1
|
Prygiel M, Mosiej E, Wdowiak K, Zasada AA. Passive Immunisation in the Treatment of Infectious Diseases Related to Highly Potent Bacterial Toxins. Biomedicines 2024; 12:2920. [PMID: 39767826 PMCID: PMC11673946 DOI: 10.3390/biomedicines12122920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
The discovery of microbial toxins as the primary factors responsible for disease manifestations and the discovery that these toxins could be neutralised by antitoxins are linked to the birth of immunology. In the late 19th century, the serum or plasma of animals or patients who had recovered from infectious diseases or who had been immunised with a relevant antigen began to be used to treat or prevent infections. Before the advent of widespread vaccination campaigns, antitoxins played a key role in the treatment and prevention of diseases such as diphtheria and tetanus. A significant reduction in mortality following the introduction of antitoxins confirmed their efficacy. Serum therapy remains an important measure for post-exposure prophylaxis and for the treatment of unvaccinated or incompletely vaccinated patients. For the botulinum toxin, antitoxin therapy continues to be the sole available treatment. The manuscript contains a summary of the most important information on the passive immunoprophylaxis used in the treatment of diphtheria, tetanus, and botulism, all representing diseases in which symptoms are driven by the activity of highly potent bacterial toxins.
Collapse
Affiliation(s)
- Marta Prygiel
- National Institute of Public Health NIH—National Research Institute, Chocimska 24, 00-791 Warsaw, Poland; (E.M.); (K.W.); (A.A.Z.)
| | | | | | | |
Collapse
|
2
|
Wei Y, Li G, Wang Z, Qian K, Zhang S, Zhang L, Lei C, Hu S. Development and characterization of a novel neutralizing scFv vectored immunoprophylaxis against botulinum toxin type A. J Drug Target 2024; 32:213-222. [PMID: 38164940 DOI: 10.1080/1061186x.2023.2301418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/18/2023] [Indexed: 01/03/2024]
Abstract
Botulinum toxin is a protein toxin secreted by Clostridium botulinum that is strongly neurotoxic. Due to its characteristics of being super toxic, quick acting, and difficult to prevent, the currently reported antiviral studies focusing on monoclonal antibodies have limited effectiveness. Therefore, for the sake of effectively prevention and treatment of botulism and to maintain country biosecurity as well as the health of the population, in this study, we intend to establish a single chain antibody (scFv) targeting the carboxyl terminal binding functional domain of the botulinum neurotoxin heavy chain (BONT/AHc) of botulinum neurotoxin type A, and explore the value of a new passive immune method in antiviral research which based on adeno-associated virus (AAV) mediated vector immunoprophylaxis (VIP) strategy. The scFv small-molecular single-chain antibody sequenced, designed, constructed, expressed and purified by hybridoma has high neutralising activity and affinity level, which can lay a good foundation for the modification and development of antibody engineering drugs. In vivo experiments, AAV-mediated scFv engineering drug has good anti-BONT/A toxin neutralisation ability, has advantages of simple operation, stable expression and good efficacy, and may be one of the effective treatment strategies for long-term prevention and protection of BONT/A botulinum neurotoxin.
Collapse
Affiliation(s)
- Yongpeng Wei
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
- Hepatic Surgery Department V, The Third Affiliated Hospital, Second Military Medical University, Shanghai, China
| | - Guangyao Li
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
- Department of Biomedical Engineering, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Zhuo Wang
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
- Hepatic Surgery Department V, The Third Affiliated Hospital, Second Military Medical University, Shanghai, China
| | - Kewen Qian
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
- Department of Biomedical Engineering, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Shuyi Zhang
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Lingling Zhang
- Department of Central Laboratory, Clinical Research Center of Changhai Hospital, Shanghai, China
| | - Changhai Lei
- Department of Biophysics, College of Basic Medical Sciences, Second Military Medical University, Shanghai, China
| | - Shi Hu
- Department of Biomedical Engineering, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
3
|
Barker D, Han X, Wang E, Dagley A, Anderson DM, Jha A, Weaver SC, Julander J, Nykiforuk C, Kodihalli S. Equine Polyclonal Antibodies Prevent Acute Chikungunya Virus Infection in Mice. Viruses 2023; 15:1479. [PMID: 37515166 PMCID: PMC10384969 DOI: 10.3390/v15071479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted pathogen that causes chikungunya disease (CHIK); the disease is characterized by fever, muscle ache, rash, and arthralgia. This arthralgia can be debilitating and long-lasting, seriously impacting quality of life for years. Currently, there is no specific therapy available for CHIKV infection. We have developed a despeciated equine polyclonal antibody (CHIKV-EIG) treatment against CHIKV and evaluated its protective efficacy in mouse models of CHIKV infection. In immunocompromised (IFNAR-/-) mice infected with CHIKV, daily treatment for five consecutive days with CHIKV-EIG administered at 100 mg/kg starting on the day of infection prevented mortality, reduced viremia, and improved clinical condition as measured by body weight loss. These beneficial effects were seen even when treatment was delayed to 1 day after infection. In immunocompetent mice, CHIKV-EIG treatment reduced virus induced arthritis (including footpad swelling), arthralgia-associated cytokines, viremia, and tissue virus loads in a dose-dependent fashion. Collectively, these results suggest that CHIKV-EIG is effective at preventing CHIK and could be a viable candidate for further development as a treatment for human disease.
Collapse
Affiliation(s)
- Douglas Barker
- Emergent BioSolutions Canada Inc., Winnipeg, MB R3T 5Y3, Canada
| | - Xiaobing Han
- Emergent BioSolutions Canada Inc., Winnipeg, MB R3T 5Y3, Canada
| | - Eryu Wang
- Institute for Human Infections and Immunity, Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, Galveston, TX 77555, USA
| | - Ashley Dagley
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | | | - Aruni Jha
- Emergent BioSolutions Canada Inc., Winnipeg, MB R3T 5Y3, Canada
| | - Scott C Weaver
- Institute for Human Infections and Immunity, Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, Galveston, TX 77555, USA
| | - Justin Julander
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | - Cory Nykiforuk
- Emergent BioSolutions Canada Inc., Winnipeg, MB R3T 5Y3, Canada
| | | |
Collapse
|
4
|
Patnaik A, Rai SK, Dhaked RK. Recent Advancements and Novel Approaches Contributing to the Present Arsenal of Prophylaxis and Treatment Strategies Against Category A Bacterial Biothreat Agents. Indian J Microbiol 2023; 63:161-172. [PMID: 37325016 PMCID: PMC10220334 DOI: 10.1007/s12088-023-01075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/04/2023] [Indexed: 06/17/2023] Open
Abstract
Bacterial pathogens have always been a part of the ecosystem in which we thrive. Some pathogens have caused deadly outbreaks in the past and have been exploited as an agent of threat. Natural hotspots for these biological pathogens are widely distributed throughout the world and hence they remain clinically important. Technological advancement and change in general lifestyle has driven the evolution of these pathogens into more virulent and resistant variants. There has been a growing concern over the development of multidrug-resistant bacterial strains that could be used as bioweapons. This rapid change in pathogens also propels the field of science to develop and innovate new strategies and methodologies which are superior and safer to the existing ones. Some bacterial agents like-Bacillus anthracis, Yersinia pestis, Francisella tularensis and toxins produced by strains of Clostridium botulinum, have been segregated as Category A substances as they pose imminent threat to public health with a history of life threatening and catastrophic disease. This review highlights some encouraging developments and value additions in the current plan of action for protection against these select biothreat bacterial pathogens.
