1
|
Wang L, Liu S, Zhao W, Li J, Zeng H, Kang S, Sheng X, Wang L, Fan Y, Yin L. Recent Advances in Implantable Neural Interfaces for Multimodal Electrical Neuromodulation. Adv Healthc Mater 2024; 13:e2303316. [PMID: 38323711 DOI: 10.1002/adhm.202303316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/29/2024] [Indexed: 02/08/2024]
Abstract
Electrical neuromodulation plays a pivotal role in enhancing patient outcomes among individuals suffering from neurological disorders. Implantable neural interfaces are vital components of the electrical neuromodulation system to ensure desirable performance; However, conventional devices are limited to a single function and are constructed with bulky and rigid materials, which often leads to mechanical incompatibility with soft tissue and an inability to adapt to the dynamic and complex 3D structures of biological systems. In addition, current implantable neural interfaces utilized in clinical settings primarily rely on wire-based techniques, which are associated with complications such as increased risk of infection, limited positioning options, and movement restrictions. Here, the state-of-art applications of electrical neuromodulation are presented. Material schemes and device structures that can be employed to develop robust and multifunctional neural interfaces, including flexibility, stretchability, biodegradability, self-healing, self-rolling, or morphing are discussed. Furthermore, multimodal wireless neuromodulation techniques, including optoelectronics, mechano-electrics, magnetoelectrics, inductive coupling, and electrochemically based self-powered devices are reviewed. In the end, future perspectives are given.
Collapse
Affiliation(s)
- Liu Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Shengnan Liu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Wentai Zhao
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Jiakun Li
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Haoxuan Zeng
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Shaoyang Kang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Lizhen Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
2
|
Benbuk A, Gulick D, Moniz-Garcia D, Liu S, Quinones-Hinojosa A, Christen JB. Wireless Stimulation of Motor Cortex Through a Collagen Dura Substitute Using an Ultra-Thin Implant Fabricated on Parylene/PDMS. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:334-346. [PMID: 37910421 PMCID: PMC11080957 DOI: 10.1109/tbcas.2023.3329447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
We present the design, fabrication, and in vivo testing of an ultra-thin (100 μm) wireless and battery-free implant for stimulation of the brain's cortex. The implant is fabricated on a flexible and transparent parylene/PDMS substrate, and it is miniaturized to dimensions of 15.6 × 6.6 mm 2. The frequency and pulse width of the monophasic voltage pulses are determined through On-Off keying (OOK) modulation of a wireless transmission at 2.45 GHz. Furthermore, the implant triggered a motor response in vivo when tested in 6 rodents. Limb response was observed by wireless stimulation of the brain's motor cortex through an FDA-approved collagen dura substitute that was placed on the dura in the craniotomy site, with no direct contact between the implant's electrodes and the brain's cortical surface. Therefore, the wireless stimulation method reported herein enables the concept of an e-dura substitute, where wireless electronics can be integrated onto a conventional dura substitute to augment its therapeutic function and administer any desired stimulation protocol without the need for post-surgical intervention for battery replacement or reprogramming stimulation parameters.
Collapse
|
3
|
Lee J, Kim SH, Zhang H, Min S, Choe G, Ma Z, Jung YH. Design and Fabrication of Stretchable Microwave Transmission Lines Based on a Quasi-Microstrip Structure. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4896-4903. [PMID: 38252593 DOI: 10.1021/acsami.3c14493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Radio frequency (RF) electronics are vital components of stretchable electronics that require wireless capabilities, ranging from skin-interfaced wearable systems to implantable devices to soft robotics. One of the key challenges in stretchable electronics is achieving near-lossless transmission line technology that can carry high-frequency electrical signals between various RF components. Almost all existing stretchable interconnection strategies only demonstrate direct current or low-frequency electrical properties, limiting their use in high frequencies, especially in the MHz to GHz range. Here, we describe the design and fabrication of a simple stretchable RF transmission line strategy that integrates a quasi-microstrip structure into a stretchable serpentine microscale interconnection. We show the effects of quasi-microstrip structural dimensions on the RF performance based on detailed quantitative analysis and experimentally demonstrate the optimized device capable of carrying RF signals with frequencies of up to 40 GHz with near-lossless characteristics. To show the potential application of our transmission line in stretchable microwave electronics, we designed a single-stage power amplifier system with a gain of 9.8 dB at 9 GHz that fully utilizes our quasi-microstrip transmission line technology.
