1
|
Ali M, Dey R, Das M, Kumar V, Chandra K, Uniyal VP, Gupta SK. Unique among high passes: Insights into the genetic uniqueness among butterflies of Ladakh Trans-Himalaya through DNA barcoding. Mol Biol Rep 2024; 51:1033. [PMID: 39354174 DOI: 10.1007/s11033-024-09916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND The butterfly assemblage of Ladakh Trans-Himalaya demands a thorough analysis of their population genetic structure owing to their typical biogeographic affinity and their adaptability to extreme cold-desert climates. No such effort has been taken till date, and in this backdrop, we created a COI barcode reference library of 60 specimens representing 23 species. METHODS AND RESULTS Barcodes were generated from freshly collected leg samples using the Sanger sequencing method, followed by phylogenetic clade analyses and divergence calculation. Our data represents 22% of Ladakh's Rhopaloceran fauna with the novel barcode submission for six species, including one Schedule II species, Paralasa mani. Contrary to the 3% threshold rule, the interspecific divergence between two species pairs of typical mountain genus Hyponephele and Karanasa was found to be 2.3% and 2.2%, respectively. The addition of conspecific global barcodes revealed that most species showed little increase in divergence value, while a two-fold increase was noted in a few species. Bayesian clade clustering outcomes largely aligned with current morphological classifications, forming monophyletic clades of conspecific barcodes, with only minor exceptions observed for the taxonomically complicated genus Polyommatus and misidentified records of Aulocera in the database. We also observed variations within the same phylogenetic clades forming nested lineages, which may be attributed to the taxonomic intricacies present at the subspecies level globally, mostly among Eurasian species. CONCLUSIONS Overall, our effort not only substantiated the effectiveness of DNA Barcoding for the identification and conservation of this climatically vulnerable assemblage but also highlighted the significance of deciphering the unique genetic composition among this geographically isolated population of Ladakh butterflies.
Collapse
Affiliation(s)
- Mohd Ali
- Zoological Survey of India, Prani Vigyan Bhawan, New Alipore, Kolkata, India
| | - Rushati Dey
- Zoological Survey of India, Prani Vigyan Bhawan, New Alipore, Kolkata, India
| | - Moumita Das
- Zoological Survey of India, Prani Vigyan Bhawan, New Alipore, Kolkata, India
| | - Vikas Kumar
- Zoological Survey of India, Prani Vigyan Bhawan, New Alipore, Kolkata, India
| | - Kailash Chandra
- Zoological Survey of India, Prani Vigyan Bhawan, New Alipore, Kolkata, India.
| | - Virendra Prasad Uniyal
- Department of Animal Ecology and Conservation Biology, Wildlife Institute of India, Chandrabani, Dehradun, 248001, India
- Graphic Era (Deemed to Be) University, Clement Town, Dehradun, India
| | - Sandeep Kumar Gupta
- Department of Animal Ecology and Conservation Biology, Wildlife Institute of India, Chandrabani, Dehradun, 248001, India.
| |
Collapse
|
2
|
Ali M, Dey R, Das M, Kumar V, Chandra K, Uniyal VP, Gupta SK. Unique among high passes: Phylogenetic inferences from DNA barcoding of the butter fly fauna of Ladakh Trans-Himalaya, India. RESEARCH SQUARE 2024:rs.3.rs-4392854. [PMID: 38826425 PMCID: PMC11142357 DOI: 10.21203/rs.3.rs-4392854/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The butterfly assemblage of Ladakh Trans-Himalaya demands a thorough analysis of their population genetic structure owing to their typical biogeographic affinity and their adaptability to extreme cold-desert climates. No such effort has been taken till date, and in this backdrop, we created a barcode reference library of 60 specimens representing 23 species. Barcodes were generated from freshly collected leg samples using the Sanger sequencing method, followed by phylogenetic clade analyses and divergence calculation. Our data represents 22% of Ladakh's Rhopaloceran fauna with the novel barcode submission for six species, including one Schedule II species, Paralasa mani. Contrary to the 3% threshold rule, the interspecific divergence between two species pairs of typical mountain genus Hyponephele and Karanasa was found to be 2.3% and 2.2%, respectively. The addition of conspecific global barcodes revealed that most species showed little increase in divergence value, while a two-fold increase was noted in a few species. Bayesian clade clustering outcomes largely aligned with current morphological classifications, forming monophyletic clades of conspecific barcodes, with only minor exceptions observed for the taxonomically complicated genus Polyommatus and misidentified records of Aulocera in the database. We also observed variations within the same phylogenetic clades forming nested lineages, which may be attributed to the taxonomic intricacies present at the subspecies level globally, mostly among Eurasian species. Overall, our effort not only substantiated the effectiveness of DNA Barcoding for the identification and conservation of this climatically vulnerable assemblage but also highlighted the significance of deciphering the unique genetic composition among this geographically isolated population of Ladakh butterflies.
Collapse
|
3
|
Lemes JRA, Siewert RR, Mielke OHH, Casagrande MM, Warren AD. Description of Uniphylus gen. nov., a new genus of Carcharodini (Lepidoptera, Hesperiidae, Pyrginae) for Staphylus evemerus Godman & Salvin, 1896. AN ACAD BRAS CIENC 2023; 95:e20221099. [PMID: 37909609 DOI: 10.1590/0001-3765202320221099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/03/2023] [Indexed: 11/03/2023] Open
Abstract
Staphylus evemerus Godman & Salvin, 1896 is a species with a unique set of morphological characters within Carcharodini. Also, mitochondrial cytochrome oxidase subunit 1 (COI) sequences analysis demonstrated a large genetic distance with other related genera of the tribe. Therefore, this paper aims to describe a new genus for this species, which is named as Uniphylus gen. nov. Besides the morphological redescription of the male of Uniphylus evemerus (Godman & Salvin, 1896) new comb., the description of the female is provided for the first time, as well as an updated distributional map with all records known so far for this species.