Collapse
Affiliation(s)
- Abhinandan Patnaik
- Biotechnology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, MP 474002 India
| | - Sharad Kumar Rai
- Biotechnology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, MP 474002 India
| | - Ram Kumar Dhaked
- Biotechnology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, MP 474002 India
| |
Collapse
|
5
|
Immunologic and Protective Properties of Subunit- vs. Whole Toxoid-Derived Anti-Botulinum Equine Antitoxin. Vaccines (Basel) 2022; 10:vaccines10091522. [PMID: 36146601 PMCID: PMC9506527 DOI: 10.3390/vaccines10091522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Botulism is a paralytic disease caused by botulinum neurotoxins (BoNTs). Equine antitoxin is currently the standard therapy for botulism in human. The preparation of equine antitoxin relies on the immunization of horses with botulinum toxoid, which suffers from low yield and safety limitations. The Hc fragment of BoNTs was suggested to be a potent antibotulinum subunit vaccine. The current study presents a comparative evaluation of equine-based toxoid-derived antitoxin (TDA) and subunit-derived antitoxin (SDA). The potency of recombinant Hc/A, Hc/B, and Hc/E in mice was similar to that of toxoids of the corresponding serotypes. A single boost with Hc/E administered to a toxoid E-hyperimmune horse increased the neutralizing antibody concentration (NAC) from 250 to 850 IU/mL. Immunization of naïve horses with the recombinant subunits induced a NAC comparable to that of horses immunized with the toxoid. SDA and TDA bound common epitopes on BoNTs, as demonstrated by an in vitro competition binding assay. In vivo, SDA and TDA showed similar efficacy when administered to guinea pigs postexposure to a lethal dose of botulinum toxins. Collectively, the results of the current study suggest that recombinant BoNT subunits may replace botulinum toxoids as efficient and safe antigens for the preparation of pharmaceutical anti-botulinum equine antitoxins.
Collapse
|
6
|
Beliveau M, Anderson D, Barker D, Kodihalli S, Simard E, Hall C, Richardson JS. Exposure-Response Modeling and Simulation to Support Human Dosing of Botulism Antitoxin Heptavalent Product. Clin Pharmacol Ther 2022; 112:171-180. [PMID: 35467014 PMCID: PMC9323444 DOI: 10.1002/cpt.2620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/13/2022] [Indexed: 11/18/2022]
Abstract
Botulism antitoxin heptavalent (A, B, C, D, E, F, and G – Equine; BAT) product is a sterile solution of F(ab')2 and F(ab')2‐related antibody fragments prepared from plasma obtained from horses that have been immunized with a specific serotype of botulinum toxoid and toxin. BAT product is indicated for the treatment of symptomatic botulism following documented or suspected exposure to botulinum neurotoxin serotypes A to G in adults and pediatric patients. Pharmacokinetic and exposure‐response models were used to explore the relationship between BAT product exposure and the probability of survival, and the occurrence of relevant moderate clinical signs observed during the preclinical development of BAT product to justify the clinical dose. The predicted probability of survival in humans for all serotypes of botulinum neurotoxin was more than 95.9% following intravenous administration of one vial of BAT product. Furthermore, this BAT product dose is expected to result in significant protection against clinical signs in human adults for all botulinum neurotoxin serotypes. Our exposure response model indicates that we have sufficient antitoxin levels to give full protection at various theoretical exposure levels and, based on neutralization capacity/potency of one dose of BAT product, it is expected to exceed the amount of circulating botulinum neurotoxin.
Collapse
Affiliation(s)
| | | | - Doug Barker
- Emergent BioSolutions Inc., Winnipeg, Manitoba, Canada
| | | | - Emilie Simard
- Certara Strategic Consulting, Montreal, Quebec, Canada
| | | | | |
Collapse
|
7
|
Han X, Ortines R, Mukherjee I, Kanipakala T, Kort T, Sherchand SP, Liao G, Mednikov M, Chenine AL, Aman MJ, Nykiforuk CL, Adhikari RP. Hyperimmune Targeting Staphylococcal Toxins Effectively Protect Against USA 300 MRSA Infection in Mouse Bacteremia and Pneumonia Models. Front Immunol 2022; 13:893921. [PMID: 35655774 PMCID: PMC9152286 DOI: 10.3389/fimmu.2022.893921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus has been acquiring multiple drug resistance and has evolved into superbugs such as Methicillin/Vancomycin-resistant S. aureus (MRSA/VRSA) and, consequently, is a major cause of nosocomial and community infections associated with high morbidity and mortality for which no FDA-approved vaccines or biotherapeutics are available. Previous efforts targeting the surface-associated antigens have failed in clinical testing. Here, we generated hyperimmune products from sera in rabbits against six major S. aureus toxins targeted by an experimental vaccine (IBT-V02) and demonstrated significant efficacy for an anti-virulence passive immunization strategy. Extensive in vitro binding and neutralizing titers were analyzed against six extracellular toxins from individual animal sera. All IBT-V02 immunized animals elicited the maximum immune response upon the first boost dose against all pore-forming vaccine components, while for superantigen (SAgs) components of the vaccine, second and third doses of a boost were needed to reach a plateau in binding and toxin neutralizing titers. Importantly, both anti-staphylococcus hyperimmune products consisting of full-length IgG (IBT-V02-IgG) purified from the pooled sera and de-speciated F(ab')2 (IBT-V02-F(ab')2) retained the binding and neutralizing titers against IBT-V02 target toxins. F(ab')2 also exhibited cross-neutralization titers against three leukotoxins (HlgAB, HlgCB, and LukED) and four SAgs (SEC1, SED, SEK, and SEQ) which were not part of IBT-V02. F(ab')2 also neutralized toxins in bacterial culture supernatant from major clinical strains of S. aureus. In vivo efficacy data generated in bacteremia and pneumonia models using USA300 S. aureus strain demonstrated dose-dependent protection by F(ab')2. These efficacy data confirmed the staphylococcal toxins as viable targets and support the further development effort of hyperimmune products as a potential adjunctive therapy for emergency uses against life-threatening S. aureus infections.
