1
|
Wang BC, Jeng ML, Tsai JF, Wu LW. Genome skimming for improved phylogenetics of Taiwanese phasmids (Insecta: Phasmatodea). Mol Phylogenet Evol 2025; 205:108292. [PMID: 39864640 DOI: 10.1016/j.ympev.2025.108292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/28/2024] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Taiwan, a relatively young continental island, harbors a high proportion of endemic phasmids, reflecting its unique evolutionary history. However, a comprehensive phylogenetic framework to clarify these phasmids is still lacking. In this study, we sequenced ten of eleven valid genera and two undescribed species of Taiwanese phasmids (total 16 species) using the genome-skimming approach. We also integrated these sequences with public databases to create two aligned datasets: one comprising 92 taxa (mitogenomes) and the other 606 taxa (seven nuclear and mitochondrial genes), enabling us to examine their phylogenetic relationships using longer sequences and more samples. Our analyses show that Taiwanese phasmids should be categorized into six families, with a revised number of genera to 13. Furthermore, four species require taxonomic treatments: namely Micadina honei (Günther, 1940) comb. nov., Micadina truncatum (Shiraki, 1935) comb. nov., Otraleus okunii (Shiraki, 1935) comb. nov., and Ramulus granulatus (Shiraki, 1935) syn. nov. now recognized as Ramulus artemis (Westwood, 1859). While some Taiwanese genera exhibit polyphyletic relationships, our findings highlight the importance of taxon sampling, particularly for type species in resolving these systematic issues. The genome-skimming approach has proven to be an excellent method for producing comparable sequence datasets, facilitating the investigation of highly diverse insects, even when samples are old, small, or have highly fragmented DNAs.
Collapse
Affiliation(s)
- Bo-Cheng Wang
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Ming-Luen Jeng
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan
| | - Jing-Fu Tsai
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan
| | - Li-Wei Wu
- Department of Life Science, Tunghai University, Taichung, Taiwan; Center for Ecology and Environment, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
2
|
Bossert S, Pauly A, Danforth BN, Orr MC, Murray EA. Lessons from assembling UCEs: A comparison of common methods and the case of Clavinomia (Halictidae). Mol Ecol Resour 2024; 24:e13925. [PMID: 38183389 DOI: 10.1111/1755-0998.13925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
Sequence data assembly is a foundational step in high-throughput sequencing, with untold consequences for downstream analyses. Despite this, few studies have interrogated the many methods for assembling phylogenomic UCE data for their comparative efficacy, or for how outputs may be impacted. We study this by comparing the most commonly used assembly methods for UCEs in the under-studied bee lineage Nomiinae and a representative sampling of relatives. Data for 63 UCE-only and 75 mixed taxa were assembled with five methods, including ABySS, HybPiper, SPAdes, Trinity and Velvet, and then benchmarked for their relative performance in terms of locus capture parameters and phylogenetic reconstruction. Unexpectedly, Trinity and Velvet trailed the other methods in terms of locus capture and DNA matrix density, whereas SPAdes performed favourably in most assessed metrics. In comparison with SPAdes, the guided-assembly approach HybPiper generally recovered the highest quality loci but in lower numbers. Based on our results, we formally move Clavinomia to Dieunomiini and render Epinomia once more a subgenus of Dieunomia. We strongly advise that future studies more closely examine the influence of assembly approach on their results, or, minimally, use better-performing assembly methods such as SPAdes or HybPiper. In this way, we can move forward with phylogenomic studies in a more standardized, comparable manner.
Collapse
Affiliation(s)
- Silas Bossert
- Department of Entomology, Washington State University, Pullman, Washington, USA
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Alain Pauly
- Royal Belgian Institute of Natural Sciences, O.D. Taxonomy and Phylogeny, Brussels, Belgium
| | - Bryan N Danforth
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Michael C Orr
- Entomologie, Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany
| | - Elizabeth A Murray
- Department of Entomology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
3
|
Forthman M, Gordon ERL, Kimball RT. Low hybridization temperatures improve target capture success of invertebrate loci: a case study of leaf-footed bugs (Hemiptera: Coreoidea). ROYAL SOCIETY OPEN SCIENCE 2023; 10:230307. [PMID: 37388308 PMCID: PMC10300676 DOI: 10.1098/rsos.230307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023]
Abstract
Target capture is widely used in phylogenomic, ecological and functional genomic studies. Bait sets that allow capture from a diversity of species can be advantageous, but high-sequence divergence from baits can limit yields. Currently, only four experimental comparisons of a critical target capture parameter, hybridization temperature, have been published. These have been in vertebrates, where bait divergences are typically low, and none include invertebrates where bait-target divergences may be higher. Most invertebrate capture studies use a fixed, high hybridization temperature to maximize the proportion of on-target data, but many report low locus recovery. Using leaf-footed bugs (Hemiptera: Coreoidea), we investigate the effect of hybridization temperature on capture success of ultraconserved elements targeted by (i) baits developed from divergent hemipteran genomes and (ii) baits developed from less divergent coreoid transcriptomes. Lower temperatures generally resulted in more contigs and improved recovery of targets despite a lower proportion of on-target reads, lower read depth and more putative paralogues. Hybridization temperatures had less of an effect when using transcriptome-derived baits, which is probably due to lower bait-target divergences and greater bait tiling density. Thus, accommodating low hybridization temperatures during target capture can provide a cost-effective, widely applicable solution to improve invertebrate locus recovery.