Collapse
Affiliation(s)
- Juhwan Lee
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Sun Hong Kim
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Huilong Zhang
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Seunghwan Min
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Geonoh Choe
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Zhenqiang Ma
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yei Hwan Jung
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
4
|
Benbuk A, Esmaeili H, Liu S, Patino-Guerrero A, Migrino RQ, Chae J, Nikkhah M, Blain Christen J. Passive and Flexible Wireless Electronics Fabricated on Parylene/PDMS Substrate for Stimulation of Human Stem Cell-Derived Cardiomyocytes. ACS Sens 2022; 7:3287-3297. [PMID: 36281962 PMCID: PMC9706816 DOI: 10.1021/acssensors.2c00794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this paper, we report the development of a wireless, passive, biocompatible, and flexible system for stimulation of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMS). Fabricated on a transparent parylene/PDMS substrate, the proposed stimulator enables real-time excitation and characterization of hiPSC-CMs cultured on-board. The device comprises a rectenna operating at 2.35 GHz which receives radio frequency (RF) energy from an external transmitter and converts it into DC voltage to deliver monophasic stimulation. The operation of the stimulator was primarily verified by delivering monophasic voltage pulses through gold electrodes to hiPSC-CMs cultured on the Matrigel-coated substrates. Stimulated hiPSC-CMs beat in accordance with the monophasic pulses when delivered at 0.5, 1, and 2 Hz pulsing frequency, while no significant cell death was observed. The wireless stimulator could generate monophasic pulses with an amplitude of 8 V at a distance of 15 mm. These results demonstrated the proposed wireless stimulator's efficacy for providing electrical stimulation to engineered cardiac tissues. The proposed stimulator will have a wide application in tissue engineering where a fully wireless stimulation of electroconductive cells is needed. The device also has potential to be employed as a cardiac stimulator by delivering external stimulation and regulating the contractions of cardiac tissue.
Collapse
Affiliation(s)
- Ahmed
Abed Benbuk
- School of
Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287-5706, United States
| | - Hamid Esmaeili
- School
of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States
| | - Shiyi Liu
- School of
Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287-5706, United States
| | - Alejandra Patino-Guerrero
- School
of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States
| | - Raymond Q. Migrino
- Phoenix
Veterans Affairs Health Care System, Phoenix, Arizona 85022, United States,University
of Arizona College of Medicine, Phoenix, Arizona 85004, United States
| | - Junseok Chae
- School of
Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287-5706, United States
| | - Mehdi Nikkhah
- School
of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States,Center
for Personalized Diagnostics (CPD), Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States,
| | - Jennifer Blain Christen
- School of
Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287-5706, United States,
| |
Collapse
|
5
|
Zhao L, Annayev M, Oralkan O, Jia Y. An Ultrasonic Energy Harvesting IC Providing Adjustable Bias Voltage for Pre-Charged CMUT. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:842-851. [PMID: 35671313 DOI: 10.1109/tbcas.2022.3178581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ultrasonic wireless power transmission (WPT) using pre-charged capacitive micromachined ultrasonic transducers (CMUT) is drawing great attention due to the easy integration of CMUT with CMOS techniques. Here, we present an integrated circuit (IC) that interfaces with a pre-charged CMUT device for ultrasonic energy harvesting. We implemented an adaptive high voltage charge pump (HVCP) in the proposed IC, which features low power, overvoltage stress (OVS) robustness, and a wide output range. The ultrasonic energy harvesting IC is fabricated in the 180 nm HV BCD process and occupies a 2 × 2.5 mm2 silicon area. The adaptive HVCP offers a 2× - 12× voltage conversion ratio (VCR), thereby providing a wide bias voltage range of 4 V-44 V for the pre-charged CMUT. Moreover, a VCR tunning finite state machine (FSM) implemented in the proposed IC can dynamically adjust the VCR to stabilize the HVCP output (i.e., the pre-charged CMUT bias voltage) to a target voltage in a closed-loop manner. Such a closed-loop control mechanism improves the tolerance of the proposed IC to the received power variation caused by misalignments, amount of transmitted power change, and/or load variation. Besides, the proposed ultrasonic energy harvesting IC has an average power consumption of 35 μW-554 μW corresponding to the HVCP output from 4 V-44 V. The CMUT device with a local surface acoustic intensity of 3.78 mW/mm2, which is well below the FDA limit for power flux (7.2 mW/mm2), can deliver sufficient power to the IC.
Collapse
|
6
|
Silverå Ejneby M, Jakešová M, Ferrero JJ, Migliaccio L, Sahalianov I, Zhao Z, Berggren M, Khodagholy D, Đerek V, Gelinas JN, Głowacki ED. Chronic electrical stimulation of peripheral nerves via deep-red light transduced by an implanted organic photocapacitor. Nat Biomed Eng 2022; 6:741-753. [PMID: 34916610 DOI: 10.1038/s41551-021-00817-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/28/2021] [Indexed: 11/09/2022]
Abstract
Implantable devices for the wireless modulation of neural tissue need to be designed for reliability, safety and reduced invasiveness. Here we report chronic electrical stimulation of the sciatic nerve in rats by an implanted organic electrolytic photocapacitor that transduces deep-red light into electrical signals. The photocapacitor relies on commercially available semiconducting non-toxic pigments and is integrated in a conformable 0.1-mm3 thin-film cuff. In freely moving rats, fixation of the cuff around the sciatic nerve, 10 mm below the surface of the skin, allowed stimulation (via 50-1,000-μs pulses of deep-red light at wavelengths of 638 nm or 660 nm) of the nerve for over 100 days. The robustness, biocompatibility, low volume and high-performance characteristics of organic electrolytic photocapacitors may facilitate the wireless chronic stimulation of peripheral nerves.