Collapse
Affiliation(s)
- Xiaobing Han
- Research and Development, Emergent BioSolutions Canada Inc., Winnipeg, MB, Canada.,Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Roger Ortines
- Integrated Biotherapeutics Inc. (IBT), Rockville, MD, United States
| | - Ipsita Mukherjee
- Integrated Biotherapeutics Inc. (IBT), Rockville, MD, United States
| | | | - Thomas Kort
- Integrated Biotherapeutics Inc. (IBT), Rockville, MD, United States
| | | | - Grant Liao
- Integrated Biotherapeutics Inc. (IBT), Rockville, MD, United States
| | - Mark Mednikov
- Integrated Biotherapeutics Inc. (IBT), Rockville, MD, United States
| | - Agnes L Chenine
- Integrated Biotherapeutics Inc. (IBT), Rockville, MD, United States
| | - M Javad Aman
- Integrated Biotherapeutics Inc. (IBT), Rockville, MD, United States
| | - Cory L Nykiforuk
- Research and Development, Emergent BioSolutions Canada Inc., Winnipeg, MB, Canada
| | - Rajan P Adhikari
- Integrated Biotherapeutics Inc. (IBT), Rockville, MD, United States
| |
Collapse
|
8
|
Use of Botulism Antitoxin Heptavalent (A, B, C, D, E, F, G)-(Equine) (BAT ®) in Clinical Study Subjects and Patients: A 15-Year Systematic Safety Review. Toxins (Basel) 2021; 14:toxins14010019. [PMID: 35050996 PMCID: PMC8778610 DOI: 10.3390/toxins14010019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 01/04/2023] Open
Abstract
Botulism is a rare, sometimes fatal paralytic illness caused by botulinum neurotoxins. BAT® (Botulism Antitoxin Heptavalent (A, B, C, D, E, F, G)—(Equine)) is an equine-derived heptavalent botulinum antitoxin indicated for the treatment of symptomatic botulism in adult and pediatric patients. This review assesses the cumulative safety profile for BAT product from 2006 to 2020, using data received from clinical studies, an expanded-access program, a post-licensure registry, spontaneous and literature reports. The adverse event (AE) incidence rate for BAT product was calculated conservatively using only BAT product exposures for individuals with a record (512) and was alternatively estimated using all BAT product exposure data, including post-licensure deployment information (1128). The most frequently reported BAT product-related AEs occurring in greater than 1% of the 512–1128 BAT product-exposed individuals were hypersensitivity, pyrexia, tachycardia, bradycardia, anaphylaxis, and blood pressure increase reported in 2.3–5.1%, 1.8–3.9%, 1.0–2.2%, 0.89–2.0%, 0.62–1.4%, and 0.62–1.4%, respectively. For patients properly managed in an intensive care setting, the advantages of BAT product appear to outweigh potential risks in patients due to morbidity and mortality of botulism. AEs of special interest, including bradycardia, hemodynamic instability, hypersensitivity, serum sickness, and febrile reactions in the registry, were specifically solicited.
Collapse
|
9
|
Wang J, Wu Y, Luo D, Zhuang C, Ning N, Zhang Y, He Z, Gao J, Hong Z, Xv X, Zhang W, Li T, Miao Z, Wang H. Discovery of a Potent Botulinum Neurotoxin A Inhibitor
ZM299
with Effective Protections in Botulism Mice. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jianxin Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing 100071 China
| | - Yuelin Wu
- School of Pharmacy Second Military Medical University, 325 Guohe Road Shanghai 200433 China
| | - Deyan Luo
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing 100071 China
| | - Chunlin Zhuang
- School of Pharmacy Second Military Medical University, 325 Guohe Road Shanghai 200433 China
| | - Nianzhi Ning
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing 100071 China
| | - Yanming Zhang
- School of Pharmacy Second Military Medical University, 325 Guohe Road Shanghai 200433 China
| | - Zhili He
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing 100071 China
| | - Jie Gao
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing 100071 China
| | - Zhanying Hong
- School of Pharmacy Second Military Medical University, 325 Guohe Road Shanghai 200433 China
| | - Xiguo Xv
- School of Pharmacy Second Military Medical University, 325 Guohe Road Shanghai 200433 China
| | - Wannian Zhang
- School of Pharmacy Second Military Medical University, 325 Guohe Road Shanghai 200433 China
| | - Tao Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing 100071 China
| | - Zhenyuan Miao
- School of Pharmacy Second Military Medical University, 325 Guohe Road Shanghai 200433 China
| | - Hui Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing 100071 China
| |
Collapse
|
10
|
Torgeman A, Diamant E, Dor E, Schwartz A, Baruchi T, Ben David A, Zichel R. A Rabbit Model for the Evaluation of Drugs for Treating the Chronic Phase of Botulism. Toxins (Basel) 2021; 13:toxins13100679. [PMID: 34678971 PMCID: PMC8537128 DOI: 10.3390/toxins13100679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022] Open
Abstract
Antitoxin, the only licensed drug therapy for botulism, neutralizes circulating botulinum neurotoxin (BoNT). However, antitoxin is no longer effective when a critical amount of BoNT has already entered its target nerve cells. The outcome is a chronic phase of botulism that is characterized by prolonged paralysis. In this stage, blocking toxin activity within cells by next-generation intraneuronal anti-botulinum drugs (INABDs) may shorten the chronic phase of the disease and accelerate recovery. However, there is a lack of adequate animal models that simulate the chronic phase of botulism for evaluating the efficacy of INABDs. Herein, we report the development of a rabbit model for the chronic phase of botulism, induced by intoxication with a sublethal dose of BoNT. Spirometry monitoring enabled us to detect deviations from normal respiration and to quantitatively define the time to symptom onset and disease duration. A 0.85 rabbit intramuscular median lethal dose of BoNT/A elicited the most consistent and prolonged disease duration (mean = 11.8 days, relative standard deviation = 27.9%) that still enabled spontaneous recovery. Post-exposure treatment with antitoxin at various time points significantly shortened the disease duration, providing a proof of concept that the new model is adequate for evaluating novel therapeutics for botulism.
