Research Directorate-Africa, Kisumu, Kenya
| | - Bernhards R Ogutu
- Kenya Medical Research Institute, Kisumu, Kenya
- U.S. Army Medical Research Directorate-Africa, Kisumu, Kenya
| | - Jack N Hutter
- U.S. Army Medical Research Directorate-Africa, Kisumu, Kenya
| | - Walter Otieno
- Kenya Medical Research Institute, Kisumu, Kenya
- U.S. Army Medical Research Directorate-Africa, Kisumu, Kenya
| |
Collapse
|
2
|
Mogire RM, Miruka SA, Juma DW, McNamara CW, Andagalu B, Burrows JN, Chenu E, Duffy J, Ogutu BR, Akala HM. Protein target similarity is positive predictor of in vitro antipathogenic activity: a drug repurposing strategy for Plasmodium falciparum. J Cheminform 2024; 16:63. [PMID: 38831351 PMCID: PMC11145868 DOI: 10.1186/s13321-024-00856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/10/2024] [Indexed: 06/05/2024] Open
Abstract
Drug discovery is an intricate and costly process. Repurposing existing drugs and active compounds offers a viable pathway to develop new therapies for various diseases. By leveraging publicly available biomedical information, it is possible to predict compounds' activity and identify their potential targets across diverse organisms. In this study, we aimed to assess the antiplasmodial activity of compounds from the Repurposing, Focused Rescue, and Accelerated Medchem (ReFRAME) library using in vitro and bioinformatics approaches. We assessed the in vitro antiplasmodial activity of the compounds using blood-stage and liver-stage drug susceptibility assays. We used protein sequences of known targets of the ReFRAME compounds with high antiplasmodial activity (EC50 < 10 uM) to conduct a protein-pairwise search to identify similar Plasmodium falciparum 3D7 proteins (from PlasmoDB) using NCBI protein BLAST. We further assessed the association between the compounds' in vitro antiplasmodial activity and level of similarity between their known and predicted P. falciparum target proteins using simple linear regression analyses. BLAST analyses revealed 735 P. falciparum proteins that were similar to the 226 known protein targets associated with the ReFRAME compounds. Antiplasmodial activity of the compounds was positively associated with the degree of similarity between the compounds' known targets and predicted P. falciparum protein targets (percentage identity, E value, and bit score), the number of the predicted P. falciparum targets, and their respective mutagenesis index and fitness scores (R2 between 0.066 and 0.92, P < 0.05). Compounds predicted to target essential P. falciparum proteins or those with a druggability index of 1 showed the highest antiplasmodial activity.
Collapse
Affiliation(s)
- Reagan M Mogire
- Center for Research On Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
- Center for Clinical Research, Kenya Medical Research Institute (KEMRI), P. O. Box 54, Kisumu, 40100, Kenya.
- Center for Research in Therapeutic Sciences, Strathmore University, P.O. Box 59857-00200, Nairobi, Kenya.
| | - Silviane A Miruka
- Center for Clinical Research, Kenya Medical Research Institute (KEMRI), P. O. Box 54, Kisumu, 40100, Kenya
- Center for Research in Therapeutic Sciences, Strathmore University, P.O. Box 59857-00200, Nairobi, Kenya
| | - Dennis W Juma
- Center for Clinical Research, Kenya Medical Research Institute (KEMRI), P. O. Box 54, Kisumu, 40100, Kenya
- Department of Emerging Infections Diseases (DEID), Walter Reed Army Institute of Research - Africa, Kisumu, Kenya
| | - Case W McNamara
- Calibr-Skaggs Institute for Innovative Medicine, a division of The Scripps Research Institute, La Jolla, CA, USA
| | - Ben Andagalu
- Center for Clinical Research, Kenya Medical Research Institute (KEMRI), P. O. Box 54, Kisumu, 40100, Kenya
| | | | - Elodie Chenu
- Medicines for Malaria Venture, Geneva, Switzerland
| | - James Duffy
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Bernhards R Ogutu
- Center for Clinical Research, Kenya Medical Research Institute (KEMRI), P. O. Box 54, Kisumu, 40100, Kenya
- Center for Research in Therapeutic Sciences, Strathmore University, P.O. Box 59857-00200, Nairobi, Kenya
| | - Hoseah M Akala
- Center for Clinical Research, Kenya Medical Research Institute (KEMRI), P. O. Box 54, Kisumu, 40100, Kenya.