Collapse
Affiliation(s)
- José Ricardo A Lemes
- Universidade Federal do Paraná, Departamento de Zoologia, Laboratório de Estudos de Lepidoptera Neotropical, Caixa Postal 19020, 81531-980 Curitiba, PR, Brazil
| | - Ricardo Russo Siewert
- Universidade Estadual de Campinas, Departamento de Biologia Animal e Museu de Diversidade Biológica, Instituto de Biologia, Rua Monteiro Lobato, 255, 13083-862 Campinas, SP, Brazil
| | - Olaf H H Mielke
- Universidade Federal do Paraná, Departamento de Zoologia, Laboratório de Estudos de Lepidoptera Neotropical, Caixa Postal 19020, 81531-980 Curitiba, PR, Brazil
| | - Mirna M Casagrande
- Universidade Federal do Paraná, Departamento de Zoologia, Laboratório de Estudos de Lepidoptera Neotropical, Caixa Postal 19020, 81531-980 Curitiba, PR, Brazil
| | - Andrew David Warren
- University of Florida, Florida Museum of Natural History, McGuire Center for Lepidoptera and Biodiversity, 3215 Hull Rd., UF Cultural Plaza, PO Box 112710, Gainesville, FL 32611-2710, USA
| |
Collapse
|
4
|
DNA barcoding reveals hidden nemertean diversity from the marine protected area Namuncurá–Burdwood Bank, Southwestern Atlantic. Polar Biol 2023. [DOI: 10.1007/s00300-023-03117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
5
|
Farfán J, Cerdeña J, Vargas HA, Gonçalves GL, Lamas G, Moreira GRP. A peculiar new species of Dione (Agraulis) Boisduval & Le Conte (Lepidoptera, Nymphalidae, Heliconiinae) associated with Malesherbia Ruiz & Pavón (Passifloraceae) in xeric western slopes of the Andes. Zookeys 2022; 1113:199-226. [PMID: 36762230 PMCID: PMC9848672 DOI: 10.3897/zookeys.1113.85769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/17/2022] [Indexed: 11/12/2022] Open
Abstract
Butterflies associated with xerophytic environments of the Andes have been little studied, and they exhibit high levels of endemism. Herein Dione (Agraulis) dodona Lamas & Farfán, sp. nov. (Nymphalidae; Heliconiinae) is described, distributed on the western slopes of the Andes of Peru and northern Chile, between 800 and 3,000 m elevation. Adults of both sexes, and the immature stages, are described and illustrated based on light and scanning electron microscopy. The immature stages are associated with MalesherbiatenuifoliaD. Don (Passifloraceae) found in xeric environments, representing a new record of this genus as a host plant for the subfamily Heliconiinae. Conspicuous morphological differences are presented for all stages at the generic level. Based on a phylogenetic analysis of the COI barcode mitochondrial gene fragment, D. (A.) dodona Lamas & Farfán, sp. nov. is distinguished as an independent lineage within the Agraulis clade of Dione, with ca. 5% difference to congeneric species.
Collapse
Affiliation(s)
- Jackie Farfán
- PPG Biologia Animal, Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS 91501-970, Brazil,Museo de Historia Natural, Universidad Nacional de San Agustín de Arequipa, Av. Alcides Carrión s/n, Arequipa, Peru
| | - José Cerdeña
- PPG Biologia Animal, Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS 91501-970, Brazil,Museo de Historia Natural, Universidad Nacional de San Agustín de Arequipa, Av. Alcides Carrión s/n, Arequipa, Peru
| | - Héctor A. Vargas
- Departamento de Recursos Ambientales, Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Casilla 6-D, Arica, Chile
| | - Gislene L. Gonçalves
- PPG Biologia Animal, Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS 91501-970, Brazil,Departamento de Recursos Ambientales, Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Casilla 6-D, Arica, Chile
| | - Gerardo Lamas
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre RS, 91501-970, Brazil
| | - Gilson R. P. Moreira
- PPG Biologia Animal, Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS 91501-970, Brazil
| |
Collapse
|
6
|
Bukowski B, Ratnasingham S, Hanisch PE, Hebert PDN, Perez K, deWaard J, Tubaro PL, Lijtmaer DA. DNA barcodes reveal striking arthropod diversity and unveil seasonal patterns of variation in the southern Atlantic Forest. PLoS One 2022; 17:e0267390. [PMID: 35482734 PMCID: PMC9049551 DOI: 10.1371/journal.pone.0267390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 04/07/2022] [Indexed: 11/19/2022] Open
Abstract
The Atlantic Forest harbors 7% of global biodiversity and possesses high levels of endemism, but many of its component taxa remain unstudied. Due to the importance of tropical forests and the urgency to protect them, there is a compelling need to address this knowledge gap. To provide more information on its arthropod fauna, a Malaise trap was deployed for 12 months in a semi-degraded area of the southern Upper Paraná ecoregion of the Atlantic Forest. All specimens were DNA barcoded and the Barcode Index Number (BIN) system was employed to assign each specimen to a species proxy. DNA barcodes were obtained from 75,500 arthropods that included representatives of 8,651 BINs. Nearly 81% of these BINs were first records, highlighting the high rates of endemism and lack of study of arthropods from the Atlantic Forest. Diptera was the most abundant order, followed by Hemiptera, Lepidoptera and Hymenoptera. Diptera was also the most species-rich order, followed by Hymenoptera, Lepidoptera, and Coleoptera, a result consistent with studies in other biogeographic regions. Insects were most abundant in winter and most diverse in autumn and winter. This pattern, however, was caused mainly by the dynamics of dipteran diversity as other orders differed in their seasonal variation. The BIN composition of the insect community varied sharply through the year and also differed between the two consecutive summers included in the sampling period. The study of the 38 commonest BINs showed that seasonal patterns of abundance were not order-specific. Temperature had the strongest impact on seasonal abundance variation. Our results highlight the striking and understudied arthropod diversity of the highly fragmented Atlantic Forest, the predominance of dipterans, and the fact that abundance and richness in this insect community peak in the coolest months. Standardized studies like this generate fast and reliable biodiversity inventories and unveil ecological patterns, thus providing valuable information for conservation programs.