Collapse
|
11
|
Neutralizing Concentrations of Anti-Botulinum Toxin Antibodies Positively Correlate with Mouse Neutralization Assay Results in a Guinea Pig Model. Toxins (Basel) 2021; 13:toxins13090671. [PMID: 34564675 PMCID: PMC8471557 DOI: 10.3390/toxins13090671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/24/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
Botulinum neurotoxins (BoNT) are some of the most toxic proteins known and can induce respiratory failure requiring long-term intensive care. Treatment of botulism includes the administration of antitoxins. Monoclonal antibodies (mAbs) hold considerable promise as BoNT therapeutics and prophylactics, due to their potency and safety. A three-mAb combination has been developed that specifically neutralizes BoNT serotype A (BoNT/A), and a separate three mAb combination has been developed that specifically neutralizes BoNT serotype B (BoNT/B). A six mAb cocktail, designated G03-52-01, has been developed that combines the anti-BoNT/A and anti-BoNT/B mAbs. The pharmacokinetics and neutralizing antibody concentration (NAC) of G03-52-01 has been determined in guinea pigs, and these parameters were correlated with protection against an inhalation challenge of BoNT/A1 or BoNT/B1. Previously, it was shown that each antibody demonstrated a dose-dependent mAb serum concentration and reached maximum circulating concentrations within 48 h after intramuscular (IM) or intraperitoneal (IP) injection and that a single IM injection of G03-52-01 administered 48 h pre-exposure protected guinea pigs against an inhalation challenge of up to 93 LD50s of BoNT/A1 and 116 LD50s of BoNT/B1. The data presented here advance our understanding of the relationship of the neutralizing NAC to the measured circulating antibody concentration and provide additional support that a single IM or intravenous (IV) administration of G03-52-01 will provide pre-exposure prophylaxis against botulism from an aerosol exposure of BoNT/A and BoNT/B.
Collapse
|
12
|
Long CM, Marzi A. Biodefence research two decades on: worth the investment? THE LANCET. INFECTIOUS DISEASES 2021; 21:e222-e233. [PMID: 34331891 DOI: 10.1016/s1473-3099(21)00382-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022]
Abstract
For the past 20 years, the notion of bioterror has been a source of considerable fear and panic worldwide. In response to the terror attacks of 2001 in the USA, extensive research funding was awarded to investigate bioterror-related pathogens. The global scientific legacy of this funding has extended into the present day, highlighted by the ongoing COVID-19 pandemic. Unsurprisingly, the surge in biodefence-related research and preparedness has been met with considerable apprehension and opposition. Here, we briefly outline the history of modern bioterror threats and biodefence research, describe the scientific legacy of biodefence research by highlighting advances pertaining to specific bacterial and viral pathogens, and summarise the future of biodefence research and its relevance today. We sought to address the sizeable question: have the past 20 years of investment into biodefence research and preparedness been worth it? The legacy of modern biodefence funding includes advancements in biosecurity, biosurveillence, diagnostics, medical countermeasures, and vaccines. In summary, we feel that these advances justify the substantial biodefence funding trend of the past two decades and set a precedent for future funding.
Collapse
Affiliation(s)
- Carrie M Long
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
13
|
McNutt PM, Vazquez-Cintron EJ, Tenezaca L, Ondeck CA, Kelly KE, Mangkhalakhili M, Machamer JB, Angeles CA, Glotfelty EJ, Cika J, Benjumea CH, Whitfield JT, Band PA, Shoemaker CB, Ichtchenko K. Neuronal delivery of antibodies has therapeutic effects in animal models of botulism. Sci Transl Med 2021; 13:eabd7789. [PMID: 33408188 PMCID: PMC8176400 DOI: 10.1126/scitranslmed.abd7789] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/20/2020] [Indexed: 11/02/2022]
Abstract
Botulism is caused by a potent neurotoxin that blocks neuromuscular transmission, resulting in death by asphyxiation. Currently, the therapeutic options are limited and there is no antidote. Here, we harness the structural and trafficking properties of an atoxic derivative of botulinum neurotoxin (BoNT) to transport a function-blocking single-domain antibody into the neuronal cytosol where it can inhibit BoNT serotype A (BoNT/A1) molecular toxicity. Post-symptomatic treatment relieved toxic signs of botulism and rescued mice, guinea pigs, and nonhuman primates after lethal BoNT/A1 challenge. These data demonstrate that atoxic BoNT derivatives can be harnessed to deliver therapeutic protein moieties to the neuronal cytoplasm where they bind and neutralize intracellular targets in experimental models. The generalizability of this platform might enable delivery of antibodies and other protein-based therapeutics to previously inaccessible intraneuronal targets.
Collapse
Affiliation(s)
- Patrick M McNutt
- Wake Forest School of Medicine, Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - Edwin J Vazquez-Cintron
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- CytoDel Inc., New York, NY 10016, USA
- City College of City University of New York, NY 10031, USA
| | - Luis Tenezaca
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- CytoDel Inc., New York, NY 10016, USA
| | - Celinia A Ondeck
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - Kyle E Kelly
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - Mark Mangkhalakhili
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - James B Machamer
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - Christopher A Angeles
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Elliot J Glotfelty
- United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010, USA
| | - Jaclyn Cika
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Cesar H Benjumea
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | | | - Philip A Band
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- CytoDel Inc., New York, NY 10016, USA
- Department of Orthopaedic Surgery, New York University Langone Orthopedic Hospital, New York, NY 10016, USA
| | - Charles B Shoemaker
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA 01536, USA
| | - Konstantin Ichtchenko
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
14
|
Miyashita SI, Zhang J, Zhang S, Shoemaker CB, Dong M. Delivery of single-domain antibodies into neurons using a chimeric toxin-based platform is therapeutic in mouse models of botulism. Sci Transl Med 2021; 13:eaaz4197. [PMID: 33408184 DOI: 10.1126/scitranslmed.aaz4197] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 05/01/2020] [Indexed: 12/15/2022]
Abstract
Efficient penetration of cell membranes and specific targeting of a cell type represent major challenges for developing therapeutics toward intracellular targets. One example facing these hurdles is to develop post-exposure treatment for botulinum neurotoxins (BoNTs), a group of bacterial toxins (BoNT/A to BoNT/G) that are major potential bioterrorism agents. BoNTs enter motor neurons, block neurotransmitter release, and cause a paralytic disease botulism. Members of BoNTs such as BoNT/A exhibit extremely long half-life within neurons, resulting in persistent paralysis for months, yet there are no therapeutics that can inhibit BoNTs once they enter neurons. Here, we developed a chimeric toxin-based delivery platform by fusing the receptor-binding domain of a BoNT, which targets neurons, with the membrane translocation domain and inactivated protease domain of the recently discovered BoNT-like toxin BoNT/X, which can deliver cargoes across endosomal membranes into the cytosol. A therapeutic protein was then created by fusing a single-domain antibody (nanobody) against BoNT/A with the delivery platform. In vitro characterization demonstrated that nanobodies were delivered into cultured neurons and neutralized BoNT/A in neurons. Administration of this protein in mice shortened duration of local muscle paralysis, restoring muscle function within hours, and rescued mice from systemic toxicity of lethal doses of BoNT/A. Fusion of two nanobodies, one against BoNT/A and the other against BoNT/B, created a multivalent therapeutic protein able to neutralize both BoNT/A and BoNT/B in mice. These studies provide an effective post-exposure treatment for botulism and establish a platform for intracellular delivery of therapeutics targeting cytosolic proteins and processes.