- Center for Research in Therapeutic Sciences, Strathmore University, P.O. Box 59857-00200, Nairobi, Kenya.
- Department of Emerging Infections Diseases (DEID), Walter Reed Army Institute of Research - Africa, Kisumu, Kenya.
| |
Collapse
|
3
|
Basrani ST, Gavandi TC, Patil SB, Kadam NS, Yadav DV, Chougule SA, Karuppayil SM, Jadhav AK. Hydroxychloroquine an Antimalarial Drug, Exhibits Potent Antifungal Efficacy Against Candida albicans Through Multitargeting. J Microbiol 2024; 62:381-391. [PMID: 38587590 DOI: 10.1007/s12275-024-00111-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 04/09/2024]
Abstract
Candida albicans is the primary etiological agent associated with candidiasis in humans. Unrestricted growth of C. albicans can progress to systemic infections in the worst situation. This study investigates the antifungal activity of Hydroxychloroquine (HCQ) and mode of action against C. albicans. HCQ inhibited the planktonic growth and yeast to hyphal form morphogenesis of C. albicans significantly at 0.5 mg/ml concentration. The minimum inhibitory concentrations (MIC50) of HCQ for C. albicans adhesion and biofilm formation on the polystyrene surface was at 2 mg/ml and 4 mg/ml respectively. Various methods, such as scanning electron microscopy, exploration of the ergosterol biosynthesis pathway, cell cycle analysis, and assessment of S oxygen species (ROS) generation, were employed to investigate HCQ exerting its antifungal effects. HCQ was observed to reduce ergosterol levels in the cell membranes of C. albicans in a dose-dependent manner. Furthermore, HCQ treatment caused a substantial arrest of the C. albicans cell cycle at the G0/G1 phase, which impeded normal cell growth. Gene expression analysis revealed upregulation of SOD2, SOD1, and CAT1 genes after HCQ treatment, while genes like HWP1, RAS1, TEC1, and CDC 35 were downregulated. The study also assessed the in vivo efficacy of HCQ in a mice model, revealing a reduction in the pathogenicity of C. albicans after HCQ treatment. These results indicate that HCQ holds for the development of novel antifungal therapies.
Collapse
Affiliation(s)
- Sargun Tushar Basrani
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to be University), Kadamwadi, Kolhapur, Maharashtra, 416003, India
| | - Tanjila Chandsaheb Gavandi
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to be University), Kadamwadi, Kolhapur, Maharashtra, 416003, India
| | - Shivani Balasaheb Patil
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to be University), Kadamwadi, Kolhapur, Maharashtra, 416003, India
| | - Nandkumar Subhash Kadam
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to be University), Kadamwadi, Kolhapur, Maharashtra, 416003, India
- iSERA Biological Pvt Ltd., MIDC Shirala, Dist., Sangli, Maharashtra, 41540, India
| | - Dhairyasheel Vasantrao Yadav
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to be University), Kadamwadi, Kolhapur, Maharashtra, 416003, India
- iSERA Biological Pvt Ltd., MIDC Shirala, Dist., Sangli, Maharashtra, 41540, India
| | - Sayali Ashok Chougule
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to be University), Kadamwadi, Kolhapur, Maharashtra, 416003, India
| | - Sankunny Mohan Karuppayil
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to be University), Kadamwadi, Kolhapur, Maharashtra, 416003, India
| | - Ashwini Khanderao Jadhav
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to be University), Kadamwadi, Kolhapur, Maharashtra, 416003, India.
