1
|
Freas CA, Spetch ML. Varieties of visual navigation in insects. Anim Cogn 2023; 26:319-342. [PMID: 36441435 PMCID: PMC9877076 DOI: 10.1007/s10071-022-01720-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
The behaviours and cognitive mechanisms animals use to orient, navigate, and remember spatial locations exemplify how cognitive abilities have evolved to suit a number of different mobile lifestyles and habitats. While spatial cognition observed in vertebrates has been well characterised in recent decades, of no less interest are the great strides that have also been made in characterizing and understanding the behavioural and cognitive basis of orientation and navigation in invertebrate models and in particular insects. Insects are known to exhibit remarkable spatial cognitive abilities and are able to successfully migrate over long distances or pinpoint known locations relying on multiple navigational strategies similar to those found in vertebrate models-all while operating under the constraint of relatively limited neural architectures. Insect orientation and navigation systems are often tailored to each species' ecology, yet common mechanistic principles can be observed repeatedly. Of these, reliance on visual cues is observed across a wide number of insect groups. In this review, we characterise some of the behavioural strategies used by insects to solve navigational problems, including orientation over short-distances, migratory heading maintenance over long distances, and homing behaviours to known locations. We describe behavioural research using examples from a few well-studied insect species to illustrate how visual cues are used in navigation and how they interact with non-visual cues and strategies.
Collapse
Affiliation(s)
- Cody A. Freas
- Department of Psychology, University of Alberta, Edmonton, AB Canada ,School of Natural Sciences, Macquarie University, Sydney, NSW Australia
| | - Marcia L. Spetch
- Department of Psychology, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
2
|
Visual navigation: properties, acquisition and use of views. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022:10.1007/s00359-022-01599-2. [PMID: 36515743 DOI: 10.1007/s00359-022-01599-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022]
Abstract
Panoramic views offer information on heading direction and on location to visually navigating animals. This review covers the properties of panoramic views and the information they provide to navigating animals, irrespective of image representation. Heading direction can be retrieved by alignment matching between memorized and currently experienced views, and a gradient descent in image differences can lead back to the location at which a view was memorized (positional image matching). Central place foraging insects, such as ants, bees and wasps, conduct distinctly choreographed learning walks and learning flights upon first leaving their nest that are likely to be designed to systematically collect scene memories tagged with information provided by path integration on the direction of and the distance to the nest. Equally, traveling along routes, ants have been shown to engage in scanning movements, in particular when routes are unfamiliar, again suggesting a systematic process of acquiring and comparing views. The review discusses what we know and do not know about how view memories are represented in the brain of insects, how they are acquired and how they are subsequently used for traveling along routes and for pinpointing places.
Collapse
|
3
|
Islam M, Deeti S, Murray T, Cheng K. What view information is most important in the homeward navigation of an Australian bull ant, Myrmecia midas? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:545-559. [PMID: 36048246 PMCID: PMC9734209 DOI: 10.1007/s00359-022-01565-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 12/14/2022]
Abstract
Many insects orient by comparing current panoramic views of their environment to memorised views. We tested the navigational abilities of night-active Myrmecia midas foragers while we blocked segments of their visual panorama. Foragers failed to orient homewards when the front view, lower elevations, entire terrestrial surround, or the full panorama was blocked. Initial scanning increased whenever the visual panorama was blocked but scanning only increased along the rest of the route when the front, back, higher, or lower elevations were blocked. Ants meandered more when the front, the back, or the higher elevations were obscured. When everything except the canopy was blocked, the ants were quick and direct, but moved in random directions, as if to escape. We conclude that a clear front view, or a clear lower panorama is necessary for initial homeward headings. Furthermore, the canopy is neither necessary nor sufficient for homeward initial heading, and the back and upper segments of views, while not necessary, do make finding home easier. Discrepancies between image analysis and ant behaviour when the upper and lower views were blocked suggests that ants are selective in what portions of the scene they attend to or learn.