Collapse
Affiliation(s)
- Shin-Ichiro Miyashita
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jie Zhang
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sicai Zhang
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Charles B Shoemaker
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA 01536, USA
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA 02115, USA.
- Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
Argersinger DP, Walbridge S, Wetjen NM, Vortmeyer AO, Wu T, Butman JA, Heiss JD. Convection-enhanced delivery of botulinum toxin serotype A into the nonhuman primate cisterna magna and hippocampus. J Neurosurg 2020; 133:588-595. [PMID: 31323637 PMCID: PMC7263482 DOI: 10.3171/2019.4.jns19744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/29/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Botulinum toxin serotype A (BoNT/A) was reported to raise the seizure threshold when injected into the seizure focus of a kindled rodent model. Delivering BoNT/A to the nonhuman primate (NHP) central nervous system via convection-enhanced delivery (CED) has not been performed. The objective of this study was to determine the toxicity and distribution characteristics of CED of BoNT/A into the NHP hippocampus and cisterna magna. METHODS Escalating BoNT/A doses were delivered by CED into the NHP hippocampus (n = 4) and cisterna magna (n = 5) for behavioral and histological assessment and to determine the highest nonlethal dose (LD0) and median lethal dose (LD50). Hippocampal BoNT/A was coinfused with Gd-albumin, a surrogate MRI tracer. Gd-albumin and radioiodinated BoNT/A (125I-BoNT/A) were coinfused into the hippocampus of 3 additional NHPs to determine BoNT/A distribution by in vivo MRI and postmortem quantitative autoradiography. Scintillation counting of CSF assessed the flow of 125I-BoNT/A from the hippocampus to CSF postinfusion. RESULTS LD0 and LD50 were 4.2 and 18 ng/kg, and 5 and > 5 ng/kg for the NHP hippocampus and cisterna magna, respectively. Gd-albumin and 125I-BoNT/A completely perfused the hippocampus (155-234 mm3) in 4 of 7 NHPs. Fifteen percent of BoNT/A entered CSF after hippocampal infusion. The MRI distribution volume of coinfused Gd-albumin (VdMRI) was similar to the quantitative autoradiography distribution of 125I-BoNT/A (VdQAR) (mean VdMRI = 139.5 mm3 [n = 7]; VdQAR = 134.8 mm3 [n = 3]; r = 1.00, p < 0.0001). No infusion-related toxicity was identified histologically except that directly attributable to needle placement. CONCLUSIONS Gd-albumin accurately tracked BoNT/A distribution on MRI. BoNT/A did not produce CNS toxicity. BoNT/A LD0 exceeded 10-fold the dose administered safely to humans for cosmesis and dystonia.
Collapse
Affiliation(s)
- Davis P. Argersinger
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Stuart Walbridge
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | | | - Alexander O. Vortmeyer
- Department of Pathology, Indiana University Health Pathology Laboratory, Indianapolis, Indiana
| | - Tianxia Wu
- Clinical Trials Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - John A. Butman
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - John D. Heiss
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
16
|
Pohanka M. Botulinum Toxin as a Biological Warfare Agent: Poisoning, Diagnosis and Countermeasures. Mini Rev Med Chem 2020; 20:865-874. [PMID: 32108007 DOI: 10.2174/1389557520666200228105312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 12/16/2022]
Abstract
Botulinum toxin is a neurotoxin produced by Clostridium botulinum and some other relative species. It causes a lethal disease called botulism. It can enter the body via infections by Clostridium (e.g. wound and children botulism) or by direct contact with the toxin or eating contaminated food (food-borne botulism). Botulinum toxin is also considered as a relevant biological warfare agent with an expected high number of causalities when misused for bioterrorist or military purposes. The current paper surveys the actual knowledge about botulinum toxin pathogenesis, the manifestation of poisoning, and current trends in diagnostics and therapeutics. Relevant and recent literature is summarized in this paper.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Trebesska 1575, Hradec Kralove CZ-50001, Czech Republic
| |
Collapse
|
17
|
Vazquez-Cintron E, Machamer J, Ondeck C, Pagarigan K, Winner B, Bodner P, Kelly K, Pennington MR, McNutt P. Symptomatic treatment of botulism with a clinically approved small molecule. JCI Insight 2020; 5:132891. [PMID: 31996484 DOI: 10.1172/jci.insight.132891] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are potent neuroparalytic toxins that cause mortality through respiratory paralysis. The approved medical countermeasure for BoNT poisoning is infusion of antitoxin immunoglobulins. However, antitoxins have poor therapeutic efficacy in symptomatic patients; thus, there is an urgent need for treatments that reduce the need for artificial ventilation. We report that the US Food and Drug Administration-approved potassium channel blocker 3,4-diaminopyridine (3,4-DAP) reverses respiratory depression and neuromuscular weakness in murine models of acute and chronic botulism. In ex vivo studies, 3,4-DAP restored end-plate potentials and twitch contractions of diaphragms isolated from mice at terminal stages of BoNT serotype A (BoNT/A) botulism. In vivo, human-equivalent doses of 3,4-DAP reversed signs of severe respiratory depression and restored mobility in BoNT/A-intoxicated mice at terminal stages of respiratory collapse. Multiple-dosing administration of 3,4-DAP improved respiration and extended survival at up to 5 LD50 BoNT/A. Finally, 3,4-DAP reduced gastrocnemius muscle paralysis and reversed respiratory depression in sublethal models of serotype A-, B-, and E-induced botulism. These findings make a compelling argument for repurposing 3,4-DAP to symptomatically treat symptoms of muscle paralysis caused by botulism, independent of serotype. Furthermore, they suggest that 3,4-DAP is effective for a range of botulism symptoms at clinically relevant time points.
Collapse
|
18
|
Tables of Toxicity of Botulinum and Tetanus Neurotoxins. Toxins (Basel) 2019; 11:toxins11120686. [PMID: 31771110 PMCID: PMC6950492 DOI: 10.3390/toxins11120686] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 11/17/2022] Open
Abstract
Tetanus and botulinum neurotoxins are the most poisonous substances known, so much so as to be considered for a possible terrorist use. At the same time, botulinum neurotoxin type A1 is successfully used to treat a variety of human syndromes characterized by hyperactive cholinergic nerve terminals. The extreme toxicity of these neurotoxins is due to their neurospecificity and to their metalloprotease activity, which results in the deadly paralysis of tetanus and botulism. Recently, many novel botulinum neurotoxins and some botulinum-like toxins have been discovered. This large number of toxins differs in terms of toxicity and biological activity, providing a potential goldmine for novel therapeutics and for new molecular tools to dissect vesicular trafficking, fusion, and exocytosis. The scattered data on toxicity present in the literature require a systematic organization to be usable by scientists and clinicians. We have assembled here the data available in the literature on the toxicity of these toxins in different animal species. The internal comparison of these data provides insights on the biological activity of these toxins.