| |
Collapse
|
4
|
Rai S, Shukla S, Scotti L, Mani A. Drug Repurposing against Novel Therapeutic Targets in Plasmodium falciparum for Malaria: The Computational Perspective. Curr Med Chem 2024; 31:6272-6287. [PMID: 37550911 DOI: 10.2174/0929867331666230807151708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/28/2023] [Accepted: 07/01/2023] [Indexed: 08/09/2023]
Abstract
Malaria remains one of the most challenging tropical diseases. Since malaria cases are reportedly alarming in terms of infections and mortality, urgent attention is needed for addressing the issues of drug resistance in falciparum malaria. High throughput screening methods have paved way for rapid identification of anti-malarial. Furthermore, drug repurposing helps in shortening the time required for drug safety approvals. Hence, discovery of new antimalarials by drug repurposing is a promising approach for combating the disease. This article summarizes the recent computational approaches used for identifying novel antimalarials by using drug target interaction tools followed by pharmacokinetic studies.
Collapse
Affiliation(s)
- Shweta Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004 India
| | - Shruti Shukla
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004 India
| | - Luciana Scotti
- Postgraduate Programa in Natural and Synthetic Bioactive Compounds, University Hospital, Federal University of Paraíba-Campus I, 58051-970, João Pessoa, PB, Brazil
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004 India
| |
Collapse
|
5
|
Shafi S, Gupta S, Jain R, Shoaib R, Munjal A, Maurya P, Kumar P, Kalam Najmi A, Singh S. Tackling the emerging Artemisinin-resistant malaria parasite by modulation of defensive oxido-reductive mechanism via nitrofurantoin repurposing. Biochem Pharmacol 2023; 215:115756. [PMID: 37598974 DOI: 10.1016/j.bcp.2023.115756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/06/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Oxidative stress-mediated cell death has remained the prime parasiticidal mechanism of front line antimalarial, artemisinin (ART). The emergence of resistant Plasmodium parasites characterized by oxidative stress management due to impaired activation of ART and enhanced reactive oxygen species (ROS) detoxification has decreased its clinical efficacy. This gap can be filled by development of alternative chemotherapeutic agents to combat resistance defense mechanism. Interestingly, repositioning of clinically approved drugs presents an emerging approach for expediting antimalarial drug development and circumventing resistance. Herein, we evaluated the antimalarial potential of nitrofurantoin (NTF), a clinically used antibacterial drug, against intra-erythrocytic stages of ART-sensitive (Pf3D7) and resistant (PfKelch13R539T) strains of P. falciparum, alone and in combination with ART. NTF exhibited growth inhibitory effect at submicro-molar concentration by arresting parasite growth at trophozoite stage. It also inhibited the survival of resistant parasites as revealed by ring survival assay. Concomitantly, in vitro combination assay revealed synergistic association of NTF with ART. NTF was found to enhance the reactive oxygen and nitrogen species, and induced mitochondrial membrane depolarization in parasite. Furthermore, we found that exposure of parasites to NTF disrupted redox balance by impeding Glutathione Reductase activity, which manifests in enhanced oxidative stress, inducing parasite death. In vivo administration of NTF, alone and in combination with ART, in P. berghei ANKA-infected mice blocked parasite multiplication and enhanced mean survival time. Overall, our results indicate NTF as a promising repurposable drug with therapeutic potential against ART-sensitive as well as resistant parasites.