Collapse
Affiliation(s)
- Malin Silverå Ejneby
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, Norrköping, Sweden.,Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
| | - Marie Jakešová
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, Norrköping, Sweden.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Jose J Ferrero
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Ludovico Migliaccio
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, Norrköping, Sweden.,Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden.,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Ihor Sahalianov
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, Norrköping, Sweden
| | - Zifang Zhao
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Magnus Berggren
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, Norrköping, Sweden
| | - Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Vedran Đerek
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, Norrköping, Sweden. .,Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden. .,Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | - Jennifer N Gelinas
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA. .,Department of Neurology, Columbia University Medical Center, New York, NY, USA.
| | - Eric Daniel Głowacki
- Laboratory of Organic Electronics, Campus Norrköping, Linköping University, Norrköping, Sweden. .,Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden. .,Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.
| |
Collapse
|
7
|
Habibagahi I, Omidbeigi M, Hadaya J, Lyu H, Jang J, Ardell JL, Bari AA, Babakhani A. Vagus nerve stimulation using a miniaturized wirelessly powered stimulator in pigs. Sci Rep 2022; 12:8184. [PMID: 35581302 PMCID: PMC9114380 DOI: 10.1038/s41598-022-11850-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/26/2022] [Indexed: 11/09/2022] Open
Abstract
Neuromodulation of peripheral nerves has been clinically used for a wide range of indications. Wireless and batteryless stimulators offer important capabilities such as no need for reoperation, and extended life compared to their wired counterparts. However, there are challenging trade-offs between the device size and its operating range, which can limit their use. This study aimed to examine the functionality of newly designed wirelessly powered and controlled implants in vagus nerve stimulation for pigs. The implant used near field inductive coupling at 13.56 MHz industrial, scientific, and medical band to harvest power from an external coil. The circular implant had a diameter of 13 mm and weighed 483 mg with cuff electrodes. The efficiency of the inductive link and robustness to distance and misalignment were optimized. As a result, the specific absorption rate was orders of magnitude lower than the safety limit, and the stimulation can be performed using only 0.1 W of external power. For the first time, wireless and batteryless VNS with more than 5 cm operation range was demonstrated in pigs. A total of 84 vagus nerve stimulations (10 s each) have been performed in three adult pigs. In a quantitative comparison of the effectiveness of VNS devices, the efficiency of systems on reducing heart rate was similar in both conventional (75%) and wireless (78.5%) systems. The pulse width and frequency of the stimulation were swept on both systems, and the response for physiological markers was drawn. The results were easily reproducible, and methods used in this study can serve as a basis for future wirelessly powered implants.
Collapse
Affiliation(s)
- Iman Habibagahi
- Electrical and Computer Engineering Department, University of California Los Angeles, Los Angeles, CA, USA.
| | - Mahmoud Omidbeigi
- Department of Neurosurgery, University of California at Los Angeles, Los Angeles, CA, USA.
| | - Joseph Hadaya
- UCLA Cardiac Arrhythmia Center, University of California Los Angeles, Los Angeles, CA, USA.,UCLA Neurocardiology Research Program of Excellence, University of California Los Angeles, Los Angeles, CA, USA.,Molecular, Cellular and Integrative Physiology Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Hongming Lyu
- Electrical and Computer Engineering Department, University of California Los Angeles, Los Angeles, CA, USA
| | - Jaeeun Jang
- Electrical and Computer Engineering Department, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeffrey L Ardell
- UCLA Cardiac Arrhythmia Center, University of California Los Angeles, Los Angeles, CA, USA.,UCLA Neurocardiology Research Program of Excellence, University of California Los Angeles, Los Angeles, CA, USA
| | - Ausaf A Bari
- Department of Neurosurgery, University of California at Los Angeles, Los Angeles, CA, USA
| | - Aydin Babakhani
- Electrical and Computer Engineering Department, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Shah J, Quinkert C, Collar B, Williams M, Biggs E, Irazoqui P. A Highly Miniaturized, Chronically Implanted ASIC for Electrical Nerve Stimulation. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:233-243. [PMID: 35201991 PMCID: PMC9195150 DOI: 10.1109/tbcas.2022.3153282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We present a wireless, fully implantable device for electrical stimulation of peripheral nerves consisting of a powering coil, a tuning network, a Zener diode, selectable stimulation parameters, and a stimulator IC, all encapsulated in biocompatible silicone. A wireless RF signal at 13.56 MHz powers the implant through the on-chip rectifier. The ASIC, designed in TSMC's 180 nm MS RF G process, occupies an area of less than 1.2 mm2. The IC enables externally selectable current-controlled stimulation through an on-chip read-only memory with a wide range of 32 stimulation parameters (90-750 µA amplitude, 100 µs or 1 ms pulse width, 15 or 50 Hz frequency). The IC generates the constant current waveform using an 8-bit binary weighted DAC and an H-Bridge. At the most power-hungry stimulation parameter, the average power consumption during a stimulus pulse is 2.6 mW with a power transfer efficiency of ∼5.2%. In addition to benchtop and acute testing, we chronically implanted two versions of the device (a design with leads and a leadless design) on two rats' sciatic nerves to verify the long-term efficacy of the IC and the full system. The leadless device had the following dimensions: height of 0.45 cm, major axis of 1.85 cm, and minor axis of 1.34 cm, with similar dimensions for the device with leads. Both devices were implanted and worked for experiments lasting from 21-90 days. To the best of our knowledge, the fabricated IC is the smallest constant-current stimulator that has been tested chronically.