Collapse
Affiliation(s)
- Belén Bukowski
- División Ornitología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (MACN-CONICET), Buenos Aires, Argentina
| | | | - Priscila E. Hanisch
- División Ornitología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (MACN-CONICET), Buenos Aires, Argentina
| | - Paul D. N. Hebert
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Kate Perez
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Jeremy deWaard
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Pablo L. Tubaro
- División Ornitología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (MACN-CONICET), Buenos Aires, Argentina
| | - Darío A. Lijtmaer
- División Ornitología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (MACN-CONICET), Buenos Aires, Argentina
| |
Collapse
|
7
|
|
8
|
Prieto C, Faynel C, Robbins R, Hausmann A. Congruence between morphology-based species and Barcode Index Numbers (BINs) in Neotropical Eumaeini (Lycaenidae). PeerJ 2021; 9:e11843. [PMID: 34430077 PMCID: PMC8349518 DOI: 10.7717/peerj.11843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/01/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND With about 1,000 species in the Neotropics, the Eumaeini (Theclinae) are one of the most diverse butterfly tribes. Correct morphology-based identifications are challenging in many genera due to relatively little interspecific differences in wing patterns. Geographic infraspecific variation is sometimes more substantial than variation between species. In this paper we present a large DNA barcode dataset of South American Lycaenidae. We analyze how well DNA barcode BINs match morphologically delimited species. METHODS We compare morphology-based species identifications with the clustering of molecular operational taxonomic units (MOTUs) delimitated by the RESL algorithm in BOLD, which assigns Barcode Index Numbers (BINs). We examine intra- and interspecific divergences for genera represented by at least four morphospecies. We discuss the existence of local barcode gaps in a genus by genus analysis. We also note differences in the percentage of species with barcode gaps in groups of lowland and high mountain genera. RESULTS We identified 2,213 specimens and obtained 1,839 sequences of 512 species in 90 genera. Overall, the mean intraspecific divergence value of CO1 sequences was 1.20%, while the mean interspecific divergence between nearest congeneric neighbors was 4.89%, demonstrating the presence of a barcode gap. However, the gap seemed to disappear from the entire set when comparing the maximum intraspecific distance (8.40%) with the minimum interspecific distance (0.40%). Clear barcode gaps are present in many genera but absent in others. From the set of specimens that yielded COI fragment lengths of at least 650 bp, 75% of the a priori morphology-based identifications were unambiguously assigned to a single Barcode Index Number (BIN). However, after a taxonomic a posteriori review, the percentage of matched identifications rose to 85%. BIN splitting was observed for 17% of the species and BIN sharing for 9%. We found that genera that contain primarily lowland species show higher percentages of local barcode gaps and congruence between BINs and morphology than genera that contain exclusively high montane species. The divergence values to the nearest neighbors were significantly lower in high Andean species while the intra-specific divergence values were significantly lower in the lowland species. These results raise questions regarding the causes of observed low inter and high intraspecific genetic variation. We discuss incomplete lineage sorting and hybridization as most likely causes of this phenomenon, as the montane species concerned are relatively young and hybridization is probable. The release of our data set represents an essential baseline for a reference library for biological assessment studies of butterflies in mega diverse countries using modern high-throughput technologies an highlights the necessity of taxonomic revisions for various genera combining both molecular and morphological data.
Collapse
Affiliation(s)
- Carlos Prieto
- Departamento de Biología, Universidad del Atlántico, Barranquilla, Colombia
- Corporación Universitaria Autónoma del Cauca, Popayán, Colombia
| | | | - Robert Robbins
- Department of Entomology, Smithsonian Institution, Washington, USA
| | - Axel Hausmann
- SNSB-Bavarian State Collection of Zoology, Munich, Germany
| |
Collapse
|
9
|
A taxonomist's nightmare - Cryptic diversity in Caribbean intertidal arthropods (Arachnida, Acari, Oribatida). Mol Phylogenet Evol 2021; 163:107240. [PMID: 34197900 DOI: 10.1016/j.ympev.2021.107240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 12/28/2022]
Abstract
There has been a long controversy about what defines a species and how to delimitate them which resulted in the existence of more than two dozen different species concepts. Recent research on so-called "cryptic species" heated up this debate as some scientists argue that these cryptic species are only a result of incompatible species concepts. While this may be true, we should keep in mind that all concepts are nothing more than human constructs and that the phenomenon of high phenotypic similarity despite reproductive isolation is real. To investigate and understand this phenomenon it is important to classify and name cryptic species as it allows to communicate them with other fields of science that use Linnaean binomials. To provide a common framework for the description of cryptic species, we propose a possible protocol of how to formally name and describe these taxa in practice. The most important point of this protocol is to explain which species concept was used to delimitate the cryptic taxon. As a model, we present the case of the allegedly widespread Caribbean intertidal mite Thalassozetes barbara, which in fact consists of seven phenotypically very similar but genetically distinct species. All species are island or short-range endemics with poor dispersal abilities that have evolved in geographic isolation. Stabilizing selection caused by the extreme conditions of the intertidal environment is suggested to be responsible for the morphological stasis of this cryptic species complex.