Collapse
|
19
|
Chan M, Holtsberg FW, Vu H, Howell KA, Leung A, Van der Hart E, Walz PH, Aman MJ, Kodihalli S, Kobasa D. Efficacy of Ebola Glycoprotein-Specific Equine Polyclonal Antibody Product Against Lethal Ebola Virus Infection in Guinea Pigs. J Infect Dis 2019; 218:S603-S611. [PMID: 29955852 DOI: 10.1093/infdis/jiy329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Indexed: 02/06/2023] Open
Abstract
Background Filoviruses including Ebola, Sudan, and other species are emerging zoonotic pathogens representing a significant public health concern with high outbreak potential, and they remain a potential bioterrorism-related threat. We have developed a despeciated equine Ebola polyclonal antibody (E-EIG) postexposure treatment against Ebola virus (EBOV) and evaluated its efficacy in the guinea pig model of EBOV infection. Methods Guinea pigs were infected with guinea pig-adapted EBOV (Mayinga strain) and treated with various dose levels of E-EIG (20-100 mg/kg) twice daily for 6 days starting at 24 h postinfection. The E-EIG was also assessed for neutralization activity against related filoviruses including EBOV strains Mayinga, Kikwit, and Makona and the Bundibugyo and Taï Forest ebolavirus species. Results Treatment with E-EIG conferred 83% to 100% protection in guinea pigs. The results demonstrated a comparable neutralization activity (range, 1:512-1:896) of E-EIG against all tested strains, suggesting the potential for cross-protection with the polyclonal antibody therapeutic. Conclusions This study showed that equine-derived polyclonal antibodies are efficacious against lethal EBOV disease in a relevant animal model. Furthermore, the studies support the utility of the equine antibody platform for the rapid production of a therapeutic product in the event of an outbreak by a filovirus or other zoonotic pathogen.
Collapse
Affiliation(s)
- Mable Chan
- Special Pathogens, Public Health Agency of Canada, Winnipeg, Manitoba.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | | | - Hong Vu
- Integrated BioTherapeutics, Rockville, Maryland
| | | | - Anders Leung
- Special Pathogens, Public Health Agency of Canada, Winnipeg, Manitoba
| | | | - Paul H Walz
- Department of Pathobiology, Auburn University, Alabama
| | | | - Shantha Kodihalli
- Research and Development, Emergent BioSolutions Canada, Winnipeg, Manitoba
| | - Darwyn Kobasa
- Special Pathogens, Public Health Agency of Canada, Winnipeg, Manitoba.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
20
|
Yu W, Hao X, Yang F, Ma J, Zhao Y, Li Y, Wang J, Xu H, Chen L, Liu Q, Duan S, Yang Y, Huang F, He Z. Hematological and biochemical parameters for Chinese rhesus macaque. PLoS One 2019; 14:e0222338. [PMID: 31527891 PMCID: PMC6748566 DOI: 10.1371/journal.pone.0222338] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/27/2019] [Indexed: 12/27/2022] Open
Abstract
Rhesus macaque is an important animal model in biomedical research, especially human disease, developmental, translational, and pre-clinical research. Blood physiological and biochemical parameters are important markers for physiology, pathology, and toxicology research. However, these parameters have not been systematically reported for Chinese rhesus macaques. To characterize the reference for these parameters, this study collected 1805 Chinese rhesus macaques living in Southwestern China. A total of 24 blood physiological indexes and 27 biochemical parameters were determined. Sex and age were found to affect these parameters. In conclusion, a comprehensive and systematic reference of hematological and biochemical parameters for Chinese rhesus macaque was established in this work on the basis of a large cohort. Such reference will benefit biomedical research employing rhesus macaques as animal models.
Collapse
Affiliation(s)
- Wenhai Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China
| | - Xianhui Hao
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
| | - Fengmei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China
| | - Jin Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China
| | - Yuan Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China
| | - Yanyan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China
| | - Junbin Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China
| | - Hongjie Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China
| | - Lixiong Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China
| | - Quan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China
| | - Suqin Duan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China
| | - Yaping Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China
| | - Fen Huang
- Medical Faculty, Kunming University of Science and Technology, Kunming, PR China
- * E-mail: (FH); (ZH)
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, PR China
- * E-mail: (FH); (ZH)
| |
Collapse
|
21
|
Barker D, Gillum KT, Niemuth NA, Kodihalli S. Therapeutic efficacy of equine botulism heptavalent antitoxin against all seven botulinum neurotoxins in symptomatic guinea pigs. PLoS One 2019; 14:e0222670. [PMID: 31527885 PMCID: PMC6748678 DOI: 10.1371/journal.pone.0222670] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/04/2019] [Indexed: 11/18/2022] Open
Abstract
Botulism neurotoxins are highly toxic and are potential agents for bioterrorism. The development of effective therapy is essential to counter the possible use of these toxins in military and bioterrorism scenarios, and to provide treatment in cases of natural intoxication. Guinea pigs were intoxicated with a lethal dose of botulinum neurotoxin serotypes A, B, C, D, E, F or G, and at onset of the clinical disease intoxicated animals were treated with either BAT® [Botulism Antitoxin Heptavalent (A, B, C, D, E, F, G)–(Equine)] or placebo. BAT product treatment significantly (p<0.0001) enhanced survival compared to placebo for all botulinum neurotoxin serotypes and arrested or mitigated the progression of clinical signs of botulism intoxication. These results demonstrated the therapeutic efficacy of BAT product in guinea pigs and provided supporting evidence of effectiveness for licensure of BAT product under FDA 21 CFR Part 601 (Subpart H Animal Rule) as a therapeutic for botulism intoxication to serotypes A, B, C, D, E, F or G in adults and pediatric patients.
