1
|
Vicars Z, Choi J, Marks SM, Remsing RC, Patel AJ. Interfacial Ice Density Fluctuations Inform Surface Ice-Philicity. J Phys Chem B 2024; 128:8512-8521. [PMID: 39171456 DOI: 10.1021/acs.jpcb.4c03783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The propensity of a surface to nucleate ice or bind to ice is governed by its ice-philicity─its relative preference for ice over liquid water. However, the relationship between the features of a surface and its ice-philicity is not well understood, and for surfaces with chemical or topographical heterogeneity, such as proteins, their ice-philicity is not even well-defined. In the analogous problem of surface hydrophobicity, it has been shown that hydrophobic surfaces display enhanced low water-density (vapor-like) fluctuations in their vicinity. To interrogate whether enhanced ice-like fluctuations are similarly observed near ice-philic surfaces, here we use molecular simulations and enhanced sampling techniques. Using a family of model surfaces for which the wetting coefficient, k, has previously been characterized, we show that the free energy of observing rare interfacial ice-density fluctuations decreases monotonically with increasing k. By utilizing this connection, we investigate a set of fcc systems and find that the (110) surface is more ice-philic than the (111) or (100) surfaces. By additionally analyzing the structure of interfacial ice, we find that all surfaces prefer to bind to the basal plane of ice, and the topographical complementarity of the (110) surface to the basal plane explains its higher ice-philicity. Using enhanced interfacial ice-like fluctuations as a measure of surface ice-philicity, we then characterize the ice-philicity of chemically heterogeneous and topologically complex systems. In particular, we study the spruce budworm antifreeze protein (sbwAFP), which binds to ice using a known ice-binding site (IBS) and resists engulfment using nonbinding sites of the protein (NBSs). We find that the IBS displays enhanced interfacial ice-density fluctuations and is therefore more ice-philic than the two NBSs studied. We also find the two NBSs are similarly ice-phobic. By establishing a connection between interfacial ice-like fluctuations and surface ice-philicity, our findings thus provide a way to characterize the ice-philicity of heterogeneous surfaces.
Collapse
Affiliation(s)
- Zachariah Vicars
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jeongmoon Choi
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sean M Marks
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Amish J Patel
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Genetic and Structural Diversity of Prokaryotic Ice-Binding Proteins from the Central Arctic Ocean. Genes (Basel) 2023; 14:genes14020363. [PMID: 36833289 PMCID: PMC9957290 DOI: 10.3390/genes14020363] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Ice-binding proteins (IBPs) are a group of ecologically and biotechnologically relevant enzymes produced by psychrophilic organisms. Although putative IBPs containing the domain of unknown function (DUF) 3494 have been identified in many taxa of polar microbes, our knowledge of their genetic and structural diversity in natural microbial communities is limited. Here, we used samples from sea ice and sea water collected in the central Arctic Ocean as part of the MOSAiC expedition for metagenome sequencing and the subsequent analyses of metagenome-assembled genomes (MAGs). By linking structurally diverse IBPs to particular environments and potential functions, we reveal that IBP sequences are enriched in interior ice, have diverse genomic contexts and cluster taxonomically. Their diverse protein structures may be a consequence of domain shuffling, leading to variable combinations of protein domains in IBPs and probably reflecting the functional versatility required to thrive in the extreme and variable environment of the central Arctic Ocean.
Collapse
|
3
|
Craig K, Johnson BR, Grunden A. Leveraging Pseudomonas Stress Response Mechanisms for Industrial Applications. Front Microbiol 2021; 12:660134. [PMID: 34040596 PMCID: PMC8141521 DOI: 10.3389/fmicb.2021.660134] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/12/2021] [Indexed: 12/25/2022] Open
Abstract
Members of the genus Pseudomonas are metabolically versatile and capable of adapting to a wide variety of environments. Stress physiology of Pseudomonas strains has been extensively studied because of their biotechnological potential in agriculture as well as their medical importance with regards to pathogenicity and antibiotic resistance. This versatility and scientific relevance led to a substantial amount of information regarding the stress response of a diverse set of species such as Pseudomonas chlororaphis, P. fluorescens, P. putida, P. aeruginosa, and P. syringae. In this review, environmental and industrial stressors including desiccation, heat, and cold stress, are cataloged along with their corresponding mechanisms of survival in Pseudomonas. Mechanisms of survival are grouped by the type of inducing stress with a focus on adaptations such as synthesis of protective substances, biofilm formation, entering a non-culturable state, enlisting chaperones, transcription and translation regulation, and altering membrane composition. The strategies Pseudomonas strains utilize for survival can be leveraged during the development of beneficial strains to increase viability and product efficacy.