Collapse
Affiliation(s)
- Sadat Shafi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India; Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sonal Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Ravi Jain
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rumaisha Shoaib
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Akshay Munjal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Preeti Maurya
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Purnendu Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
6
|
Anjos LRBD, Costa VAF, Neves BJ, Junqueira-Kipnis AP, Kipnis A. Repurposing miconazole and tamoxifen for the treatment of Mycobacterium abscessus complex infections through in silico chemogenomics approach. World J Microbiol Biotechnol 2023; 39:273. [PMID: 37553519 DOI: 10.1007/s11274-023-03718-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023]
Abstract
Drug repositioning is an alternative to overcome the complexity of the drug discovery and approval procedures for the treatment of Mycobacterium abscessus Complex (MABSC) infections that are increasing globally due to the emergency of antimicrobial resistance mechanisms. Here, an in silico chemogenomics approach was performed to compare the sequences from 4942 M. abscessus subsp. abscessus (M. abscessus) proteins with 5258 or 3473 therapeutic targets registered in the DrugBank or Therapeutic Target Database, respectively. This comparison identified 446 drugs or drug candidates whose targets were homologous to M. abscessus proteins. These identified drugs were considered potential inhibitors of MABSC (anti-MABSC activity). Further screening and inspection resulted in the selection of ezetimibe, furosemide, itraconazole, miconazole (MCZ), tamoxifen (TAM), and thiabendazole (THI) for experimental validation. Among them, MCZ and TAM showed minimum inhibitory concentrations (MIC) of 32 and 24 µg mL-1 against M. abscessus, respectively. For M. bolletii and M. massiliense strains, MCZ and TAM showed MICs of 16 and 24 µg mL-1, in this order. Subsequently, the antibacterial activity of MCZ was confirmed in vivo, indicating its potential to reduce the bacterial load in the lungs of infected mice. These results show that MCZ and TAM can serve as molecular scaffolds for the prospective hit-2-lead optimization of new analogs with greater potency, selectivity, and permeability.
Collapse
Affiliation(s)
| | | | - Bruno Junior Neves
- Faculty of Pharmacy, Laboratory of Cheminformatics (LabChem), Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | - André Kipnis
- Department of Biosciences and Technology, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
7
|
Ochora DO, Mogire RM, Masai RJ, Yeda RA, Mwakio EW, Amwoma JG, Wakoli DM, Yenesew A, Akala HM. Ex vivo and In vitro antiplasmodial activities of approved drugs predicted to have antimalarial activities using chemogenomics and drug repositioning approach. Heliyon 2023; 9:e18863. [PMID: 37583763 PMCID: PMC10424068 DOI: 10.1016/j.heliyon.2023.e18863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023] Open
Abstract
High malaria mortality coupled with increased emergence of resistant multi-drug resistant strains of Plasmodium parasite, warrants the development of new and effective antimalarial drugs. However, drug design and discovery are costly and time-consuming with many active antimalarial compounds failing to get approved due to safety reasons. To address these challenges, the current study aimed at testing the antiplasmodial activities of approved drugs that were predicted using a target-similarity approach. This approach is based on the fact that if an approved drug used to treat another disease targets a protein similar to Plasmodium falciparum protein, then the drug will have a comparable effect on P. falciparum. In a previous study, in vitro antiplasmodial activities of 10 approved drugs was reported of the total 28 approved drugs. In this study, six out of 18 drugs that were previously not tested, namely epirubicin, irinotecan, venlafaxine, palbociclib, pelitinib, and PD153035 were tested for antiplasmodial activity. The drug susceptibility in vitro assays against five P. falciparum reference strains (D6, 3D7, W2, DD2, and F32 ART) and ex vivo assays against fresh clinical isolates were done using the malaria SYBR Green I assay. Standard antimalarial drugs were included as controls. Epirubicin and irinotecan showed excellent antiplasmodial ex vivo activity against field isolates with mean IC50 values of 0.044 ± 0.033 μM and 0.085 ± 0.055 μM, respectively. Similar activity was observed against W2 strain where epirubicin had an IC50 value of 0.004 ± 0.0009 μM, palbociclib 0.056 ± 0.006 μM, and pelinitib 0.057 ± 0.013 μM. For the DD2 strain, epirubicin, irinotecan and PD 153035 displayed potent antiplasmodial activity (IC50 < 1 μM). Epirubicin and irinotecan showed potent antiplasmodial activities (IC50 < 1 μM) against DD2, D6, 3D7, and F32 ART strains and field isolates. This shows the potential use of these drugs as antimalarials. All the tested drugs showed antiplasmodial activities with IC50 values below 20 μM, which suggests that our target similarity-based strategy is successful at predicting antiplasmodial activity of compounds thereby circumventing challenges in antimalarial drug discovery.