Collapse
|
10
|
Attiná N, Núñez Bustos EO, Lijtmaer DA, Hebert PDN, Tubaro PL, Lavinia PD. Genetic variation in neotropical butterflies is associated with sampling scale, species distributions, and historical forest dynamics. Mol Ecol Resour 2021; 21:2333-2349. [PMID: 34097821 DOI: 10.1111/1755-0998.13441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 11/26/2022]
Abstract
Previous studies of butterfly diversification in the Neotropics have focused on Amazonia and the tropical Andes, while southern regions of the continent have received little attention. To address the gap in knowledge about the Lepidoptera of temperate South America, we analysed over 3000 specimens representing nearly 500 species from Argentina for a segment of the mitochondrial cytochrome c oxidase subunit I (COI) gene. Representing 42% of the country's butterfly fauna, collections targeted species from the Atlantic and Andean forests, and biodiversity hotspots that were previously connected but are now isolated. We assessed COI effectiveness for species discrimination and identification and how its performance was affected by geographic distances and taxon coverage. COI data also allowed to study patterns of genetic variation across Argentina, particularly between populations in the Atlantic and Andean forests. Our results show that COI discriminates species well, but that identification success is reduced on average by ~20% as spatial and taxonomic coverage rises. We also found that levels of genetic variation are associated with species' spatial distribution type, a pattern which might reflect differences in their dispersal and colonization abilities. In particular, intraspecific distance between populations in the Atlantic and Andean forests was significantly higher in species with disjunct distributions than in those with a continuous range. All splits between lineages in these forests dated to the Pleistocene, but divergence dates varied considerably, suggesting that historical connections between the Atlantic and Andean forests have differentially affected their shared butterfly fauna. Our study supports the fact that large-scale assessments of mitochondrial DNA variation are a powerful tool for evolutionary studies.
Collapse
Affiliation(s)
- Natalí Attiná
- Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (MACN-CONICET), Buenos Aires, Argentina
| | - Ezequiel O Núñez Bustos
- Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (MACN-CONICET), Buenos Aires, Argentina
| | - Darío A Lijtmaer
- Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (MACN-CONICET), Buenos Aires, Argentina
| | - Paul D N Hebert
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Pablo L Tubaro
- Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (MACN-CONICET), Buenos Aires, Argentina
| | - Pablo D Lavinia
- Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" (MACN-CONICET), Buenos Aires, Argentina.,Universidad Nacional de Río Negro. CIT Río Negro (UNRN-CONICET). Sede Atlántica, Viedma, Río Negro, Viedma, Argentina
| |
Collapse
|
11
|
D'Ercole J, Dincă V, Opler PA, Kondla N, Schmidt C, Phillips JD, Robbins R, Burns JM, Miller SE, Grishin N, Zakharov EV, DeWaard JR, Ratnasingham S, Hebert PDN. A DNA barcode library for the butterflies of North America. PeerJ 2021; 9:e11157. [PMID: 33976967 PMCID: PMC8061581 DOI: 10.7717/peerj.11157] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Although the butterflies of North America have received considerable taxonomic attention, overlooked species and instances of hybridization continue to be revealed. The present study assembles a DNA barcode reference library for this fauna to identify groups whose patterns of sequence variation suggest the need for further taxonomic study. Based on 14,626 records from 814 species, DNA barcodes were obtained for 96% of the fauna. The maximum intraspecific distance averaged 1/4 the minimum distance to the nearest neighbor, producing a barcode gap in 76% of the species. Most species (80%) were monophyletic, the others were para- or polyphyletic. Although 15% of currently recognized species shared barcodes, the incidence of such taxa was far higher in regions exposed to Pleistocene glaciations than in those that were ice-free. Nearly 10% of species displayed high intraspecific variation (>2.5%), suggesting the need for further investigation to assess potential cryptic diversity. Aside from aiding the identification of all life stages of North American butterflies, the reference library has provided new perspectives on the incidence of both cryptic and potentially over-split species, setting the stage for future studies that can further explore the evolutionary dynamics of this group.
Collapse
Affiliation(s)
- Jacopo D'Ercole
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.,Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Vlad Dincă
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Paul A Opler
- Colorado State University, Fort Collins, CO, United States of America
| | | | - Christian Schmidt
- Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri-Food, Guelph, Ontario, Canada
| | - Jarrett D Phillips
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada.,School of Computer Science, University of Guelph, Guelph, Ontario, Canada
| | - Robert Robbins
- Department of Entomology, Smithsonian Institution, Washington DC, United States of America
| | - John M Burns
- Department of Entomology, Smithsonian Institution, Washington DC, United States of America
| | - Scott E Miller
- Department of Entomology, Smithsonian Institution, Washington DC, United States of America
| | - Nick Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, United States of America.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States of America
| | - Evgeny V Zakharov
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Jeremy R DeWaard
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | | | - Paul D N Hebert
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.,Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
12
|
Leme Pablos J, Kristina Silva A, Seraphim N, de Moraes Magaldi L, Pereira de Souza A, Victor Lucci Freitas A, Lucas Silva-Brandão K. North-south and climate-landscape-associated pattern of population structure for the Atlantic Forest White Morpho butterflies. Mol Phylogenet Evol 2021; 161:107157. [PMID: 33753193 DOI: 10.1016/j.ympev.2021.107157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 01/25/2021] [Accepted: 03/15/2021] [Indexed: 11/18/2022]
Abstract
Atlantic Forest White Morpho butterflies, currently classified as Morpho epistrophus and M. iphitus, are endemic to the Atlantic Forest, where they are widely distributed throughout heterogeneous environmental conditions. Studies with endemic butterflies allow to elucidate questions on both patterns of diversity distribution and current and past processes acting on insect groups in this biodiversity hotspot. In the present study, we characterized one mtDNA marker (COI sequences) and developed 11 polymorphic loci of microsatellite for 22 sampling locations distributed throughout the entire Atlantic Forest domain. We investigated both the taxonomic limits of taxa classified as White Morpho and the structure and distribution of the genetic diversity throughout their populations. Genetic markers and distribution data failed to identify species diversification, population structure, or isolation among subpopulations attributed to different taxa proposed for the White Morpho, suggesting that the current distinction between two species is unreasonable. The Bayesian coalescent tree based on COI sequences also failed to recover monophyletic clades for the putative species, and pointed instead to a north-south oriented pattern of genetic structure, with the northern clade coalescing later than the southern clade. Northern samples also showed more intragroup structure than southern samples based on mtDNA data. Clustering tests based on microsatellites indicated the existence of three genetic clusters, with turnover between the states of Paraná and São Paulo. The north-south pattern found for the White Morpho populations is showed for the first time to a endemic AF insect and coincides with the two different bioclimatic domains previously described for vertebrates and plants. Population structure observed for these butterflies is related to climate- and landscape-associated variables, mainly precipitation and elevation.