Collapse
|
9
|
Shah JV, Collar BJ, Ditslear E, Irazoqui PP. An ASIC System for Closed-Loop Blood Pressure Modulation through Right Cervical Vagus Nerve Stimulation. IEEE Trans Biomed Eng 2022; 69:3021-3028. [PMID: 35294339 DOI: 10.1109/tbme.2022.3159597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Heart disease is the leading cause of death worldwide. Hypertension is an important precursor and the most common risk factor to heart failure. While some patients can control their high blood pressure with pharmaceuticals, many suffer from resistant hypertension, where antihypertensive medications do not achieve the desired outcome. Electrical stimulation is an emerging therapy to modulate blood pressure and integrating it with closed-loop feedback can improve blood pressure control. METHODS We design and fabricate two application-specific integrated circuits (ASICs) for stimulation and pressure sensing using TSMC's 180 nm MS RF G process. We create a closed-loop system by integrating the ASICs with a microscale pressure sensor and a custom-built Python script and test the full system in six Long Evans rats using vagus nerve stimulation. RESULTS After calibration and benchtop verification, we prove the functionality of the system in lowering, and maintaining a desired blood pressure in vivo. The system effectively monitors pressure and stimulates when that pressure exceeds the user-determined threshold. CONCLUSION By combining this stimulation therapy with a pressure sensor, we present a novel closed-loop, electroceutical system that has the potential to monitor and modulate blood pressure. SIGNIFICANCE We present a drug-free, potentially side-effect-free electroceutical therapeutic for managing resistant hypertension.
Collapse
|
10
|
Wang H, D'Andrea D, Choi YS, Bouricha Y, Wickerson G, Ahn HY, Guo H, Huang Y, Sandhu MS, Jordan SW, Rogers JA, Franz CK. Implantation and Control of Wireless, Battery-free Systems for Peripheral Nerve Interfacing. J Vis Exp 2021:10.3791/63085. [PMID: 34747395 PMCID: PMC8981963 DOI: 10.3791/63085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Peripheral nerve interfaces are frequently used in experimental neuroscience and regenerative medicine for a wide variety of applications. Such interfaces can be sensors, actuators, or both. Traditional methods of peripheral nerve interfacing must either tether to an external system or rely on battery power that limits the time frame for operation. With recent developments of wireless, battery-free, and fully implantable peripheral nerve interfaces, a new class of devices can offer capabilities that match or exceed those of their wired or battery-powered precursors. This paper describes methods to (i) surgically implant and (ii) wirelessly power and control this system in adult rats. The sciatic and phrenic nerve models were selected as examples to highlight the versatility of this approach. The paper shows how the peripheral nerve interface can evoke compound muscle action potentials (CMAPs), deliver a therapeutic electrical stimulation protocol, and incorporate a conduit for the repair of peripheral nerve injury. Such devices offer expanded treatment options for single-dose or repeated dose therapeutic stimulation and can be adapted to a variety of nerve locations.
Collapse
Affiliation(s)
- Hongkai Wang
- Laboratory of Regenerative Rehabilitation, Shirley Ryan AbilityLab, Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine; Northwestern University Interdepartmental Neuroscience Program
| | - Dom D'Andrea
- Laboratory of Regenerative Rehabilitation, Shirley Ryan AbilityLab, Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine
| | - Yeon Sik Choi
- Center for Bio-integrated Electronics, Querrey Simpson Institute for Bioelectronics, Northwestern University; Department of Materials Science and Engineering, Northwestern University
| | - Yasmine Bouricha
- Laboratory of Regenerative Rehabilitation, Shirley Ryan AbilityLab, Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine
| | - Grace Wickerson
- Center for Bio-integrated Electronics, Querrey Simpson Institute for Bioelectronics, Northwestern University; Department of Materials Science and Engineering, Northwestern University
| | - Hak-Young Ahn
- Center for Bio-integrated Electronics, Querrey Simpson Institute for Bioelectronics, Northwestern University
| | - Hexia Guo
- Center for Bio-integrated Electronics, Querrey Simpson Institute for Bioelectronics, Northwestern University; Department of Materials Science and Engineering, Northwestern University
| | - Yonggang Huang
- Center for Bio-integrated Electronics, Querrey Simpson Institute for Bioelectronics, Northwestern University; Department of Materials Science and Engineering, Northwestern University; Department of Civil and Environmental Engineering, Northwestern University; Department of Mechanical Engineering, Northwestern University
| | - Milap S Sandhu
- Arms and Hands Lab, Shirley Ryan AbilityLab, Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine
| | - Sumanas W Jordan
- Division of Plastic and Reconstructive Surgery, Biologics, Shirley Ryan AbilityLab, Northwestern University
| | - John A Rogers
- Center for Bio-integrated Electronics, Querrey Simpson Institute for Bioelectronics, Northwestern University; Department of Materials Science and Engineering, Northwestern University; Department of Mechanical Engineering, Northwestern University; Department of Biomedical Engineering, Northwestern University; Department of Neurological Surgery, Northwestern University; Department of Chemistry, Northwestern University; Department of Electrical and Computer Engineering, Northwestern University
| | - Colin K Franz
- Laboratory of Regenerative Rehabilitation, Shirley Ryan AbilityLab, Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine; Center for Bio-integrated Electronics, Querrey Simpson Institute for Bioelectronics, Northwestern University; The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine;
| |
Collapse
|
11
|
Singer A, Robinson JT. Wireless Power Delivery Techniques for Miniature Implantable Bioelectronics. Adv Healthc Mater 2021; 10:e2100664. [PMID: 34114368 PMCID: PMC8754427 DOI: 10.1002/adhm.202100664] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/11/2021] [Indexed: 12/14/2022]
Abstract
Progress in implanted bioelectronic technology offers the opportunity to develop more effective tools for personalized electronic medicine. While there are numerous clinical and pre-clinical applications for these devices, power delivery to these systems can be challenging. Wireless battery-free devices offer advantages such as a smaller and lighter device footprint and reduced failures and infections by eliminating lead wires. However, with the development of wireless technologies, there are fundamental tradeoffs between five essential factors: power, miniaturization, depth, alignment tolerance, and transmitter distance, while still allowing devices to work within safety limits. These tradeoffs mean that multiple forms of wireless power transfer are necessary for different devices to best meet the needs for a given biological target. Here six different types of wireless power transfer technologies used in bioelectronic implants-inductive coupling, radio frequency, mid-field, ultrasound, magnetoelectrics, and light-are reviewed in context of the five tradeoffs listed above. This core group of wireless power modalities is then used to suggest possible future bioelectronic technologies and their biological applications.