Collapse
Affiliation(s)
- Douglas O. Ochora
- Department of Biological Sciences, School of Pure and Applied Sciences, Kisii University, P.O. Box 408-40200, Kisii, Kenya
- DSI/NWU, Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Private Bag X6001, 2520, Potchefstroom, South Africa
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)—Walter Reed Project, P.O. Box 54-40100, Kisumu, Kenya
| | - Reagan M. Mogire
- Kenya Medical Research Institute (KEMRI) – Kemri-Wellcome Trust Research Programme, P.O. Box 230-80108, Kilifi, Kenya
| | - Rael J. Masai
- Department of Biological Sciences, School of Pure and Applied Sciences, Kisii University, P.O. Box 408-40200, Kisii, Kenya
| | - Redemptah A. Yeda
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)—Walter Reed Project, P.O. Box 54-40100, Kisumu, Kenya
| | - Edwin W. Mwakio
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)—Walter Reed Project, P.O. Box 54-40100, Kisumu, Kenya
| | - Joseph G. Amwoma
- Department of Biological Sciences, University of Embu P. O. Box 6-60100, Embu, Kenya
| | - Dancan M. Wakoli
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536-20115, Egerton-Njoro, Kenya
| | - Abiy Yenesew
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Hoseah M. Akala
- United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)—Walter Reed Project, P.O. Box 54-40100, Kisumu, Kenya
| |
Collapse
|
8
|
Shahzad M, Tahir MA, Alhussein M, Mobin A, Shams Malick RA, Anwar MS. NeuPD-A Neural Network-Based Approach to Predict Antineoplastic Drug Response. Diagnostics (Basel) 2023; 13:2043. [PMID: 37370938 DOI: 10.3390/diagnostics13122043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
With the beginning of the high-throughput screening, in silico-based drug response analysis has opened lots of research avenues in the field of personalized medicine. For a decade, many different predicting techniques have been recommended for the antineoplastic (anti-cancer) drug response, but still, there is a need for improvements in drug sensitivity prediction. The intent of this research study is to propose a framework, namely NeuPD, to validate the potential anti-cancer drugs against a panel of cancer cell lines in publicly available datasets. The datasets used in this work are Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE). As not all drugs are effective on cancer cell lines, we have worked on 10 essential drugs from the GDSC dataset that have achieved the best modeling results in previous studies. We also extracted 1610 essential oncogene expressions from 983 cell lines from the same dataset. Whereas, from the CCLE dataset, 16,383 gene expressions from 1037 cell lines and 24 drugs have been used in our experiments. For dimensionality reduction, Pearson correlation is applied to best fit the model. We integrate the genomic features of cell lines and drugs' fingerprints to fit the neural network model. For evaluation of the proposed NeuPD framework, we have used repeated K-fold cross-validation with 5 times repeats where K = 10 to demonstrate the performance in terms of root mean square error (RMSE) and coefficient determination (R2). The results obtained on the GDSC dataset that were measured using these cost functions show that our proposed NeuPD framework has outperformed existing approaches with an RMSE of 0.490 and R2 of 0.929.