Collapse
Affiliation(s)
- Kelly Craig
- AgBiome Inc., Research Triangle Park, NC, United States
| | | | - Amy Grunden
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
4
|
Nizovoy P, Bellora N, Haridas S, Sun H, Daum C, Barry K, Grigoriev IV, Libkind D, Connell LB, Moliné M. Unique genomic traits for cold adaptation in Naganishia vishniacii, a polyextremophile yeast isolated from Antarctica. FEMS Yeast Res 2020; 21:6000217. [PMID: 33232451 DOI: 10.1093/femsyr/foaa056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022] Open
Abstract
Cold environments impose challenges to organisms. Polyextremophile microorganisms can survive in these conditions thanks to an array of counteracting mechanisms. Naganishia vishniacii, a yeast species hitherto only isolated from McMurdo Dry Valleys, Antarctica, is an example of a polyextremophile. Here we present the first draft genomic sequence of N. vishniacii. Using comparative genomics, we unraveled unique characteristics of cold associated adaptations. 336 putative genes (total: 6183) encoding solute transfers and chaperones, among others, were absent in sister species. Among genes shared by N. vishniacii and its closest related species we found orthologs encompassing possible evidence of positive selection (dN/dS > 1). Genes associated with photoprotection were found in agreement with high solar irradiation exposure. Also genes coding for desaturases and genomic features associated with cold tolerance (i.e. trehalose synthesis and lipid metabolism) were explored. Finally, biases in amino acid usage (namely an enrichment of glutamine and a trend in proline reduction) were observed, possibly conferring increased protein flexibility. To the best of our knowledge, such a combination of mechanisms for cold tolerance has not been previously reported in fungi, making N. vishniacii a unique model for the study of the genetic basis and evolution of cold adaptation strategies.
Collapse
Affiliation(s)
- Paula Nizovoy
- Centro de Referencia en Levaduras y Tecnologı́a Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologı́as Biológicas y Geoambientales (IPATEC) - CONICET / Universidad Nacional del Comahue, San Carlos de Bariloche, Rı́o Negro 8400, Argentina
| | - Nicolás Bellora
- Centro de Referencia en Levaduras y Tecnologı́a Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologı́as Biológicas y Geoambientales (IPATEC) - CONICET / Universidad Nacional del Comahue, San Carlos de Bariloche, Rı́o Negro 8400, Argentina
| | - Sajeet Haridas
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598, USA
| | - Hui Sun
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598, USA
| | - Chris Daum
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94598, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Diego Libkind
- Centro de Referencia en Levaduras y Tecnologı́a Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologı́as Biológicas y Geoambientales (IPATEC) - CONICET / Universidad Nacional del Comahue, San Carlos de Bariloche, Rı́o Negro 8400, Argentina
| | - Laurie B Connell
- School of Marine Sciences, University of Maine, Orono, ME 04469, USA
| | - Martín Moliné
- Centro de Referencia en Levaduras y Tecnologı́a Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologı́as Biológicas y Geoambientales (IPATEC) - CONICET / Universidad Nacional del Comahue, San Carlos de Bariloche, Rı́o Negro 8400, Argentina
| |
Collapse
|
5
|
Naullage PM, Metya AK, Molinero V. Computationally efficient approach for the identification of ice-binding surfaces and how they bind ice. J Chem Phys 2020; 153:174106. [DOI: 10.1063/5.0021631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Pavithra M. Naullage
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, USA
| | - Atanu K. Metya
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, USA
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, USA
| |
Collapse
|
6
|
An Ice-Binding Protein from an Antarctic Ascomycete Is Fine-Tuned to Bind to Specific Water Molecules Located in the Ice Prism Planes. Biomolecules 2020; 10:biom10050759. [PMID: 32414092 PMCID: PMC7277481 DOI: 10.3390/biom10050759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 01/29/2023] Open
Abstract
Many microbes that survive in cold environments are known to secrete ice-binding proteins (IBPs). The structure–function relationship of these proteins remains unclear. A microbial IBP denoted AnpIBP was recently isolated from a cold-adapted fungus, Antarctomyces psychrotrophicus. The present study identified an orbital illumination (prism ring) on a globular single ice crystal when soaked in a solution of fluorescent AnpIBP, suggesting that AnpIBP binds to specific water molecules located in the ice prism planes. In order to examine this unique ice-binding mechanism, we carried out X-ray structural analysis and mutational experiments. It appeared that AnpIBP is made of 6-ladder β-helices with a triangular cross section that accompanies an “ice-like” water network on the ice-binding site. The network, however, does not exist in a defective mutant. AnpIBP has a row of four unique hollows on the IBS, where the distance between the hollows (14.7 Å) is complementary to the oxygen atom spacing of the prism ring. These results suggest the structure of AnpIBP is fine-tuned to merge with the ice–water interface of an ice crystal through its polygonal water network and is then bound to a specific set of water molecules constructing the prism ring to effectively halt the growth of ice.