Collapse
Affiliation(s)
- Muzahid Islam
- grid.1004.50000 0001 2158 5405School of Natural Sciences, Macquarie University, Sydney, NSW 2109 Australia
| | - Sudhakar Deeti
- grid.1004.50000 0001 2158 5405School of Natural Sciences, Macquarie University, Sydney, NSW 2109 Australia
| | - Trevor Murray
- grid.1004.50000 0001 2158 5405School of Natural Sciences, Macquarie University, Sydney, NSW 2109 Australia
| | - Ken Cheng
- grid.1004.50000 0001 2158 5405School of Natural Sciences, Macquarie University, Sydney, NSW 2109 Australia
| |
Collapse
|
4
|
Abstract
Animals navigate a wide range of distances, from a few millimeters to globe-spanning journeys of thousands of kilometers. Despite this array of navigational challenges, similar principles underlie these behaviors across species. Here, we focus on the navigational strategies and supporting mechanisms in four well-known systems: the large-scale migratory behaviors of sea turtles and lepidopterans as well as navigation on a smaller scale by rats and solitarily foraging ants. In lepidopterans, rats, and ants we also discuss the current understanding of the neural architecture which supports navigation. The orientation and navigational behaviors of these animals are defined in terms of behavioral error-reduction strategies reliant on multiple goal-directed servomechanisms. We conclude by proposing to incorporate an additional component into this system: the observation that servomechanisms operate on oscillatory systems of cycling behavior. These oscillators and servomechanisms comprise the basis for directed orientation and navigational behaviors. Expected final online publication date for the Annual Review of Psychology, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Cody A Freas
- Department of Psychology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Ken Cheng
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia;
| |
Collapse
|
5
|
Freas CA, Plowes NJR, Spetch ML. Traveling through light clutter: Path integration and panorama guided navigation in the Sonoran Desert ant, Novomessor cockerelli. Behav Processes 2021; 186:104373. [PMID: 33684462 DOI: 10.1016/j.beproc.2021.104373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/04/2021] [Accepted: 03/01/2021] [Indexed: 11/15/2022]
Abstract
Foraging ants use multiple navigational strategies, including path integration and visual panorama cues, which are used simultaneously and weighted based upon context, the environment and the species' sensory ecology. In particular, the amount of visual clutter in the habitat predicts the weighting given to the forager's path integrator and surrounding panorama cues. Here, we characterize the individual cue use and cue weighting of the Sonoran Desert ant, Novomessor cockerelli, by testing foragers after local and distant displacement. Foragers attend to both a path-integration-based vector and the surrounding panorama to navigate, on and off foraging routes. When both cues were present, foragers initially oriented to their path integrator alone, yet weighting was dynamic, with foragers abandoning the vector and switching to panorama-based navigation after a few meters. If displaced to unfamiliar locations, experienced foragers travelled almost their full homeward vector (∼85 %) before the onset of search. Through panorama analysis, we show views acquired on-route provide sufficient information for orientation over only short distances, with rapid parallel decreases in panorama similarity and navigational performance after even small local displacements. These findings are consistent with heavy path integrator weighting over the panorama when the local habitat contains few prominent terrestrial cues.
Collapse
Affiliation(s)
- Cody A Freas
- Department of Psychology, University of Alberta, Alberta, Canada.
