1
|
Reggi S, Dell'Anno M, Baldi A, Rossi L. Seed-specific expression of porcine verotoxigenic Escherichia coli antigens in tobacco plants as a potential model of edible vaccines. Vet Res Commun 2024; 48:1435-1447. [PMID: 38319502 PMCID: PMC11147939 DOI: 10.1007/s11259-024-10318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/27/2024] [Indexed: 02/07/2024]
Abstract
Vaccines can reduce the use of antibiotics by preventing specific infective diseases in pigs. Plant-based edible vaccines are particularly attractive because, upon oral ingestion via feed, they can elicit the local immune system against a foreign disease-causing organism. The aim of this study was to engineer two different independent lines of tobacco plants for the seed-specific expression of immunogenic proteins of VTEC as a model of an edible vaccine. For each antigen, fifty Nicotiana tabacum L. cv Xanthi leaf disks were transformed by agroinfection for the seed-specific expression of the structural parts of the fimbrial subunit FedF of F18 and the B-subunit of Vt2e genes. The synthetic genes, optimized by the codon adaptation index for their expression in tobacco, were inserted into expression cassettes under the control of β-conglycinin promoter. Regenerated tobacco plants (T0) were characterized by molecular and immunoenzymatic techniques. Our results showed that both FedF and Vt2eB genes were integrated into tobacco genome efficiently (> 80%) and they are also maintained in the second generation (T1). Western blotting analyses carried out on the positive producing lines, showed the tissue-specific expression in seeds and the temporal protein accumulation in the mid-late maturation phases. The enzyme-linked immunosorbent assay showed seed expression levels of 0.09 to 0.29% (from 138 to 444 µg/g of seeds) and 0.21 to 0.43% (from 321 to 658 µg/g of seeds) of total soluble protein for the FedF and Vt2eB antigens, respectively. This study confirmed the seed-specific expression of the selected antigens in plant seeds. The expression level is suitable for seed-based edible vaccination systems, which could represent a cost-effective way to prevent VTEC infection. Our findings encourage further in vivo studies focused on the activation of the local immune response.
Collapse
Affiliation(s)
- Serena Reggi
- Department of Veterinary Medicine and Animal Sciences - DIVAS, University of Milan, Lodi, 26900, Italy
| | - Matteo Dell'Anno
- Department of Veterinary Medicine and Animal Sciences - DIVAS, University of Milan, Lodi, 26900, Italy
| | - Antonella Baldi
- Department of Veterinary Medicine and Animal Sciences - DIVAS, University of Milan, Lodi, 26900, Italy
| | - Luciana Rossi
- Department of Veterinary Medicine and Animal Sciences - DIVAS, University of Milan, Lodi, 26900, Italy.
| |
Collapse
|
2
|
Zakharova E, Khanina T, Knyazev A, Milyukova N, Kovaleva LV. Hormonal Signaling during dPCD: Cytokinin as the Determinant of RNase-Based Self-Incompatibility in Solanaceae. Biomolecules 2023; 13:1033. [PMID: 37509069 PMCID: PMC10377171 DOI: 10.3390/biom13071033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Research into molecular mechanisms of self-incompatibility (SI) in plants can be observed in representatives of various families, including Solanaceae. Earlier studies of the mechanisms of S-RNase-based SI in petunia (Petunia hybrida E. Vilm.) demonstrate that programmed cell death (PCD) is an SI factor. These studies suggest that the phytohormon cytokinin (CK) is putative activator of caspase-like proteases (CLPs). In this work, data confirming this hypothesis were obtained in two model objects-petunia and tomato (six Solanaceae representatives). The exogenous zeatin treatment of tomato and petunia stigmas before a compatible pollination activates CLPs in the pollen tubes in vivo, as shown via the intravital imaging of CLP activities. CK at any concentration slows down the germination and growth of petunia and tomato male gametophytes both in vitro and in vivo; shifts the pH of the cytoplasm (PHc) to the acid region, thereby creating the optimal conditions for CLP to function and inhibiting the F-actin formation and/or destructing the cytoskeleton in pollen tubes to point foci during SI-induced PCD; and accumulates in style tissues during SI response. The activity of the ISOPENTENYLTRANSFERASE 5 (IPT5) gene at this moment exceeds its activity in a cross-compatible pollination, and the levels of expression of the CKX1 and CKX2 genes (CK OXIDASE/DEHYDROGENASE) are significantly lower in self-incompatible pollination. All this suggests that CK plays a decisive role in the mechanism underlying SI-induced PCD.
Collapse
Affiliation(s)
- Ekaterina Zakharova
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Tatiana Khanina
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Andrey Knyazev
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Natalia Milyukova
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Lidia V Kovaleva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 191186 Moscow, Russia
| |
Collapse
|
3
|
Caprarulo V, Giromini C, Rossi L. Review: Chestnut and quebracho tannins in pig nutrition: the effects on performance and intestinal health. Animal 2020; 15:100064. [PMID: 33516022 DOI: 10.1016/j.animal.2020.100064] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Natural extracts are frequently adopted as a valuable alternative to antibiotics in intensive animal farming. Their diverse bioactive constituents such as phytosterols, glucosinolates, carotenoids and polyphenols have shown antioxidant, anti-inflammatory and antibacterial effects. Tannins are the largest class of polyphenol compounds of plant extracts, which can be classified into two hydrolysable or condensed subgroups. Poultry and swine nutrition are the most important sectors in which tannins have been used, firstly adopting tannin-rich feedstuffs and more recently, using tannin extracts from different plants. Several commercial products are available containing tannins extracted from the European chestnut tree (Castanea sativa Mill.) and the American quebracho (Schinopsis spp.). Tannins extracted from these plants have been applied on intensive swine farms due to their ability to improve animal performance and health. These positive and prominent effects are frequently associated with the antinutritional effects in reducing feed palatability, digestibility and protein utilization of feed. Some criticisms and contrasting results regarding pig performance and intestinal health have been reported. This paper provides an overview of the effects of chestnut and quebracho tannins on growth performance and intestinal health of pigs in order to clarify the appropriate dosage and response in the various physiological stages.