Collapse
|
7
|
Vance TDR, Bayer-Giraldi M, Davies PL, Mangiagalli M. Ice-binding proteins and the 'domain of unknown function' 3494 family. FEBS J 2019; 286:855-873. [PMID: 30680879 DOI: 10.1111/febs.14764] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/03/2019] [Accepted: 01/22/2019] [Indexed: 02/03/2023]
Abstract
Ice-binding proteins (IBPs) control the growth and shape of ice crystals to cope with subzero temperatures in psychrophilic and freeze-tolerant organisms. Recently, numerous proteins containing the domain of unknown function (DUF) 3494 were found to bind ice crystals and, hence, are classified as IBPs. DUF3494 IBPs constitute today the most widespread of the known IBP families. They can be found in different organisms including bacteria, yeasts and microalgae, supporting the hypothesis of horizontal transfer of its gene. Although the 3D structure is always a discontinuous β-solenoid with a triangular cross-section and an adjacent alpha-helix, DUF3494 IBPs present very diverse activities in terms of the magnitude of their thermal hysteresis and inhibition of ice recrystallization. The proteins are secreted into the environments around the host cells or are anchored on their cell membranes. This review covers several aspects of this new class of IBPs, which promise to leave their mark on several research fields including structural biology, protein biochemistry and cryobiology.
Collapse
Affiliation(s)
- Tyler D R Vance
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Maddalena Bayer-Giraldi
- Department of Glaciology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy
| |
Collapse
|
8
|
Combined molecular dynamics and neural network method for predicting protein antifreeze activity. Proc Natl Acad Sci U S A 2018; 115:13252-13257. [PMID: 30530650 DOI: 10.1073/pnas.1814945115] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Antifreeze proteins (AFPs) are a diverse class of proteins that depress the kinetically observable freezing point of water. AFPs have been of scientific interest for decades, but the lack of an accurate model for predicting AFP activity has hindered the logical design of novel antifreeze systems. To address this, we perform molecular dynamics simulation for a collection of well-studied AFPs. By analyzing both the dynamic behavior of water near the protein surface and the geometric structure of the protein, we introduce a method that automatically detects the ice binding face of AFPs. From these data, we construct a simple neural network that is capable of quantitatively predicting experimentally observed thermal hysteresis from a trio of relevant physical variables. The model's accuracy is tested against data for 17 known AFPs and 5 non-AFP controls.
Collapse
|
9
|
Kondo H, Mochizuki K, Bayer-Giraldi M. Multiple binding modes of a moderate ice-binding protein from a polar microalga. Phys Chem Chem Phys 2018; 20:25295-25303. [PMID: 30255887 DOI: 10.1039/c8cp04727h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ice-binding proteins (IBPs) produced by cold-tolerant organisms interact with ice and strongly control crystal growth. The molecular basis for the different magnitudes of activity displayed by various IBPs (moderate and hyperactive) has not yet been clarified. Previous studies questioned whether the moderate activity of some IBPs relies on their weaker binding modus to the ice surface, compared to hyperactive IBPs, rather than relying on binding only to selected faces of the ice crystal. We present the structure of one moderate IBP from the sea-ice diatom Fragilariopsis cylindrus (fcIBP) as determined by X-ray crystallography and investigate the protein's binding modes to the growing ice-water interface using molecular dynamics simulations. The structure of fcIBP is the IBP-1 fold, defined by a discontinuous β-solenoid delimitated by three faces (A, B and C-faces) and braced by an α-helix. The fcIBP structure shows capping loops on both N- and C-terminal parts of the solenoid. We show that the protein adsorbs on both the prism and the basal faces of ice crystals, confirming experimental results. The fcIBP binds irreversibly to the prism face using the loop between the B and the C-faces, involving also the B-face in water immobilization despite its irregular structure. The α-helix attaches the protein to the basal face with a partly reversible modus. Our results suggest that fcIBP has a looser attachment to ice and that this weaker binding modus is the basis to explain the moderate activity of fcIBP.