Collapse
Affiliation(s)
- Julia Leme Pablos
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Rua Monteiro Lobato, 255, 13083-862 Campinas, SP, Brazil
| | - Ana Kristina Silva
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Rua Monteiro Lobato, 255, 13083-862 Campinas, SP, Brazil
| | - Noemy Seraphim
- Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Campus Campinas, Rua Heitor Lacerda Guedes, 1000, 13059-581 Campinas, SP, Brazil
| | - Luiza de Moraes Magaldi
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Rua Monteiro Lobato, 255, 13083-862 Campinas, SP, Brazil
| | - Anete Pereira de Souza
- Universidade Estadual de Campinas, Centro de Biologia Molecular e Engenharia Genética, Av. Candido Rondom, 400, 13083-875 Campinas, SP, Brazil
| | - André Victor Lucci Freitas
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Rua Monteiro Lobato, 255, 13083-862 Campinas, SP, Brazil
| | - Karina Lucas Silva-Brandão
- Universidade Estadual de Campinas, Centro de Biologia Molecular e Engenharia Genética, Av. Candido Rondom, 400, 13083-875 Campinas, SP, Brazil; Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Av. dos Estados, 5001, 09210-580 Santo André, SP, Brazil.
| |
Collapse
|
13
|
Marín MA, López-Rubio A, Clavijo A, Pyrcz TW, Freitas AVL, Uribe SI, Álvarez CF. Use of species delimitation approaches to tackle the cryptic diversity of an assemblage of high Andean butterflies (Lepidoptera: Papilionoidea). Genome 2021; 64:937-949. [PMID: 33596120 DOI: 10.1139/gen-2020-0100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cryptic biological diversity has generated ambiguity in taxonomic and evolutionary studies. Single-locus methods and other approaches for species delimitation are useful for addressing this challenge, enabling the practical processing of large numbers of samples for identification and inventory purposes. This study analyzed an assemblage of high Andean butterflies using DNA barcoding and compared the identifications based on the current morphological taxonomy with three methods of species delimitation (automatic barcode gap discovery, generalized mixed Yule coalescent model, and Poisson tree processes). Sixteen potential cryptic species were recognized using these three methods, representing a net richness increase of 11.3% in the assemblage. A well-studied taxon of the genus Vanessa, which has a wide geographical distribution, appeared with the potential cryptic species that had a higher genetic differentiation at the local level than at the continental level. The analyses were useful for identifying the potential cryptic species in Pedaliodes and Forsterinaria complexes, which also show differentiation along altitudinal and latitudinal gradients. This genetic assessment of an entire assemblage of high Andean butterflies (Papilionoidea) provides baseline information for future research in a region characterized by high rates of endemism and population isolation.
Collapse
Affiliation(s)
- Mario Alejandro Marín
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, São Paulo (SP), Brazil.,Grupo de Investigación en Sistemática Molecular, Universidad Nacional de Colombia, Medellín, Antioquia, Colombia
| | - Andrés López-Rubio
- Grupo de Investigación en Sistemática Molecular, Universidad Nacional de Colombia, Medellín, Antioquia, Colombia
| | - Alejandra Clavijo
- Grupo de Investigación en Sistemática Molecular, Universidad Nacional de Colombia, Medellín, Antioquia, Colombia
| | - Tomasz Wilhelm Pyrcz
- Department of Invertebrate Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa, Kraków, Poland.,Nature Education Centre, Jagiellonian University, Gronostajowa, Kraków, Poland
| | - André Victor Lucci Freitas
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, São Paulo (SP), Brazil.,Museu de Diversidade Biológica, Instituto de Biologia, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Sandra Inés Uribe
- Grupo de Investigación en Sistemática Molecular, Universidad Nacional de Colombia, Medellín, Antioquia, Colombia
| | - Carlos Federico Álvarez
- Grupo de Investigación en Sistemática Molecular, Universidad Nacional de Colombia, Medellín, Antioquia, Colombia
| |
Collapse
|
14
|
DNA barcoding and species delimitation of butterflies (Lepidoptera) from Nigeria. Mol Biol Rep 2020; 47:9441-9457. [PMID: 33200313 DOI: 10.1007/s11033-020-05984-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/05/2020] [Indexed: 10/23/2022]
Abstract
Accurate identification of species is a prerequisite for successful biodiversity management and further genetic studies. Species identification techniques often require both morphological diagnostics and molecular tools, such as DNA barcoding, for correct identification. In particular, the use of the subunit I of the mitochondrial cytochrome c oxidase (COI) gene for DNA barcoding has proven useful in species identification for insects. However, to date, no studies have been carried out on the DNA barcoding of Nigerian butterflies. We evaluated the utility of DNA barcoding applied for the first time to 735 butterfly specimens from southern Nigeria. In total, 699 DNA barcodes, resulting in a record of 116 species belonging to 57 genera, were generated. Our study sample comprised 807 DNA barcodes based on sequences generated from our current study and 108 others retrieved from BOLD. Different molecular analyses, including genetic distance-based evaluation (Neighbor-Joining, Maximum Likelihood and Bayesian trees) and species delimitation tests (TaxonDNA, Automated Barcode Gap Discovery, General Mixed Yule-Coalescent, and Bayesian Poisson Tree Processes) were performed to accurately identify and delineate species. The genetic distance-based analyses resulted in 163 well-separated clusters consisting of 147 described and 16 unidentified species. Our findings indicate that about 90.20% of the butterfly species were explicitly discriminated using DNA barcodes. Also, our field collections reported the first country records of ten butterfly species-Acraea serena, Amauris cf. dannfelti, Aterica galena extensa, Axione tjoane rubescens, Charaxes galleyanus, Papilio lormieri lormeri, Pentila alba, Precis actia, Precis tugela, and Tagiades flesus. Further, DNA barcodes revealed a high mitochondrial intraspecific divergence of more than 3% in Bicyclus vulgaris vulgaris and Colotis evagore. Furthermore, our result revealed an overall high haplotype (gene) diversity (0.9764), suggesting that DNA barcoding can provide information at a population level for Nigerian butterflies. The present study confirms the efficiency of DNA barcoding for identifying butterflies from Nigeria. To gain a better understanding of regional variation in DNA barcodes of this biogeographically complex area, future work should expand the DNA barcode reference library to include all butterfly species from Nigeria as well as surrounding countries. Also, further studies, involving relevant genetic and eco-morphological datasets, are required to understand processes governing mitochondrial intraspecific divergences reported in some species complexes.