Collapse
Affiliation(s)
- V Caprarulo
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy.
| | - C Giromini
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy; CRC I-WE (Coordinating Research Center: Innovation for Well-Being and Environment), Università degli Studi di Milano, 20134 Milan, Italy
| | - L Rossi
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy
| |
Collapse
|
4
|
Caprarulo V, Hejna M, Giromini C, Liu Y, Dell’Anno M, Sotira S, Reggi S, Sgoifo-Rossi CA, Callegari ML, Rossi L. Evaluation of Dietary Administration of Chestnut and Quebracho Tannins on Growth, Serum Metabolites and Fecal Parameters of Weaned Piglets. Animals (Basel) 2020; 10:E1945. [PMID: 33105748 PMCID: PMC7690424 DOI: 10.3390/ani10111945] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
In pig livestock, alternatives to in-feed antibiotics are needed to control enteric infections. Plant extracts such as tannins can represent an alternative as a natural source of functional compounds. The aim of this study was to evaluate the in vitro digestibility and in vivo effects of oral supplementation of combined chestnut (Ch) and quebracho (Qu) tannins in order to establish if they can induce a positive effect on weaned piglets' performance, metabolic status and fecal parameters. In vitro digestibility (dry matter, DM) of diets was calculated using a multi-step enzymatic technique. In vitro digested diet samples were further tested on an intestinal porcine enterocyte cell line (IPEC-J2). Weaned piglets (n = 120; 28 ± 2 day old) were randomly allotted to two groups (12 pens in total with 10 pigs per pen): control (Ctrl) and treatment (Ch/Qu). After one week of adaptation (day 0), 35-day-old piglets in the Ctrl group were fed a Ctrl diet and the Ch/Qu group were fed with 1.25% Ch/Qu for 40 days. Body weight and feed intake per pen were recorded weekly. At day 40, blood and fecal samples were collected. Principal metabolic parameters were evaluated from blood samples by enzymatic colorimetric analysis. Total phenolic compounds, urea, and ammonia in feces were analyzed (Megazyme International, Bray, Ireland). In vitro digestibility and cell viability assays showed that the inclusion of 1.25% Ch/Qu slightly reduced diet digestibility compared with the Ctrl diet, while intestinal cell viability was not altered with low concentrations of Ch/Qu digesta compared with Ctrl. In vivo results did not show any adverse effects of Ch/Qu on feed intake and growth performance, confirming that dietary inclusion of Ch/Qu at a concentration of 1.25% did not impair animal performance. The decreased diet DM digestibility in the Ch/Qu diet may cause increased serum concentration of albumin (Ctrl: 19.30 ± 0.88; Ch/Qu: 23.05 ± 0.88) and albumin/globulin ratio (Ctrl: 0.58 ± 0.04; Ch/Qu: 0.82 ± 0.04), but decreased creatinine (Ctrl: 78.92 ± 4.18; Ch/Qu: 54.82 ± 4.18) and urea (Ctrl: 2.18 ± 0.19; Ch/Qu: 0.95 ± 0.19) compared with Ctrl. Pigs in the Ch/Qu group contained higher (p < 0.05) concentrations of fecal phenolic compounds and nitrogen than the Ctrl group, while fecal ammonia and urea were not affected by tannins. In conclusion, Ch/Qu tannin supplementation did not influence growth performance. Although lower digestibility was observed in the diet supplemented with Ch/Qu tannins, Ch/Qu supplementation did not show any adverse effect on intestinal epithelial cell viability.
Collapse
Affiliation(s)
- Valentina Caprarulo
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy; (V.C.); (C.G.); (M.D.); (S.S.); (S.R.); (C.A.S.-R.); (L.R.)
| | - Monika Hejna
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy; (V.C.); (C.G.); (M.D.); (S.S.); (S.R.); (C.A.S.-R.); (L.R.)
- Department of Animal Science, University of California, Davis, CA 95616, USA;
| | - Carlotta Giromini
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy; (V.C.); (C.G.); (M.D.); (S.S.); (S.R.); (C.A.S.-R.); (L.R.)
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA 95616, USA;
| | - Matteo Dell’Anno
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy; (V.C.); (C.G.); (M.D.); (S.S.); (S.R.); (C.A.S.-R.); (L.R.)
| | - Stefania Sotira
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy; (V.C.); (C.G.); (M.D.); (S.S.); (S.R.); (C.A.S.-R.); (L.R.)
| | - Serena Reggi
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy; (V.C.); (C.G.); (M.D.); (S.S.); (S.R.); (C.A.S.-R.); (L.R.)
| | - Carlo Angelo Sgoifo-Rossi
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy; (V.C.); (C.G.); (M.D.); (S.S.); (S.R.); (C.A.S.-R.); (L.R.)
| | - Maria Luisa Callegari
- Department of sustainable food process, Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy;
| | - Luciana Rossi
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy; (V.C.); (C.G.); (M.D.); (S.S.); (S.R.); (C.A.S.-R.); (L.R.)
| |
Collapse
|