Collapse
Affiliation(s)
- Amanda Singer
- Department of Electrical and Computer EngineeringRice University6100 Main StHoustonTX77005USA
| | - Jacob T. Robinson
- Department of Electrical and Computer EngineeringRice University6100 Main StHoustonTX77005USA
| |
Collapse
|
12
|
Ultra-compact dual-band smart NEMS magnetoelectric antennas for simultaneous wireless energy harvesting and magnetic field sensing. Nat Commun 2021; 12:3141. [PMID: 34035237 PMCID: PMC8149822 DOI: 10.1038/s41467-021-23256-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 04/13/2021] [Indexed: 11/12/2022] Open
Abstract
Ultra-compact wireless implantable medical devices are in great demand for healthcare applications, in particular for neural recording and stimulation. Current implantable technologies based on miniaturized micro-coils suffer from low wireless power transfer efficiency (PTE) and are not always compliant with the specific absorption rate imposed by the Federal Communications Commission. Moreover, current implantable devices are reliant on differential recording of voltage or current across space and require direct contact between electrode and tissue. Here, we show an ultra-compact dual-band smart nanoelectromechanical systems magnetoelectric (ME) antenna with a size of 250 × 174 µm2 that can efficiently perform wireless energy harvesting and sense ultra-small magnetic fields. The proposed ME antenna has a wireless PTE 1–2 orders of magnitude higher than any other reported miniaturized micro-coil, allowing the wireless IMDs to be compliant with the SAR limit. Furthermore, the antenna’s magnetic field detectivity of 300–500 pT allows the IMDs to record neural magnetic fields. Wireless implantable medical devices (IMDs) are hamstrung by both size and efficiency required for wireless power transfer. Here, Zaeimbashi et al. present a magnetoelectric nano-electromechanical systems that can harvest energy and sense weak magnetic fields like those arising from neural activity.
Collapse
|
13
|
Khalifa A, Eisape A, Coughlin B, Cash S. A simple method for implanting free-floating microdevices into the nervous tissue. J Neural Eng 2021; 18. [PMID: 33827069 DOI: 10.1088/1741-2552/abf590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 04/07/2021] [Indexed: 12/20/2022]
Abstract
Objective. Free-floating implantable neural interfaces are an emerging powerful paradigm for mapping and modulation of brain activity. Minuscule wirelessly-powered devices have the potential to provide minimally-invasive interactions with neurons in chronic research and medical applications. However, these devices face a seemingly simple problem-how can they be placed into nervous tissue rapidly, efficiently and in an essentially arbitrary location?Approach. We introduce a novel injection tool and describe a controlled injection approach that minimizes damage to the tissue.Main results.To validate the needle injectable tool and the presented delivery approach, we evaluate the spatial precision and rotational alignment of the microdevices injected into agarose, brain, and sciatic nerve with the aid of tissue clearing and MRI imaging. In this research, we limited the number of injections into the brain to four per rat as we are using microdevices that are designed for an adult head size on a rat model. We then present immunohistology data to assess the damage caused by the needle.Significance. By virtue of its simplicity, the proposed injection method can be used to inject microdevices of all sizes and shapes and will do so in a fast, minimally-invasive, and cost-effective manner. As a result, the introduced technique can be broadly used to accelerate the validation of these next-generation types of electrodes in animal models.