Collapse
|
15
|
Koroiva R, Rodrigues LRR, Santana DJ. DNA barcoding for identification of anuran species in the central region of South America. PeerJ 2020; 8:e10189. [PMID: 33150083 PMCID: PMC7585382 DOI: 10.7717/peerj.10189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/24/2020] [Indexed: 11/20/2022] Open
Abstract
The use of COI barcodes for specimen identification and species discovery has been a useful molecular approach for the study of Anura. Here, we establish a comprehensive amphibian barcode reference database in a central area of South America, in particular for specimens collected in Mato Grosso do Sul state (Brazil), and to evaluate the applicability of the COI gene for species-level identification. Both distance- and tree-based methods were applied for assessing species boundaries and the accuracy of specimen identification was evaluated. A total of 204 mitochondrial COI barcode sequences were evaluated from 22 genera and 59 species (19 newly barcoded species). Our results indicate that morphological and molecular identifications converge for most species, however, some species may present cryptic species due to high intraspecific variation, and there is a high efficiency of specimen identification. Thus, we show that COI sequencing can be used to identify anuran species present in this region.
Collapse
Affiliation(s)
- Ricardo Koroiva
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Diego José Santana
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| |
Collapse
|
16
|
Pfeiler E, Nazario-Yepiz NO, Hernández-Cervantes PL, Markow TA. Mitochondrial DNA barcodes provide insight into the phylogeography and subspecies controversy in the widespread Neotropical white peacock butterfly, Anartia jatrophae (Nymphalidae: Nymphalinae). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The validity of subspecies designations in the common and wide-ranging Neotropical white peacock butterfly, Anartia jatrophae, has been debated for decades and remains an unsettled and contentious taxonomic issue among lepidopterists. Originally described by Linnaeus in the mid-18th century from specimens obtained from northern South America (Suriname), subsequent authors proposed a variety of subspecies names based on differences in adult external morphology among geographical populations. Many of these differences, however, were subsequently found to occur seasonally within populations, leading some to conclude that only a single polymorphic species should be recognized. Here, we have analysed both new and publicly available mitochondrial DNA barcodes, obtained from specimens collected from southern USA to northern Argentina, to assess whether they could provide insight into this long-standing controversy. Our molecular analyses, using a combination of character-based (nucleotide composition), population genetic and phylogenetic approaches, indicated the presence of at least four distinct genetic lineages that we suggest are distinct at the subspecies level, namely A. j. jatrophae, A. j. luteipicta, A. j. saturata and A. j. semifusca. Justification for these assignments and the proposed geographical distribution of each subspecies within the Americas are discussed.
Collapse
Affiliation(s)
- Edward Pfeiler
- Centro de Investigación en Alimentación y Desarrollo, A.C., Unidad Guaymas, Guaymas, Sonora CP, México
| | - Nestor O Nazario-Yepiz
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Irapuato, Guanajuato CP, México
| | - Pablo Luis Hernández-Cervantes
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Irapuato, Guanajuato CP, México
| | - Therese Ann Markow
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Irapuato, Guanajuato CP, México
| |
Collapse
|
17
|
Pfeiler E, Nazario-Yepiz NO. DNA-based taxonomy and potential suppression of long-established names: the case of Telegonus fulgerator (Lepidoptera: Hesperiidae). SYST BIODIVERS 2020. [DOI: 10.1080/14772000.2020.1758825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Edward Pfeiler
- Centro de Investigación en Alimentación y Desarrollo, A.C., Unidad Guaymas, Apartado Postal 284, Guaymas, C.P. 85480, Sonora, México
| | - Nestor O. Nazario-Yepiz
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Irapuato, C.P. 36821, Guanajuato, México
| |
Collapse
|
18
|
Testing the Effectiveness of DNA Barcoding for Biodiversity Assessment of Moths from Nigeria. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12020085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Comprehensive biodiversity assessment of moths in Nigeria rely greatly on accurate species identification. While most of the Nigerian moths are identified effortlessly using their morphological traits, some taxa are morphologically indistinguishable, which makes it difficult for taxon diagnosis. We investigated the efficiency of the DNA barcode, a fragment of the mitochondrial Cytochrome C oxidase subunit I, as a tool for the identification of Nigerian moths. We barcoded 152 individuals comprising 18 morphospecies collected from one of the remaining and threatened rainforest blocks of Nigeria – the Cross River National Park. Phenetic neighbor-joining tree and phylogenetic Maximum Likelihood approach were employed for the molecular-based species identification. Results showed that DNA barcodes enabled species-level identification of most of the individuals collected from the Park. Additionally, DNA barcoding unraveled the presence of at least six potential new and yet undescribed species—Amnemopsyche sp., Arctia sp., Deinypena sp., Hodebertia sp., Otroeda sp., and Palpita sp. The phylogenetic Maximum Likelihood using the combined dataset of all the newly assembled sequences from Nigeria showed that all species formed unique clades. The phylogenetic analyses provided evidence of population divergence in Euchromia lethe, Nyctemera leuconoe, and Deinypena lacista. This study thus illustrates the efficacy of DNA barcoding for species identification and discovery of potential new species, which demonstrates its relevance in biodiversity documentation of Nigerian moths. Future work should, therefore, extend to the creation of an exhaustive DNA barcode reference library comprising all species of moths from Nigeria to have a comprehensive insight on the diversity of moths in the country. Finally, we propose integrated taxonomic methods that would combine morphological, ecological, and molecular data in the identification and diversity studies of moths in Nigeria.