| | - Nicola J R Plowes
- Department of Biology, Mesa Community College, Mesa, AZ, United States
| | - Marcia L Spetch
- Department of Psychology, University of Alberta, Alberta, Canada
| |
Collapse
|
6
|
Kócsi Z, Murray T, Dahmen H, Narendra A, Zeil J. The Antarium: A Reconstructed Visual Reality Device for Ant Navigation Research. Front Behav Neurosci 2020; 14:599374. [PMID: 33240057 PMCID: PMC7683616 DOI: 10.3389/fnbeh.2020.599374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
We constructed a large projection device (the Antarium) with 20,000 UV-Blue-Green LEDs that allows us to present tethered ants with views of their natural foraging environment. The ants walk on an air-cushioned trackball, their movements are registered and can be fed back to the visual panorama. Views are generated in a 3D model of the ants’ environment so that they experience the changing visual world in the same way as they do when foraging naturally. The Antarium is a biscribed pentakis dodecahedron with 55 facets of identical isosceles triangles. The length of the base of the triangles is 368 mm resulting in a device that is roughly 1 m in diameter. Each triangle contains 361 blue/green LEDs and nine UV LEDs. The 55 triangles of the Antarium have 19,855 Green and Blue pixels and 495 UV pixels, covering 360° azimuth and elevation from −50° below the horizon to +90° above the horizon. The angular resolution is 1.5° for Green and Blue LEDs and 6.7° for UV LEDs, offering 65,536 intensity levels at a flicker frequency of more than 9,000 Hz and a framerate of 190 fps. Also, the direction and degree of polarisation of the UV LEDs can be adjusted through polarisers mounted on the axles of rotary actuators. We build 3D models of the natural foraging environment of ants using purely camera-based methods. We reconstruct panoramic scenes at any point within these models, by projecting panoramic images onto six virtual cameras which capture a cube-map of images to be projected by the LEDs of the Antarium. The Antarium is a unique instrument to investigate visual navigation in ants. In an open loop, it allows us to provide ants with familiar and unfamiliar views, with completely featureless visual scenes, or with scenes that are altered in spatial or spectral composition. In closed-loop, we can study the behavior of ants that are virtually displaced within their natural foraging environment. In the future, the Antarium can also be used to investigate the dynamics of navigational guidance and the neurophysiological basis of ant navigation in natural visual environments.
Collapse
Affiliation(s)
- Zoltán Kócsi
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Trevor Murray
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Hansjürgen Dahmen
- Department of Cognitive Neuroscience, University of Tübingen, Tübingen, Germany
| | - Ajay Narendra
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Jochen Zeil
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
7
|
Islam M, Freas CA, Cheng K. Effect of large visual changes on the navigation of the nocturnal bull ant, Myrmecia midas. Anim Cogn 2020; 23:1071-1080. [PMID: 32270349 DOI: 10.1007/s10071-020-01377-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/30/2020] [Indexed: 11/25/2022]
Abstract
Nocturnal insects have remarkable visual capacities in dim light. They can navigate using both the surrounding panorama and celestial cues. Individual foraging ants are efficient navigators, able to accurately reach a variety of goal locations. During navigation, foragers compare the current panoramic view to previously learnt views. In this natural experiment, we observed the effects of large panorama changes, the addition of a fence and the removal of several trees near the nest site, on the navigation of the nocturnal bull ant Myrmecia midas. We examined how the ants' navigational efficiency and behaviour changed in response to changes in ~ 30% of the surrounding skyline, following them over multiple nights. Foragers were displaced locally off-route where we collected initial orientations and homing paths both before and after large panorama changes. We found that immediately after these changes, foragers were unable to initially orient correctly to the nest direction and foragers' return paths were less straight, suggesting increased navigational uncertainty. Continued testing showed rapid recovery in both initial orientation and path straightness.
Collapse
Affiliation(s)
- Muzahid Islam
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Cody A Freas
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | - Ken Cheng
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
8
|
Wehner R. The Cataglyphis Mahrèsienne: 50 years of Cataglyphis research at Mahrès. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:641-659. [DOI: 10.1007/s00359-019-01333-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 11/28/2022]
|
9
|
Terrestrial cue learning and retention during the outbound and inbound foraging trip in the desert ant, Cataglyphis velox. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:177-189. [DOI: 10.1007/s00359-019-01316-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/21/2018] [Accepted: 01/16/2019] [Indexed: 10/27/2022]
|
10
|
Freas CA, Cheng K. Panorama similarity and navigational knowledge in the nocturnal bull ant, Myrmicia midas. J Exp Biol 2019; 222:jeb.193201. [DOI: 10.1242/jeb.193201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 05/09/2019] [Indexed: 11/20/2022]
Abstract
Nocturnal ants forage and navigate during periods of reduced light, making detection of visual cues difficult, yet they are skilled visual navigators. These foragers retain visual panoramic memories both around the nest and along known routes for later use, be it to return to previously visited food sites or to the nest. Here, we explore the navigational knowledge of the nocturnal bull ant, Myrmecia midas, by investigating differences in nest-ward homing after displacement of three forager groups based on similarities in the panoramas between the release site and previously visited locations. Foragers that travel straight up the foraging tree or to close trees around the nest show reduced navigational success in orienting and returning from displacements compared to individuals that forage further from the nest site. By analysing the cues present in the panorama, we show that multiple metrics of forager navigational performance correspond with the degree of similarity between the release site panorama and panoramas of previously visited sites. In highly cluttered environments, where panoramas change rapidly over short distances, the views acquired near the nest are only useful over a small area and memories acquired along foraging routes become critical.