Collapse
Affiliation(s)
- Adam Khalifa
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Adebayo Eisape
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, United States of America
| | - Brian Coughlin
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - Sydney Cash
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| |
Collapse
|
14
|
Eickhoff S, Jarvis JC. Pulse Shaping Strategies for Electroceuticals: A Comprehensive Survey of the Use of Interphase Gaps in Miniature Stimulation Systems. IEEE Trans Biomed Eng 2021; 68:1658-1667. [PMID: 33651679 DOI: 10.1109/tbme.2021.3063029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Interphase gaps (IPGs) are among the most commonly suggested pulse shape variations to try to enhance neural stimulation efficiency by reducing the action potential (AP) suppressing effect of an early anodic hyperpolarization. The majority of published literature on the effect of IPGs is based on investigations of monopolar stimulation configurations. However, many contemporary neuromodulation applications including the emerging field of electroceutical devices operate in a bipolar electrode configuration. METHODS We investigated the effect of IPGs and asymmetric biphasic current controlled pulses with reduced anodic amplitude on neural activation in both principal electrode configurations in a rodent in-vivo nerve muscle preparation. RESULTS In the monopolar electrode configuration, our findings of 10.9 ± 1.5% decreased stimulation amplitude with 200 μs IPGs in biphasic pulses of 40 μs phase width are in agreement with published literature in this configuration. Surprisingly, using the bipolar configuration, opposite effects of IPGs were observed and neural activation required up to 18.6 ± 3.1% (phase width 100 μs, IPG = 1000 μs) higher amplitudes. Electroneurogram recordings of the stimulated nerve revealed temporal differences in AP generation between the monopolar and bipolar configuration. In the bipolar configuration excitation first occurred in response to the middle field transition of biphasic pulses. CONCLUSION This is the first study to report consistently increased amplitude requirements with IPGs in bipolar stimulation configurations. SIGNIFICANCE Our findings must be taken into consideration when designing stimulation waveforms for neuromodulation devices that operate in a bipolar mode to avoid increased amplitude requirements that result in increased energy consumption.
Collapse
|
15
|
Cho Y, Park J, Lee C, Lee S. Recent progress on peripheral neural interface technology towards bioelectronic medicine. Bioelectron Med 2020; 6:23. [PMID: 33292861 PMCID: PMC7706233 DOI: 10.1186/s42234-020-00059-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/05/2020] [Indexed: 11/23/2022] Open
Abstract
Modulation of the peripheral nervous system (PNS) has a great potential for therapeutic intervention as well as restore bodily functions. Recent interest has focused on autonomic nerves, as they regulate extensive functions implicated in organ physiology, chronic disease state and appear tractable to targeted modulation of discrete nerve units. Therapeutic interventions based on specific bioelectronic neuromodulation depend on reliable neural interface to stimulate and record autonomic nerves. Furthermore, the function of stimulation and recording requires energy which should be delivered to the interface. Due to the physiological and anatomical challenges of autonomic nerves, various forms of this active neural interface need to be developed to achieve next generation of neural interface for bioelectronic medicine. In this article, we present an overview of the state-of-the-art for peripheral neural interface technology in relation to autonomic nerves. Also, we reveal the current status of wireless neural interface for peripheral nerve applications. Recent studies of a novel concept of self-sustainable neural interface without battery and electronic components are presented. Finally, the recent results of non-invasive stimulation such as ultrasound and magnetic stimulation are covered and the perspective of the future research direction is provided.
Collapse
Affiliation(s)
- Youngjun Cho
- Daegu Geongbuk Institute of Science and Technology (DGIST), Daegu, 42899, Republic of Korea
| | - Jaeu Park
- Daegu Geongbuk Institute of Science and Technology (DGIST), Daegu, 42899, Republic of Korea
| | - Chengkuo Lee
- Electrical & Computer Engineering, National University of Singapore, Singapore, 117583, Singapore. .,Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117608, Singapore. .,NUS Graduate School for Integrated Science and Engineering (NGS), National University of Singapore, Singapore, 117456, Singapore.
| | - Sanghoon Lee
- Daegu Geongbuk Institute of Science and Technology (DGIST), Daegu, 42899, Republic of Korea.
| |
Collapse
|
16
|
Ashton MD, Appen IC, Firlak M, Stanhope NE, Schmidt CE, Eisenstadt WR, Hur B, Hardy JG. Wirelessly triggered bioactive molecule delivery from degradable electroactive polymer films. POLYM INT 2020. [DOI: 10.1002/pi.6089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mark D Ashton
- Department of Chemistry Lancaster University Lancaster UK
| | - Isabel C Appen
- Department of Chemistry Lancaster University Lancaster UK
| | - Melike Firlak
- Department of Chemistry Lancaster University Lancaster UK
- Department of Chemistry Gebze Technical University Kocaeli Turkey
| | | | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering University of Florida, Biomedical Sciences Building JG‐53 Gainesville FL USA
| | - William R Eisenstadt
- Department of Electrical and Computer Engineering University of Florida, New Engineering Building Gainesville FL USA
| | - Byul Hur
- Department of Engineering Technology and Industrial Distribution Texas A&M University College Station TX USA
| | - John G Hardy
- Department of Chemistry Lancaster University Lancaster UK
- J. Crayton Pruitt Family Department of Biomedical Engineering University of Florida, Biomedical Sciences Building JG‐53 Gainesville FL USA
- Materials Science Institute, Lancaster University Lancaster UK
| |
Collapse
|
17
|
Khan SR, Pavuluri SK, Cummins G, Desmulliez MPY. Wireless Power Transfer Techniques for Implantable Medical Devices: A Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3487. [PMID: 32575663 PMCID: PMC7349694 DOI: 10.3390/s20123487] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 12/01/2022]
Abstract
Wireless power transfer (WPT) systems have become increasingly suitable solutions for the electrical powering of advanced multifunctional micro-electronic devices such as those found in current biomedical implants. The design and implementation of high power transfer efficiency WPT systems are, however, challenging. The size of the WPT system, the separation distance between the outside environment and location of the implanted medical device inside the body, the operating frequency and tissue safety due to power dissipation are key parameters to consider in the design of WPT systems. This article provides a systematic review of the wide range of WPT systems that have been investigated over the last two decades to improve overall system performance. The various strategies implemented to transfer wireless power in implantable medical devices (IMDs) were reviewed, which includes capacitive coupling, inductive coupling, magnetic resonance coupling and, more recently, acoustic and optical powering methods. The strengths and limitations of all these techniques are benchmarked against each other and particular emphasis is placed on comparing the implanted receiver size, the WPT distance, power transfer efficiency and tissue safety presented by the resulting systems. Necessary improvements and trends of each WPT techniques are also indicated per specific IMD.