Collapse
|
19
|
Poveda-Martínez D, Aguirre MB, Logarzo G, Calderón L, de la Colina A, Hight S, Triapitsyn S, Diaz-Soltero H, Hasson E. Untangling the Hypogeococcus pungens species complex (Hemiptera: Pseudococcidae) for Argentina, Australia, and Puerto Rico based on host plant associations and genetic evidence. PLoS One 2019; 14:e0220366. [PMID: 31344099 PMCID: PMC6657911 DOI: 10.1371/journal.pone.0220366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/15/2019] [Indexed: 11/18/2022] Open
Abstract
Hypogeococcus pungens, a mealybug native of southern South America, is devastating native cacti in Puerto Rico and threatening cactus diversity in the Caribbean, and potentially in Central and North America. The taxonomic status of H. pungens is controversial since it has been reported feeding not only on Cactaceae but also on other plant families throughout its distribution range. However, in Australia, where the species had been exported from Argentina to control weedy American cacti, it was never found on host plants other than Cactaceae. These conflicting pieces of evidence not only cast doubt on the species identity that invaded Puerto Rico, but also have a negative impact on the search for natural enemies to be used in biological control programs against this pest. Here we present reproductive incompatibility and phylogenetic evidences that give support to the hypothesis that H. pungens is a species complex in which divergence appears to be driven by the host plants. The nuclear EF1α and 18S and the mitochondrial COI genes were used as markers to evaluate the phylogenetic relationships among H. pungens populations collected in Argentina, Australia and Puerto Rico feeding on Cactaceae and/or Amaranthaceae. Additionally, we conducted reciprocal crosses between mealybugs from both hosts. Species delimitation analysis revealed two well-supported putative species within H. pungens, one including mealybugs feeding on Amaranthaceae (H. pungens sensu stricto), and a new undescribed species using Cactaceae as hosts. Additionally, we found asymmetric reproductive incompatibility between these putative species suggesting recent reproductive isolation. The Bayesian species delimitation also suggested that the Australian mealybug population may derive from another undescribed species. Overall, the patterns of genetic differentiation may be interpreted as the result of recent speciation events prompted by host plant shifts. Finally, the finding of a single haplotype in the Puerto Rico population suggests only one invasive event. We still need to identify the geographical origin of the pest in order to enable the use of biological control to reduce the threat to cacti diversity in the Caribbean.
Collapse
Affiliation(s)
- Daniel Poveda-Martínez
- Fundación para el Estudio de Especies Invasivas (FuEDEI), Hurlingham, Buenos Aires, Argentina
- Instituto de Ecología Genética y Evolución de Buenos Aires (IEGEBA), Departamento de Ecología Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Grupo de investigación en Evolución, Ecología y Conservación (EECO), Universidad del Quindío, Armenia, Colombia
- * E-mail: (DPM); (MBA)
| | - María Belén Aguirre
- Fundación para el Estudio de Especies Invasivas (FuEDEI), Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- * E-mail: (DPM); (MBA)
| | - Guillermo Logarzo
- Fundación para el Estudio de Especies Invasivas (FuEDEI), Hurlingham, Buenos Aires, Argentina
| | - Luciano Calderón
- Fundación para el Estudio de Especies Invasivas (FuEDEI), Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Alicia de la Colina
- Instituto de Ecología Genética y Evolución de Buenos Aires (IEGEBA), Departamento de Ecología Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Stephen Hight
- U.S. Department of Agriculture-ARS, Tallahassee, Florida, United States of America
| | - Serguei Triapitsyn
- Department of Entomology, University of California, Riverside, California, United States of America
| | - Hilda Diaz-Soltero
- Caribbean Advisor to the APHIS Administrator, USDA, San Juan, Puerto Rico
| | - Esteban Hasson
- Instituto de Ecología Genética y Evolución de Buenos Aires (IEGEBA), Departamento de Ecología Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
20
|
Núñez R, Barro-Cañamero A, Minno MC, Fernández DM, Hausmann A. The herophile species group of Calisto (Lepidoptera : Nymphalidae : Satyrinae), new taxa and historical biogeography. INVERTEBR SYST 2019. [DOI: 10.1071/is18048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The genus Calisto is endemic tothe West Indiesand the only representative there of the Satyrinae. Here wereconstruct the evolutionary relationshipsof the herophile group and describe five new species from Cuba: Calisto gundlachi sp. nov., Calisto siguanensis sp. nov., Calisto disjunctus sp. nov., Calisto sharkeyae sp. nov. and Calisto lastrai sp. nov.We employ one mitochondrial and four nuclear markers to assess the phylogenetic position, Maximum Likelihood and Bayesian Inference approaches, of the new taxa. Our phylogenetic trees yielded two strongly supported main clades with four of the new species included within them and C. sharkeyae as sister group to the rest of the major main clade. We conduct time-divergence estimations and ancestral area reconstructions using BEAST and BioGeoBEARS. The group originated 12.15 million years ago during the middle Miocene in north-eastern Cuba, Nipe-Sagua-Baracoa Massif. After 6 million years of in situ evolution most lineages started to colonise other Cuban territories and the Bahamas. This scenario is consistent with key geological events, including the closure of the western Havana–Matanzas channel 8–6 million years ago, the uplift of the Sierra Maestra 6–5 million years ago, and the land connections among Cuban regions during the Miocene–Pleistocene sea level drops. Dispersal and vicariance processes may have occurred, with populations surviving floodings on the major and minor mountain ranges, which remained as ‘islands’.