Collapse
Affiliation(s)
- Michael Forthman
- California State Collection of Arthropods, Plant Pest Diagnostics Branch, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832, USA
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611, USA
| | - Eric R. L. Gordon
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75N. Eagleville Road, Unit 3043, Storrs, CT 06269, USA
| | - Rebecca T. Kimball
- Department of Biology, University of Florida, 876 Newell Drive, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
Zhang J, Li Z, Lai J, Zhang Z, Zhang F. A novel probe set for the phylogenomics and evolution of RTA spiders. Cladistics 2023; 39:116-128. [PMID: 36719825 DOI: 10.1111/cla.12523] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/10/2022] [Accepted: 12/21/2022] [Indexed: 02/01/2023] Open
Abstract
Spiders are important models for evolutionary studies of web building, sexual selection and adaptive radiation. The recent development of probes for UCE (ultra-conserved element)-based phylogenomic studies has shed light on the phylogeny and evolution of spiders. However, the two available UCE probe sets for spider phylogenomics (Spider and Arachnida probe sets) have relatively low capture efficiency within spiders, and are not optimized for the retrolateral tibial apophysis (RTA) clade, a hyperdiverse lineage that is key to understanding the evolution and diversification of spiders. In this study, we sequenced 15 genomes of species in the RTA clade, and using eight reference genomes, we developed a new UCE probe set (41 845 probes targeting 3802 loci, labelled as the RTA probe set). The performance of the RTA probes in resolving the phylogeny of the RTA clade was compared with the Spider and Arachnida probes through an in-silico test on 19 genomes. We also tested the new probe set empirically on 28 spider species of major spider lineages. The results showed that the RTA probes recovered twice and four times as many loci as the other two probe sets, and the phylogeny from the RTA UCEs provided higher support for certain relationships. This newly developed UCE probe set shows higher capture efficiency empirically and is particularly advantageous for phylogenomic and evolutionary studies of RTA clade and jumping spiders.
Collapse
Affiliation(s)
- Junxia Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Zhaoyi Li
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Jiaxing Lai
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Zhisheng Zhang
- School of Life Sciences, Southwest University, Chongqing, 400700, China
| | - Feng Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| |
Collapse
|
5
|
Godeiro NN, Ding Y, Cipola NG, Jantarit S, Bellini BC, Zhang F. Phylogenomics and systematics of Entomobryoidea (Collembola): marker design, phylogeny and classification. Cladistics 2023; 39:101-115. [PMID: 36583450 DOI: 10.1111/cla.12521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/12/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022] Open
Abstract
Entomobryoidea has been the focus of phylogenetic studies in recent years owing to a divergence between morphological and genetic data. Recent phylogenies have converged on the sister relationship of Orchesellidae with the remaining Entomobryoidea, and on the non-monophyly of the traditional Paronellidae and Entomobryidae, but still lack resolution. Known molecular phylogenies of the superfamily differ greatly between mitogenomic and multilocus markers. For this reason, we designed universal single-copy orthologue (USCO) and ultraconserved element (UCE) marker sets specific for Entomobryoidea, based on 11 genome assemblies. Upon the newly designed 3406 USCOs and 4030 UCEs, we analysed 34 species covering all Entomobryoidea families and major subfamilies. New data for 26 species were mined from whole-genome sequencing. Phylogenetic inference confirmed the Orchesellidae as an independent family and the Entomobryinae remained the most puzzling taxon gathering scaled and unscaled lineages of both traditional Entomobryidae and Paronellidae. To accommodate Paronellides, Zhuqinia and related genera, Paronellidinae subfam. nov. is proposed within Entomobryidae. The sampled representatives of Paronellinae were recovered as the sister group of (Seirinae+Lepidocyrtinae), suggesting that reduction on the dorsal macrochaetotaxy and trunk sensillar pattern may have occurred independently within the Lepidocyrtinae and Paronellinae or represent their symplesiomorphy posteriorly modified in the Seirinae. The current systematics of the superfamily are revised here, with Entomobryidae now comprising six subfamilies, including all taxa with smooth dens. Our data also point out that all the main events of cladogenesis of the families and subfamilies of Entomobryoidea occurred during the Jurassic. Our genome-scale phylogenomics provides a complete, reliable example for systematics of Entomobryoidea, as well as other invertebrates in the big data era.