Collapse
Affiliation(s)
- Sadeque Reza Khan
- Institute of Sensors, Signals, and Systems, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (S.K.P.); (M.P.Y.D.)
| | - Sumanth Kumar Pavuluri
- Institute of Sensors, Signals, and Systems, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (S.K.P.); (M.P.Y.D.)
| | - Gerard Cummins
- School of Engineering, University of Birmingham, Birmingham B15 2TT, UK;
| | - Marc P. Y. Desmulliez
- Institute of Sensors, Signals, and Systems, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (S.K.P.); (M.P.Y.D.)
| |
Collapse
|
18
|
Affiliation(s)
- Max Ortiz-Catalan
- Biomechatronics and Neurorehabilitation Laboratory, Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
19
|
Piech DK, Johnson BC, Shen K, Ghanbari MM, Li KY, Neely RM, Kay JE, Carmena JM, Maharbiz MM, Muller R. A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication. Nat Biomed Eng 2020; 4:207-222. [PMID: 32076132 DOI: 10.1038/s41551-020-0518-9] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/14/2020] [Indexed: 01/06/2023]
Abstract
Clinically approved neural stimulators are limited by battery requirements, as well as by their large size compared with the stimulation targets. Here, we describe a wireless, leadless and battery-free implantable neural stimulator that is 1.7 mm3 and that incorporates a piezoceramic transducer, an energy-storage capacitor and an integrated circuit. An ultrasonic link and a hand-held external transceiver provide the stimulator with power and bidirectional communication. The stimulation protocols were wirelessly encoded on the fly, reducing power consumption and on-chip memory, and enabling protocol complexity with a high temporal resolution and low-latency feedback. Uplink data indicating whether stimulation occurs are encoded by the stimulator through backscatter modulation and are demodulated at the external transceiver. When embedded in ex vivo porcine tissue, the integrated circuit efficiently harvested ultrasonic power, decoded downlink data for the stimulation parameters and generated current-controlled stimulation pulses. When cuff-mounted and acutely implanted onto the sciatic nerve of anaesthetized rats, the device conferred repeatable stimulation across a range of physiological responses. The miniaturized neural stimulator may facilitate closed-loop neurostimulation for therapeutic interventions.
Collapse
Affiliation(s)
- David K Piech
- The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, USA.,The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA
| | - Benjamin C Johnson
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA.,Department of Electrical Engineering and Computer Engineering, Boise State University, Boise, ID, USA
| | - Konlin Shen
- The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, USA.,The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA
| | - M Meraj Ghanbari
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Ka Yiu Li
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Ryan M Neely
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Joshua E Kay
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Jose M Carmena
- The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, USA. .,The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA. .,Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA. .,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Michel M Maharbiz
- The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, USA. .,The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA. .,Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA. .,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Rikky Muller
- The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, USA. .,The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA. .,Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
20
|
|
21
|
Khalifa A, Liu Y, Karimi Y, Wang Q, Eisape A, Stanacevic M, Thakor N, Bao Z, Etienne-Cummings R. The Microbead: A 0.009 mm 3 Implantable Wireless Neural Stimulator. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:971-985. [PMID: 31484132 DOI: 10.1109/tbcas.2019.2939014] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Wirelessly powered implants are increasingly being developed to interface with neurons in the brain. They often rely on microelectrode arrays, which are limited by their ability to cover large cortical surface areas and long-term stability because of their physical size and rigid configuration. Yet some clinical and research applications prioritize a distributed neural interface over one that offers high channel count. One solution to make large scale, fully specifiable, electrical stimulation/recording possible, is to disconnect the electrodes from the base, so that they can be arbitrarily placed freely in the nervous system. In this work, a wirelessly powered stimulating implant is miniaturized using a novel electrode integration technique, and its implanted depth maximized using new optimization design methods for the transmitter and receiver coils. The stimulating device is implemented in a 130 nm CMOS technology with the following characteristics: 300 μm × 300 μm × 80 μm size; optimized two-coil inductive link; and integrated circuit, electrodes and coil. The wireless and stimulation capability of the implant is demonstrated in a conductive medium, as well as in-vivo. To the best of our knowledge, the fabricated free-floating miniaturized implant has the best depth-to-volume ratio making it an excellent tool for minimally-invasive distributed neural interface, and thus could eventually complement or replace the rigid arrays that are currently the state-of-the-art in brain set-ups.