Collapse
Affiliation(s)
- Muhammad Shahzad
- FAST School of Computing, National University of Computer and Emerging Sciences (NUCES-FAST), Karachi 75030, Pakistan
| | - Muhammad Atif Tahir
- FAST School of Computing, National University of Computer and Emerging Sciences (NUCES-FAST), Karachi 75030, Pakistan
| | - Musaed Alhussein
- Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, P.O. Box 51178, Riyadh 11543, Saudi Arabia
| | - Ansharah Mobin
- FAST School of Computing, National University of Computer and Emerging Sciences (NUCES-FAST), Karachi 75030, Pakistan
| | - Rauf Ahmed Shams Malick
- FAST School of Computing, National University of Computer and Emerging Sciences (NUCES-FAST), Karachi 75030, Pakistan
| | - Muhammad Shahid Anwar
- Department of AI and Software, Gachon University, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
9
|
Ibraheem W, Makki AA, Alzain AA. Phthalide derivatives as dihydrofolate reductase inhibitors for malaria: molecular docking and molecular dynamics studies. J Biomol Struct Dyn 2022:1-11. [DOI: 10.1080/07391102.2022.2080114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Walaa Ibraheem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Medani, Gezira, Sudan
| | - Alaa A. Makki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Medani, Gezira, Sudan
| | - Abdulrahim Altoam Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Medani, Gezira, Sudan
| |
Collapse
|
10
|
Agamah FE, Mazandu GK, Hassan R, Bope CD, Thomford NE, Ghansah A, Chimusa ER. Computational/in silico methods in drug target and lead prediction. Brief Bioinform 2020; 21:1663-1675. [PMID: 31711157 PMCID: PMC7673338 DOI: 10.1093/bib/bbz103] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 01/10/2023] Open
Abstract
Drug-like compounds are most of the time denied approval and use owing to the unexpected clinical side effects and cross-reactivity observed during clinical trials. These unexpected outcomes resulting in significant increase in attrition rate centralizes on the selected drug targets. These targets may be disease candidate proteins or genes, biological pathways, disease-associated microRNAs, disease-related biomarkers, abnormal molecular phenotypes, crucial nodes of biological network or molecular functions. This is generally linked to several factors, including incomplete knowledge on the drug targets and unpredicted pharmacokinetic expressions upon target interaction or off-target effects. A method used to identify targets, especially for polygenic diseases, is essential and constitutes a major bottleneck in drug development with the fundamental stage being the identification and validation of drug targets of interest for further downstream processes. Thus, various computational methods have been developed to complement experimental approaches in drug discovery. Here, we present an overview of various computational methods and tools applied in predicting or validating drug targets and drug-like molecules. We provide an overview on their advantages and compare these methods to identify effective methods which likely lead to optimal results. We also explore major sources of drug failure considering the challenges and opportunities involved. This review might guide researchers on selecting the most efficient approach or technique during the computational drug discovery process.
Collapse
Affiliation(s)
- Francis E Agamah
- Division of Human Genetics, Department of Pathology, University of Cape Town, Observatory 7925, South Africa
| | - Gaston K Mazandu
- Division of Human Genetics, Department of Pathology, University of Cape Town, Observatory 7925, South Africa
- African Institute for Mathematical Sciences, Muizenberg, Cape Town 7945, South Africa
| | - Radia Hassan
- Division of Human Genetics, Department of Pathology, University of Cape Town, Observatory 7925, South Africa
| | - Christian D Bope
- Division of Human Genetics, Department of Pathology, University of Cape Town, Observatory 7925, South Africa
- Faculty of Sciences, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Nicholas E Thomford
- Division of Human Genetics, Department of Pathology, University of Cape Town, Observatory 7925, South Africa
- School of Medical Sciences, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Anita Ghansah
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, PO Box LG 581, Legon, Ghana
| | - Emile R Chimusa
- Division of Human Genetics, Department of Pathology, University of Cape Town, Observatory 7925, South Africa
| |
Collapse
|
11
|
Schäfer C, Roobsoong W, Kangwanrangsan N, Bardelli M, Rawlinson TA, Dambrauskas N, Trakhimets O, Parthiban C, Goswami D, Reynolds LM, Kennedy SY, Flannery EL, Murphy SC, Sather DN, Draper SJ, Sattabongkot J, Mikolajczak SA, Kappe SHI. A Humanized Mouse Model for Plasmodium vivax to Test Interventions that Block Liver Stage to Blood Stage Transition and Blood Stage Infection. iScience 2020; 23:101381. [PMID: 32739836 PMCID: PMC7399188 DOI: 10.1016/j.isci.2020.101381] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/02/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
The human malaria parasite Plasmodium vivax remains vastly understudied, mainly due to the lack of suitable laboratory models. Here, we report a humanized mouse model to test interventions that block P. vivax parasite transition from liver stage infection to blood stage infection. Human liver-chimeric FRGN huHep mice infected with P. vivax sporozoites were infused with human reticulocytes, allowing transition of exo-erythrocytic merozoites to reticulocyte infection and development into all erythrocytic forms, including gametocytes, in vivo. In order to test the utility of this model for preclinical assessment of interventions, the invasion blocking potential of a monoclonal antibody targeting the essential interaction of the P. vivax Duffy Binding Protein with the Duffy antigen receptor was tested by passive immunization. This antibody inhibited invasion by over 95%, providing unprecedented in vivo evidence that PvDBP constitutes a promising blood stage vaccine candidate and proving our model highly suitable to test blood stage interventions.