Collapse
Affiliation(s)
- Cody A. Freas
- Department of Psychology, University of Alberta, Canada
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Ken Cheng
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
11
|
Stone T, Mangan M, Wystrach A, Webb B. Rotation invariant visual processing for spatial memory in insects. Interface Focus 2018; 8:20180010. [PMID: 29951190 PMCID: PMC6015815 DOI: 10.1098/rsfs.2018.0010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2018] [Indexed: 11/12/2022] Open
Abstract
Visual memory is crucial to navigation in many animals, including insects. Here, we focus on the problem of visual homing, that is, using comparison of the view at a current location with a view stored at the home location to control movement towards home by a novel shortcut. Insects show several visual specializations that appear advantageous for this task, including almost panoramic field of view and ultraviolet light sensitivity, which enhances the salience of the skyline. We discuss several proposals for subsequent processing of the image to obtain the required motion information, focusing on how each might deal with the problem of yaw rotation of the current view relative to the home view. Possible solutions include tagging of views with information from the celestial compass system, using multiple views pointing towards home, or rotation invariant encoding of the view. We illustrate briefly how a well-known shape description method from computer vision, Zernike moments, could provide a compact and rotation invariant representation of sky shapes to enhance visual homing. We discuss the biological plausibility of this solution, and also a fourth strategy, based on observed behaviour of insects, that involves transfer of information from visual memory matching to the compass system.
Collapse
Affiliation(s)
- Thomas Stone
- School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK
| | - Michael Mangan
- Sheffield Robotics, Department of Computer Science, University of Sheffield, Regent Court, Sheffield S1 4DP, UK
| | - Antoine Wystrach
- CNRS, Université Paul Sabatier, Toulouse, 31062 cedex 09, France
| | - Barbara Webb
- School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK
| |
Collapse
|
12
|
Abstract
Navigation in cluttered environments is an important challenge for animals and robots alike and has been the subject of many studies trying to explain and mimic animal navigational abilities. However, the question of selecting an appropriate home location has, so far, received only little attention. This is surprising, since the choice of a home location might greatly influence an animal’s navigation performance. To address the question of home choice in cluttered environments, a systematic analysis of homing trajectories was performed by computer simulations using a skyline-based local homing method. Our analysis reveals that homing performance strongly depends on the location of the home in the environment. Furthermore, it appears that by assessing homing success in the immediate vicinity of the home, an animal might be able to predict its overall success in returning to it from within a much larger area.