Collapse
|
22
|
Hernandez-Reynoso AG, Nandam S, O’Brien JM, Kanneganti A, Cogan SF, Freeman DK, Romero-Ortega MI. Miniature electroparticle-cuff for wireless peripheral neuromodulation. J Neural Eng 2019; 16:046002. [DOI: 10.1088/1741-2552/ab1c36] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
ReStore: A wireless peripheral nerve stimulation system. J Neurosci Methods 2019; 320:26-36. [PMID: 30849436 DOI: 10.1016/j.jneumeth.2019.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/24/2019] [Accepted: 02/13/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND The growing use of neuromodulation techniques to treat neurological disorders has motivated efforts to improve on the safety and reliability of implantable nerve stimulators. NEW METHOD The present study describes the ReStore system, a miniature, implantable wireless nerve stimulator system that has no battery or leads and is constructed using commercial components and processes. The implant can be programmed wirelessly to deliver charge-balanced, biphasic current pulses of varying amplitudes, pulse widths, frequencies, and train durations. Here, we describe bench and in vivo testing to evaluate the operational performance and efficacy of nerve recruitment. Additionally, we also provide results from a large-animal chronic active stimulation study assessing the long-term biocompatibility of the device. RESULTS The results show that the system can reliably deliver accurate stimulation pulses through a range of different loads. Tests of nerve recruitment demonstrate that the implant can effectively activate peripheral nerves, even after accelerated aging and post-chronic implantation. Biocompatibility and hermeticity tests provide an initial indication that the implant will be safe for use in humans. COMPARISON WITH EXISTING METHOD(S) Most commercially available nerve stimulators include a battery and wire leads which often require subsequent surgeries to address failures in these components. Though miniaturized battery-less stimulators have been prototyped in academic labs, they are often constructed using custom components and processes that hinder clinical translation. CONCLUSIONS The results from testing the performance and safety of the ReStore system establish its potential to advance the field of peripheral neuromodulation.
Collapse
|
24
|
Ha S, Kim C, Park J, Cauwenberghs G, Mercier PP. A Fully Integrated RF-Powered Energy-Replenishing Current-Controlled Stimulator. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:191-202. [PMID: 30452378 DOI: 10.1109/tbcas.2018.2881800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper presents a fully-integrated current-controlled stimulator that is powered directly from on-chip coil antenna and achieves adiabatic energy-replenishing operation without any bulky external components. Adiabatic supply voltages, which can reach a differential range of up to 7.2 V, are directly generated from an on-chip 190-MHz resonant LC tank via a self-cascading/folding rectifier network, bypassing the losses that would otherwise be introduced by the 0.8 V system supply-generating rectifier and regulator. The stimulator occupies 0.22 mm 2 in a 180 nm silicon-on-insulator process and produces differential currents up to 145 μA. Using a charge replenishing scheme, the stimulator redirects the charges accumulated across the electrodes to the system power supplies for 63.1% of stimulation energy recycling. To benchmark the efficiency of stimulation, a figure of merit termed the stimulator efficiency factor (SEF) is introduced. The adiabatic power rails and energy replenishment scheme enabled our stimulator to achieve an SEF of 6.0.
Collapse
|
25
|
Lyu H, Wang J, La JH, Chung JM, Babakhani A. An Energy-Efficient Wirelessly Powered Millimeter-Scale Neurostimulator Implant Based on Systematic Codesign of an Inductive Loop Antenna and a Custom Rectifier. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2018; 12:1131-1143. [PMID: 30040661 DOI: 10.1109/tbcas.2018.2852680] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, a switched-capacitor-based stimulator circuit that enables efficient energy harvesting for neurostimulation applications is presented, followed by the discussion on the optimization of the inductive coupling front-end through a codesign approach. The stimulator salvages input energy and stores it in a storage capacitor, and, when the voltage reaches a threshold, releases the energy as an output stimulus. The dynamics of the circuit are automatically enabled by a positive feedback, eliminating any stimulation control circuit blocks. The IC is fabricated in a 180 nm CMOS process and achieves a quiescent current consumption of 1.8 μA. The inductive coupling front-end is optimized as a loaded resonator, in which the input impedance of the custom rectifier directly loads the inductive loop antenna. The loaded quality factor and the rectifier's efficiency determine the reception sensitivity of the stimulator, while a balance should be achieved for the robustness of the system against dielectric medium variations by increasing the reception bandwidth. The finalized stimulator adopts a 4.9 mm × 4.9 mm inductive loop antenna and achieves an overall assembly dimension of 5 mm × 7.5 mm. Operating at the resonant frequency of 198 MHz, the stimulator works at a 14 cm distance from the transmitter in the air. An animal experiment was performed, in which a fully implanted stimulator excited the sciatic nerve of a rat that consequently triggered the movement of the limb.
Collapse
|
26
|
Ing NL, El-Naggar MY, Hochbaum AI. Going the Distance: Long-Range Conductivity in Protein and Peptide Bioelectronic Materials. J Phys Chem B 2018; 122:10403-10423. [DOI: 10.1021/acs.jpcb.8b07431] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
27
|
Lee S, Lee C. Toward advanced neural interfaces for the peripheral nervous system (PNS) and their future applications. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018. [DOI: 10.1016/j.cobme.2018.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
28
|
Optimal Efficiency Tracking Control Scheme Based on Power Stabilization for a Wireless Power Transfer System with Multiple Receivers. ENERGIES 2018. [DOI: 10.3390/en11051232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|