Collapse
Affiliation(s)
- Douglas Barker
- Research and Development, Emergent BioSolutions Canada Inc., Winnipeg, Manitoba, Canada
| | - Karen T. Gillum
- Battelle Biomedical Research Center, West Jefferson, Columbus, Ohio, United States of America
| | - Nancy A. Niemuth
- Battelle Biomedical Research Center, West Jefferson, Columbus, Ohio, United States of America
| | - Shantha Kodihalli
- Research and Development, Emergent BioSolutions Canada Inc., Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
22
|
Zaragoza NE, Orellana CA, Moonen GA, Moutafis G, Marcellin E. Vaccine Production to Protect Animals Against Pathogenic Clostridia. Toxins (Basel) 2019; 11:E525. [PMID: 31514424 PMCID: PMC6783934 DOI: 10.3390/toxins11090525] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/19/2022] Open
Abstract
Clostridium is a broad genus of anaerobic, spore-forming, rod-shaped, Gram-positive bacteria that can be found in different environments all around the world. The genus includes human and animal pathogens that produce potent exotoxins that cause rapid and potentially fatal diseases responsible for countless human casualties and billion-dollar annual loss to the agricultural sector. Diseases include botulism, tetanus, enterotoxemia, gas gangrene, necrotic enteritis, pseudomembranous colitis, blackleg, and black disease, which are caused by pathogenic Clostridium. Due to their ability to sporulate, they cannot be eradicated from the environment. As such, immunization with toxoid or bacterin-toxoid vaccines is the only protective method against infection. Toxins recovered from Clostridium cultures are inactivated to form toxoids, which are then formulated into multivalent vaccines. This review discusses the toxins, diseases, and toxoid production processes of the most common pathogenic Clostridium species, including Clostridiumbotulinum, Clostridiumtetani, Clostridiumperfringens, Clostridiumchauvoei, Clostridiumsepticum, Clostridiumnovyi and Clostridiumhemolyticum.
Collapse
Affiliation(s)
- Nicolas E. Zaragoza
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia; (N.E.Z.); (C.A.O.)
| | - Camila A. Orellana
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia; (N.E.Z.); (C.A.O.)
| | - Glenn A. Moonen
- Zoetis, 45 Poplar Road, Parkville VIC 3052, Australia; (G.A.M.); (G.M.)
| | - George Moutafis
- Zoetis, 45 Poplar Road, Parkville VIC 3052, Australia; (G.A.M.); (G.M.)
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia; (N.E.Z.); (C.A.O.)
| |
Collapse
|
23
|
Monoclonal Antibody Combinations Prevent Serotype A and Serotype B Inhalational Botulism in a Guinea Pig Model. Toxins (Basel) 2019; 11:toxins11040208. [PMID: 30959899 PMCID: PMC6520708 DOI: 10.3390/toxins11040208] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 11/16/2022] Open
Abstract
Botulinum neurotoxins (BoNT) are some of the most toxic proteins known, with a human LD50 of ~1 ng/kg. Equine antitoxin has a half-life in circulation of less than 1 day and is limited to a treatment rather than a prevention indication. The development of monoclonal antibodies (mAbs) may represent an alternative therapeutic option that can be produced at high quantities and of high quality and with half-lives of >10 days. Two different three mAb combinations are being developed that specifically neutralize BoNT serotypes A (BoNT/A) and B (BoNT/B). We investigated the pharmacokinetics of the anti-BoNT/A and anti-BoNT/B antibodies in guinea pigs (Cavia porcellus) and their ability to protect guinea pigs against an aerosol challenge of BoNT/A1 or BoNT/B1. Each antibody exhibited dose-dependent exposure and reached maximum circulating concentrations within 48 h post intraperitoneal or intramuscular injection. A single intramuscular dose of the three mAb combination protected guinea pigs against an aerosol challenge dose of 93 LD50 of BoNT/A1 and 116 LD50 of BoNT/B1 at 48 h post antibody administration. These mAbs are effective in preventing botulism after an aerosol challenge of BoNT/A1 and BoNT/B1 and may represent an alternative to vaccination to prevent type A or B botulism in those at risk of BoNT exposure.
Collapse
|
24
|
Emanuel A, Qiu H, Barker D, Takla T, Gillum K, Neimuth N, Kodihalli S. Efficacy of equine botulism antitoxin in botulism poisoning in a guinea pig model. PLoS One 2019; 14:e0209019. [PMID: 30633746 PMCID: PMC6329499 DOI: 10.1371/journal.pone.0209019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 11/27/2018] [Indexed: 11/18/2022] Open
Abstract
Background Botulism is a disease caused by neurogenic toxins that block acetylcholine release, resulting in potentially life threatening neuroparalysis. Seven distinct serotypes of botulinum neurotoxins (BoNTs) have been described and are found in nature world-wide. This, combined with ease of production, make BoNTs a significant bioweapon threat. An essential countermeasure to this threat is an antitoxin to remove circulating toxin. An antitoxin, tradename BAT (Botulism Antitoxin Heptavalent (A, B, C, D, E, F, G)–(Equine)), has been developed and its efficacy evaluated against all seven serotypes in guinea pigs. Methods and findings Studies were conducted to establish the lethal dose and clinical course of intoxication for all seven toxins, and post-exposure prophylactic efficacy of BAT product. Animals were monitored for signs of intoxication and mortality for 14 days. Guinea pig intramuscular LD50s (GPIMLD50) for all BoNTs ranged from 2.0 (serotype C) to 73.2 (serotype E) of mouse intraperitoneal LD50 units. A dose of 4x GPIMLD50 was identified as the appropriate toxin dose for use in subsequent efficacy and post-exposure prophylaxis studies. The main clinical signs observed included hind limb paralysis, weak limb, change in breathing rate/pattern, and forced abdominal respiration. Mean time to onset of clinical signs ranged from 12 hours (serotype E) to 39 hours (serotype G). Twelve hours post-intoxication was selected as the appropriate time point for intervention for all serotypes apart from E where 6 hours was selected because of the rapid onset and progression of clinical signs. Post-exposure treatment with BAT product resulted in a significantly (p<0.0001) higher survival at >0.008 scaled human dose for serotypes A, B, C, F and G, at >0.2x for serotype D and >0.04x for serotype E. Conclusions These studies confirm the efficacy of BAT as a post-exposure prophylactic therapy against all seven known BoNT serotypes.
Collapse
Affiliation(s)
- Andrew Emanuel
- Research and Development, Emergent BioSolutions Canada Inc., Winnipeg, Manitoba, Canada
| | - Hongyu Qiu
- Research and Development, Emergent BioSolutions Canada Inc., Winnipeg, Manitoba, Canada
| | - Douglas Barker
- Research and Development, Emergent BioSolutions Canada Inc., Winnipeg, Manitoba, Canada
| | - Teresa Takla
- Research and Development, Emergent BioSolutions Canada Inc., Winnipeg, Manitoba, Canada
| | - Karen Gillum
- Battelle Biomedical Research Center, West Jefferson, Columbus, Ohio, United States of America
| | - Nancy Neimuth
- Battelle Biomedical Research Center, West Jefferson, Columbus, Ohio, United States of America
| | - Shantha Kodihalli
- Research and Development, Emergent BioSolutions Canada Inc., Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
25
|
The Immunogenicity of the C Fragment of Tetanus Neurotoxin in Production of Tetanus Antitoxin. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6057348. [PMID: 30687751 PMCID: PMC6330821 DOI: 10.1155/2018/6057348] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/10/2018] [Accepted: 12/16/2018] [Indexed: 12/03/2022]
Abstract
The demand of tetanus antitoxin (TAT) as tetanus treatment in developing and underdeveloped countries is still great since it is relatively easy to achieve and affordable. However, there are still issues in the preparation of highly effective TAT with tetanus toxoid (TT) as the immunogen. The tetanus toxin native C-fragment (TeNT-Hc) retains many properties and it is a very promising candidate for the development of tetanus human vaccine. In this study, we tested the immunogenicity of TeNT-Hc in the preparation of tetanus antibodies, by TeNT-Hc alone or in different combinations with TT. The antibody titers and components in horse serum or plasma in different groups were analyzed and compared with those immunized by the conventional TT and it showed comparability with the results of traditional methods. The plasma efficacy and in vivo tetanus toxin neutralization were also tested. After two stages of immunizations, the average potency in plasma of all groups reached more than 1,000 IU / mL except that in group 4. In group 5, the first two basic immunizations with TT and the subsequent immunizations with TeNT-Hc, it showed slightly higher antibody titers and potency. This study demonstrated that TeNT-Hc is a safe, effective, and yet easy-to-produce low-cost immunogen and suitable for TT replacement in tetanus antitoxin production.