Collapse
Affiliation(s)
- Martin M. Müller
- Department of Neurobiology, Faculty of Biology, and Cluster of Excellence ‘Cognitive Interaction Technology’ (CITEC), Bielefeld University, Bielefeld, Germany
- * E-mail:
| | - Olivier J. N. Bertrand
- Department of Neurobiology, Faculty of Biology, and Cluster of Excellence ‘Cognitive Interaction Technology’ (CITEC), Bielefeld University, Bielefeld, Germany
| | - Dario Differt
- Computer Engineering Group, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Martin Egelhaaf
- Department of Neurobiology, Faculty of Biology, and Cluster of Excellence ‘Cognitive Interaction Technology’ (CITEC), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
13
|
Freas CA, Wystrach A, Narendra A, Cheng K. The View from the Trees: Nocturnal Bull Ants, Myrmecia midas, Use the Surrounding Panorama While Descending from Trees. Front Psychol 2018; 9:16. [PMID: 29422880 PMCID: PMC5788958 DOI: 10.3389/fpsyg.2018.00016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/08/2018] [Indexed: 01/09/2023] Open
Abstract
Solitary foraging ants commonly use visual cues from their environment for navigation. Foragers are known to store visual scenes from the surrounding panorama for later guidance to known resources and to return successfully back to the nest. Several ant species travel not only on the ground, but also climb trees to locate resources. The navigational information that guides animals back home during their descent, while their body is perpendicular to the ground, is largely unknown. Here, we investigate in a nocturnal ant, Myrmecia midas, whether foragers travelling down a tree use visual information to return home. These ants establish nests at the base of a tree on which they forage and in addition, they also forage on nearby trees. We collected foragers and placed them on the trunk of the nest tree or a foraging tree in multiple compass directions. Regardless of the displacement location, upon release ants immediately moved to the side of the trunk facing the nest during their descent. When ants were released on non-foraging trees near the nest, displaced foragers again travelled around the tree to the side facing the nest. All the displaced foragers reached the correct side of the tree well before reaching the ground. However, when the terrestrial cues around the tree were blocked, foragers were unable to orient correctly, suggesting that the surrounding panorama is critical to successful orientation on the tree. Through analysis of panoramic pictures, we show that views acquired at the base of the foraging tree nest can provide reliable nest-ward orientation up to 1.75 m above the ground. We discuss, how animals descending from trees compare their current scene to a memorised scene and report on the similarities in visually guided behaviour while navigating on the ground and descending from trees.
Collapse
Affiliation(s)
- Cody A. Freas
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Antione Wystrach
- Research Centre on Animal Cognition, Centre for Integrative Biology, CNRS, University of Toulouse, Toulouse, France
| | - Ajay Narendra
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ken Cheng
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
14
|
Jayatilaka P, Murray T, Narendra A, Zeil J. The choreography of learning walks in the Australian jack jumper ant Myrmecia croslandi. J Exp Biol 2018; 221:jeb.185306. [DOI: 10.1242/jeb.185306] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/12/2018] [Indexed: 11/20/2022]
Abstract
We provide a detailed analysis of the learning walks performed by Myrmecia croslandi ants at the nest during which they acquire visual information on its location. Most learning walks of 12 individually marked naïve ants took place in the morning with a narrow time window separating the first two learning walks, which most often occurred on the same day. Naïve ants performed between 2 to 7 walks over up to 4 consecutive days before heading out to forage. On subsequent walks naïve ants tend to explore the area around the nest in new compass directions. During learning walks ants move along arcs around the nest while performing oscillating scanning movements. In a regular temporal sequence, the ants’ gaze oscillates between the nest direction and the direction pointing away from the nest. Ants thus experience a sequence of views roughly across the nest and away from the nest from systematically spaced vantage points around the nest. We show further that ants leaving the nest for a foraging trip often walk in an arc around the nest on the opposite side to the intended foraging direction, performing a scanning routine indistinguishable from that of a learning walk. These partial learning walks are triggered by disturbance around the nest and may help returning ants with reorienting when overshooting the nest, which they frequently do. We discuss what is known about learning walks in different ant species and their adaptive significance for acquiring robust navigational memories.
Collapse
Affiliation(s)
- Piyankarie Jayatilaka
- Research School of Biology, The Australian National University 46 Sullivans Creek Road, Canberra ACT2601, Australia
| | - Trevor Murray
- Research School of Biology, The Australian National University 46 Sullivans Creek Road, Canberra ACT2601, Australia
| | - Ajay Narendra
- Research School of Biology, The Australian National University 46 Sullivans Creek Road, Canberra ACT2601, Australia
- Present address: Department of Biological Sciences, Macquarie University, 205 Culloden Road, Sydney, NSW 2109, Australia
| | - Jochen Zeil
- Research School of Biology, The Australian National University 46 Sullivans Creek Road, Canberra ACT2601, Australia
| |
Collapse
|