Collapse
Affiliation(s)
- Carola Schäfer
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Niwat Kangwanrangsan
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | | | - Nicholas Dambrauskas
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Olesya Trakhimets
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Chaitra Parthiban
- Departments of Laboratory Medicine and Microbiology and Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Debashree Goswami
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Laura M Reynolds
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Spencer Y Kennedy
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Erika L Flannery
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Sean C Murphy
- Departments of Laboratory Medicine and Microbiology and Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA; Department of Global Health, University of Washington, Seattle, WA 98105, USA
| | - Simon J Draper
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Sebastian A Mikolajczak
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA; Department of Global Health, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
12
|
Computational Chemogenomics Drug Repositioning Strategy Enables the Discovery of Epirubicin as a New Repurposed Hit for Plasmodium falciparum and P. vivax. Antimicrob Agents Chemother 2020; 64:AAC.02041-19. [PMID: 32601162 PMCID: PMC7449180 DOI: 10.1128/aac.02041-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Widespread resistance against antimalarial drugs thwarts current efforts for controlling the disease and urges the discovery of new effective treatments. Drug repositioning is increasingly becoming an attractive strategy since it can reduce costs, risks, and time-to-market. Herein, we have used this strategy to identify novel antimalarial hits. We used a comparative in silico chemogenomics approach to select Plasmodium falciparum and Plasmodium vivax proteins as potential drug targets and analyzed them using a computer-assisted drug repositioning pipeline to identify approved drugs with potential antimalarial activity. Widespread resistance against antimalarial drugs thwarts current efforts for controlling the disease and urges the discovery of new effective treatments. Drug repositioning is increasingly becoming an attractive strategy since it can reduce costs, risks, and time-to-market. Herein, we have used this strategy to identify novel antimalarial hits. We used a comparative in silico chemogenomics approach to select Plasmodium falciparum and Plasmodium vivax proteins as potential drug targets and analyzed them using a computer-assisted drug repositioning pipeline to identify approved drugs with potential antimalarial activity. Among the seven drugs identified as promising antimalarial candidates, the anthracycline epirubicin was selected for further experimental validation. Epirubicin was shown to be potent in vitro against sensitive and multidrug-resistant P. falciparum strains and P. vivax field isolates in the nanomolar range, as well as being effective against an in vivo murine model of Plasmodium yoelii. Transmission-blocking activity was observed for epirubicin in vitro and in vivo. Finally, using yeast-based haploinsufficiency chemical genomic profiling, we aimed to get insights into the mechanism of action of epirubicin. Beyond the target predicted in silico (a DNA gyrase in the apicoplast), functional assays suggested a GlcNac-1-P-transferase (GPT) enzyme as a potential target. Docking calculations predicted the binding mode of epirubicin with DNA gyrase and GPT proteins. Epirubicin is originally an antitumoral agent and presents associated toxicity. However, its antiplasmodial activity against not only P. falciparum but also P. vivax in different stages of the parasite life cycle supports the use of this drug as a scaffold for hit-to-lead optimization in malaria drug discovery.