Collapse
|
26
|
Torgeman A, Schwartz A, Diamant E, Baruchi T, Dor E, Ben David A, Pass A, Barnea A, Tal A, Rosner A, Rosen O, Zichel R. Studying the differential efficacy of postsymptom antitoxin treatment in type A versus type B botulism using a rabbit spirometry model. Dis Model Mech 2018; 11:dmm.035089. [PMID: 30115749 PMCID: PMC6177009 DOI: 10.1242/dmm.035089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/30/2018] [Indexed: 11/20/2022] Open
Abstract
Botulinum neurotoxin (BoNT) serotypes A, B and E are responsible for most cases of human botulism. The only approved therapy for botulism is antitoxin treatment administered to patients after symptom onset. However, a recent meta-analysis of antitoxin efficacy in human botulism cases over the past century concluded that a statistically significant reduction in mortality is associated with the use of type E and type A antitoxin, but not with type B antitoxin. Animal models could be highly valuable in studying postsymptom antitoxin efficacy (PSAE). However, the few attempts to evaluate PSAE in animals relied on subjective observations and showed ∼50% protection. Recently, we developed a novel spirometry model for the quantitative evaluation of PSAE in rabbits and used it to demonstrate full protection against BoNT/E. In the current study, a comparative evaluation of PSAE in botulism types A and B was conducted using this quantitative respiratory model. A lethal dose of each toxin induced a comparable course of disease both in terms of time to symptoms (TTS, 41.9±1.3 and 40.6±1.1 h, respectively) and of time to death (TTD, 71.3±3.1 and 66.3±1.7 h, respectively). However, in accordance with the differential serotypic PSAE observed in humans, postsymptom antitoxin treatment was fully effective only in BoNT/A-intoxicated rabbits. This serotypic divergence was reflected by a positive and statistically significant correlation between TTS and TTD in BoNT/A-intoxicated rabbits (r=0.91, P=0.0006), but not in those intoxicated with BoNT/B (r=0.06, P=0.88). The rabbit spirometry system might be useful in the evaluation toolkit of botulism therapeutics, including those under development and intended to act when antitoxin is no longer effective. Summary: Here, we used a quantitative rabbit respiratory model to study the human-related, differential antitoxin efficacy observed in type A and type B botulism.
Collapse
Affiliation(s)
- Amram Torgeman
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| | - Arieh Schwartz
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| | - Eran Diamant
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| | - Tzadok Baruchi
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| | - Eyal Dor
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| | - Alon Ben David
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| | - Avi Pass
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| | - Ada Barnea
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| | - Arnon Tal
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| | - Amir Rosner
- The Veterinary Center for Pre-clinical Research, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| | - Osnat Rosen
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| | - Ran Zichel
- Department of Biotechnology, Israel Institute for Biological Research, Ness Ziona 7410001, Israel
| |
Collapse
|
27
|
Webb RP. Engineering of Botulinum Neurotoxins for Biomedical Applications. Toxins (Basel) 2018; 10:toxins10060231. [PMID: 29882791 PMCID: PMC6024800 DOI: 10.3390/toxins10060231] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 01/15/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) have been used as therapeutic agents in the clinical treatment of a wide array of neuromuscular and autonomic neuronal transmission disorders. These toxins contain three functional domains that mediate highly specific neuronal cell binding, internalization and cytosolic delivery of proteolytic enzymes that cleave proteins integral to the exocytosis of neurotransmitters. The exceptional cellular specificity, potency and persistence within the neuron that make BoNTs such effective toxins, also make them attractive models for derivatives that have modified properties that could potentially expand their therapeutic repertoire. Advances in molecular biology techniques and rapid DNA synthesis have allowed a wide variety of novel BoNTs with alternative functions to be assessed as potential new classes of therapeutic drugs. This review examines how the BoNTs have been engineered in an effort to produce new classes of therapeutic molecules to address a wide array of disorders.
Collapse
Affiliation(s)
- Robert P Webb
- The Division of Molecular and Translational Sciences, United States Army Medical Research Institute for Infectious Diseases, Fort Detrick, MD 21702, USA.
| |
Collapse
|
28
|
A Novel Rabbit Spirometry Model of Type E Botulism and Its Use for the Evaluation of Postsymptom Antitoxin Efficacy. Antimicrob Agents Chemother 2018; 62:AAC.02379-17. [PMID: 29437616 DOI: 10.1128/aac.02379-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 01/26/2018] [Indexed: 01/16/2023] Open
Abstract
Botulinum neurotoxins (BoNTs), the most poisonous substances known in nature, pose significant concern to health authorities. The only approved therapeutic for botulism is antitoxin. While administered to patients only after symptom onset, antitoxin efficacy is evaluated in animals mostly in relation to time postintoxication regardless of symptoms. This is most likely due to the difficulty in measuring early symptoms of botulism in animals. In this study, a rabbit spirometry model was developed to quantify early respiratory symptoms of type E botulism that were further used as a trigger for treatment. Impaired respiration, in the form of a reduced minute volume, was detected as early as 18.1 ± 2.9 h after intramuscular exposure to 2 rabbit 50% lethal doses (LD50) of BoNT serotype E (BoNT/E), preceding any visible symptoms. All rabbits treated with antitoxin immediately following symptom onset survived. Postsymptom antitoxin efficacy was further evaluated in relation to toxin and antitoxin dosages as well as delayed antitoxin administration. Our system enabled us to demonstrate, for the first time, full antitoxin protection of animals treated with antitoxin after the onset of objective and quantitative type E botulism symptoms. This model may be utilized to evaluate the efficacy of antitoxins for additional serotypes of BoNT as well as that of next-generation anti-BoNT drugs that enter affected cells and act when antitoxin is no longer effective.
Collapse
|