http://zoobank.org/urn:lsid:zoobank.org:act:03690F79-F938-42A0-B234-4A228D5C1913
Collapse
|
21
|
Després L, Henniaux C, Rioux D, Capblancq T, Zupan S, čelik T, Sielezniew M, Bonato L, Ficetola GF. Inferring the biogeography and demographic history of an endangered butterfly in Europe from multilocus markers. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | | | - Delphine Rioux
- Université Grenoble Alpes, LECA UMR5553, CNRS, Grenoble, France
| | | | - Sara Zupan
- University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, Koper, Slovenia
| | - Tatjana čelik
- Research Centre of the Slovenian Academy of Sciences and Arts, Jovan Hadži Institute of Biology, Ljubljana, Slovenia
| | - Marcin Sielezniew
- Laboratory of Insect Evolutionary Biology and Ecology, Institute of Biology, University of Bialystok, Białystok, Poland
| | - Lucio Bonato
- Department of Biology, Università degli Studi di Padova, Padova, Italy
| | - Gentile Francesco Ficetola
- Université Grenoble Alpes, LECA UMR5553, CNRS, Grenoble, France
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
22
|
DNA Barcoding and Taxonomic Challenges in Describing New Putative Species: Examples from Sootywing and Cloudywing Butterflies (Lepidoptera: Hesperiidae). DIVERSITY 2018. [DOI: 10.3390/d10040111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA barcoding has resulted in the ‘discovery’ of a vast number of new species and subspecies. Assigning formal scientific names to these taxa remains a major challenge. Names sometimes are newly designated. Alternatively, available valid names can be resurrected from synonymy, based on barcode analyses together with classical taxonomic characters. For the most part, however, new putative species revealed by barcoding studies go undescribed. This situation is most often attributed to insufficient taxonomic expertise with the authors conducting the study, together with a critical lack of formally trained taxonomists. However, even with formal training, and additional supportive data from morphological, ecological or life history characters, other factors can arise that impede new species descriptions. In the present paper, several specific taxonomic challenges that have arisen from barcode analyses in two groups of skipper butterflies (Lepidoptera: Hesperiidae), the Sootywings (Pholisora catullus and P. mejicanus) and the Coyote Cloudywing (Achalarus toxeus) are highlighted and discussed. Both P. catullus and A. toxeus show relatively large intraspecific genetic divergences of barcodes (2–3%) which suggests the possibility of previously unrecognized cryptic speciation within each group. Some of the challenges to providing formal names and clarifying taxonomic status of these cryptic taxa could be largely overcome by (1) barcoding type specimens, (2) clarifying imprecise and often vague or suspect type localities, and (3) by conducting in-depth comparative studies on genitalic morphology.
Collapse
|
23
|
Dias FMS, Janzen D, Hallwachs W, Chacón I, Willmott K, Ortiz-Acevedo E, Mielke OHH, Casagrande MM. DNA barcodes uncover hidden taxonomic diversity behind the variable wing patterns in the Neotropical butterfly genusZaretis(Lepidoptera: Nymphalidae: Charaxinae). Zool J Linn Soc 2018. [DOI: 10.1093/zoolinnean/zly036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Fernando Maia Silva Dias
- Laboratório de Estudos de Lepidoptera Neotropical, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Daniel Janzen
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Winnie Hallwachs
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Isidro Chacón
- Instituto Nacional de Biodiversidad (INBio), Santo Domingo de Heredia, Heredia, Costa Rica
| | - Keith Willmott
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Elena Ortiz-Acevedo
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Olaf Hermann Hendrik Mielke
- Laboratório de Estudos de Lepidoptera Neotropical, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Mirna Martins Casagrande
- Laboratório de Estudos de Lepidoptera Neotropical, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
24
|
Rodriguero MS, Wirth SA, Alberghina JS, Lanteri AA, Confalonieri VA. A tale of swinger insects: Signatures of past sexuality between divergent lineages of a parthenogenetic weevil revealed by ribosomal intraindividual variation. PLoS One 2018; 13:e0195551. [PMID: 29718921 PMCID: PMC5931498 DOI: 10.1371/journal.pone.0195551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/23/2018] [Indexed: 12/02/2022] Open
Abstract
Naupactus cervinus (Boheman) (Curculionidae, Naupactini) is a parthenogenetic weevil native to the Paranaense Forest which displays high levels of genetic variation. Two divergent clades were identified, one ranging in forest areas (Forest clade), and the other in open vegetation areas (Grassland clade). Both of them have individuals with high levels of heterozygosity in ribosomal sequences. Investigation of intraindividual variation in ITS1 sequences through cloning and posterior sequencing suggested that mating between both groups most likely occurred in the Paranaense Forest after a secondary contact, which led to fixed heterozygotes as a consequence of parthenogenesis. Otherwise, sexual segregation would have disrupted multilocus genotypes. Only a small number of heterozygous genotypes of all the possible combinations are found in nature. We propose the occurrence of a hybrid zone in the Paranaense Forest. The fact that it is one of the most important biodiversity hotspots of the world, together with its key role for investigating evolutionary processes, makes it worthy of conservation. This is the first genetic evidence of bisexuality in N. cervinus.
Collapse
Affiliation(s)
- Marcela S. Rodriguero
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires—IEGEBA (CONICET-UBA), Buenos Aires, Argentina
| | - Sonia A. Wirth
- Laboratorio de Agrobiotecnología, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA—CONICET/UBA), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Josefina S. Alberghina
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires—IEGEBA (CONICET-UBA), Buenos Aires, Argentina
| | - Analía A. Lanteri
- División Entomología, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata—CONICET, La Plata, Buenos Aires, Argentina
| | - Viviana A. Confalonieri
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires—IEGEBA (CONICET-UBA), Buenos Aires, Argentina
| |
Collapse
|