Collapse
|
13
|
Samutrtai P, Krobthong S, Roytrakul S. Proteomics for Toxicological Pathways Screening: A Case Comparison of Low-concentration Ionic and Nanoparticulate Silver. ANAL SCI 2020; 36:981-987. [PMID: 32115467 DOI: 10.2116/analsci.20p018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
LC-MS/MS-based proteomics coupled with an online bioinformatics platform was under evaluation for applicability to toxicological pathways evaluation at low cytotoxic concentration (LC10) of silver nanoparticles (AgNP) and ionic silver in human carcinoma cells after 48 h of exposure. Significantly, differentially-expressed proteins (One-way ANOVA, p < 0.05) with more than 4-fold compared to the control were subjected to functional pathway analysis by STITCH. SOTA clustering indicated a similarity of the protein expression between AgNP and the control group. We established a resemblance of proteins in the cell cycle pathway affected by both Ag substances. The differences in the toxicological pathways from AgNO3 were involved in the cellular organization and metabolic process of macromolecules, while the nucleic acid metabolic process was altered by AgNP. The present study supported the practicability of LC-MS/MS-based proteomics coupled with STITCH for the identification of toxicological pathways in both silvers. We appraised this platform technology to be promising and powerful for a toxicological screening of other new substances.
Collapse
Affiliation(s)
- Pawitrabhorn Samutrtai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA)
| | - Sucheewin Krobthong
- Proteomics Research Laboratory, Genome Technology Research Unit, BIOTEC, National Science and Technology Development Agency
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, Genome Technology Research Unit, BIOTEC, National Science and Technology Development Agency
| |
Collapse
|
14
|
Cheviet T, Lefebvre-Tournier I, Wein S, Peyrottes S. Plasmodium Purine Metabolism and Its Inhibition by Nucleoside and Nucleotide Analogues. J Med Chem 2019; 62:8365-8391. [PMID: 30964283 DOI: 10.1021/acs.jmedchem.9b00182] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Malaria still affects around 200 million people and is responsible for more than 400,000 deaths per year, mostly children in subequatorial areas. This disease is caused by parasites of the Plasmodium genus. Only a few WHO-recommended treatments are available to prevent or cure plasmodial infections, but genetic mutations in the causal parasites have led to onset of resistance against all commercial antimalarial drugs. New drugs and targets are being investigated to cope with this emerging problem, including enzymes belonging to the main metabolic pathways, while nucleoside and nucleotide analogues are also a promising class of potential drugs. This review highlights the main metabolic pathways targeted for the development of potential antiplasmodial therapies based on nucleos(t)ide analogues, as well as the different series of purine-containing nucleoside and nucleotide derivatives designed to inhibit Plasmodium falciparum purine metabolism.
Collapse
Affiliation(s)
- Thomas Cheviet
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 UM-CNRS-ENSCM , Université Montpellier, Equipe Nucléosides & Effecteurs Phosphorylés , Place E. Bataillon, cc 1704 , 34095 Montpellier , France
| | - Isabelle Lefebvre-Tournier
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 UM-CNRS-ENSCM , Université Montpellier, Equipe Nucléosides & Effecteurs Phosphorylés , Place E. Bataillon, cc 1704 , 34095 Montpellier , France
| | - Sharon Wein
- Dynamique des Interactions Membranaires Normales et Pathologiques (DIMNP), UMR 5235 UM-CNRS , Université Montpellier , Place E. Bataillon , 34095 Montpellier , France
| | - Suzanne Peyrottes
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 UM-CNRS-ENSCM , Université Montpellier, Equipe Nucléosides & Effecteurs Phosphorylés , Place E. Bataillon, cc 1704 , 34095 Montpellier , France
| |
Collapse
|