Collapse
Affiliation(s)
- Hidemasa Kondo
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan
| | | | | |
Collapse
|
10
|
Eslami M, Shirali Hossein Zade R, Takalloo Z, Mahdevar G, Emamjomeh A, Sajedi RH, Zahiri J. afpCOOL: A tool for antifreeze protein prediction. Heliyon 2018; 4:e00705. [PMID: 30094375 PMCID: PMC6074609 DOI: 10.1016/j.heliyon.2018.e00705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/20/2018] [Indexed: 11/16/2022] Open
Abstract
Various cold-adapted organisms produce antifreeze proteins (AFPs), which prevent the freezing of cell fluids by inhibiting the growth of ice crystals. AFPs are currently being recognized in various organisms, living in extremely low temperatures. AFPs have several important applications in increasing freeze tolerance of plants, maintaining the tissue in frozen conditions and producing cold-hardy plants by applying transgenic technology. Substantial differences in the sequence and structure of the AFPs, pose a challenge for researchers to identify these proteins. In this paper, we proposed a novel method to identify AFPs, using supportive vector machine (SVM) by incorporating 4 types of features. Results of the two used benchmark datasets, revealed the strength of the proposed method in AFP prediction. According to the results of an independent test setup, our method outperformed the current state-of-the-art methods. In addition, the comparison results of the discrimination power of different feature types revealed that physicochemical descriptors are the most contributing features in AFP detection. This method has been implemented as a stand-alone tool, named afpCOOL, for various operating systems to predict AFPs with a user friendly graphical interface.
Collapse
Affiliation(s)
- Morteza Eslami
- Department of Computer Engineering, Arak University, Arak, Iran
| | | | - Zeinab Takalloo
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ghasem Mahdevar
- Department of Mathematics, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Abbasali Emamjomeh
- Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Zahiri
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran
| |
Collapse
|
11
|
Mangiagalli M, Sarusi G, Kaleda A, Bar Dolev M, Nardone V, Vena VF, Braslavsky I, Lotti M, Nardini M. Structure of a bacterial ice binding protein with two faces of interaction with ice. FEBS J 2018. [PMID: 29533528 DOI: 10.1111/febs.14434] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ice-binding proteins (IBPs) contribute to the survival of many living beings at subzero temperature by controlling the formation and growth of ice crystals. This work investigates the structural basis of the ice-binding properties of EfcIBP, obtained from Antarctic bacteria. EfcIBP is endowed with a unique combination of thermal hysteresis and ice recrystallization inhibition activity. The three-dimensional structure, solved at 0.84 Å resolution, shows that EfcIBP belongs to the IBP-1 fold family, and is organized in a right-handed β-solenoid with a triangular cross-section that forms three protein surfaces, named A, B, and C faces. However, EfcIBP diverges from other IBP-1 fold proteins in relevant structural features including the lack of a 'capping' region on top of the β-solenoid, and in the sequence and organization of the regions exposed to ice that, in EfcIBP, reveal the presence of threonine-rich ice-binding motifs. Docking experiments and site-directed mutagenesis pinpoint that EfcIBP binds ice crystals not only via its B face, as common to other IBPs, but also via ice-binding sites on the C face. DATABASE Coordinates and structure factors have been deposited in the Protein Data Bank under accession number 6EIO.
Collapse
Affiliation(s)
- Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy
| | - Guy Sarusi
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Aleksei Kaleda
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.,Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Estonia
| | - Maya Bar Dolev
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | - Ido Braslavsky
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Marina Lotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy
| | - Marco Nardini
- Department of Biosciences, University of Milano, Italy
| |
Collapse
|