Collapse
Affiliation(s)
- Nerivania Nunes Godeiro
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China.,Natural History Research Center, Shanghai Natural History Museum, Shanghai Science and Technology Museum, Shanghai, 200041, China
| | - Yinhuan Ding
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China.,Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jiangsu, China
| | - Nikolas Gioia Cipola
- Laboratório de Sistemática e Ecologia de Invertebrados do Solo, Instituto Nacional de Pesquisas da Amazônia-INPA, CPEN, Manaus, Brazil
| | - Sopark Jantarit
- Excellence Center for Biodiversity of Peninsular Thailand, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Bruno Cavalcante Bellini
- Department of Botany and Zoology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Feng Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| |
Collapse
|
6
|
Bradford TM, Ruta R, Cooper SJB, Libonatti ML, Watts CHS. Evolutionary history of the Australasian Scirtinae (Scirtidae; Coleoptera) inferred from ultraconserved elements. INVERTEBR SYST 2022. [DOI: 10.1071/is21053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The Scirtidae Fleming, 1821 has been identified as one of the earliest diverging groups of Polyphagan beetles and is particularly speciose in Australia. However, very little is known about the origin of the Australian scirtids and there is a need for a robust, well-supported phylogeny to guide the genus and species descriptions and understand the relationships among taxa. In this study we carried out a phylogenetic analysis of the Australian Scirtinae Fleming, 1821, using DNA sequence data from ultraconserved elements (UCEs) and included representative taxa from New Zealand, New Caledonia, South America, South Africa and Eurasia in the analysis. Bayesian analyses of a concatenated dataset from 79 taxa recovered four major Southern Hemisphere groupings and two Australian–Eurasian groupings. The Veronatus group mainly consisted of genera from New Zealand, with the three Australian representatives only distantly related to each other. Relaxed molecular clock analyses, using the estimated age of the crown node of the Polyphaga for calibration, support a Gondwanan history for four of the groups of Australian Scirtinae and a northern origin for two groups. Our results highlight the value of commercially available UCEs for resolving the phylogenetic history of ancient groups of Coleoptera.
Collapse
|
7
|
Using ultraconserved elements to reconstruct the termite tree of life. Mol Phylogenet Evol 2022; 173:107520. [DOI: 10.1016/j.ympev.2022.107520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
|
8
|
Van Dam AR, Covas Orizondo JO, Lam AW, McKenna DD, Van Dam MH. Metagenomic clustering reveals microbial contamination as an essential consideration in ultraconserved element design for phylogenomics with insect museum specimens. Ecol Evol 2022; 12:e8625. [PMID: 35342556 PMCID: PMC8932080 DOI: 10.1002/ece3.8625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Phylogenomics via ultraconserved elements (UCEs) has led to improved phylogenetic reconstructions across the tree of life. However, inadvertently incorporating non-targeted DNA into the UCE marker design will lead to misinformation being incorporated into subsequent analyses. To date, the effectiveness of basic metagenomic filtering strategies has not been assessed in arthropods. Designing markers from museum specimens requires careful consideration of methods due to the high levels of microbial contamination typically found in such specimens. We investigate if contaminant sequences are carried forward into a UCE marker set we developed from insect museum specimens using a standard bioinformatics pipeline. We find that the methods currently employed by most researchers do not exclude contamination from the final set of targets. Lastly, we highlight several paths forward for reducing contamination in UCE marker design.
Collapse
Affiliation(s)
- Alex R. Van Dam
- Department of BiologyUniversity of Puerto Rico MayagüezMayagüezPuerto Rico
| | | | - Athena W. Lam
- Department of EntomologyCalifornia Academy of SciencesSan FranciscoCaliforniaUSA
| | - Duane D. McKenna
- Department of Biological SciencesUniversity of MemphisMemphisTennesseeUSA
- Center for Biodiversity ResearchUniversity of MemphisMemphisTennesseeUSA
| | - Matthew H. Van Dam
- Department of EntomologyCalifornia Academy of SciencesSan FranciscoCaliforniaUSA
| |
Collapse
|
9
|
Calderón-Acevedo CA, Bagley JC, Muchhala N. Genome-wide ultraconserved elements resolve phylogenetic relationships and biogeographic history among Neotropical leaf-nosed bats in the genus Anoura (Phyllostomidae). Mol Phylogenet Evol 2021; 167:107356. [PMID: 34774763 DOI: 10.1016/j.ympev.2021.107356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
AnouraGray, 1838 are Neotropical nectarivorous bats and the most speciose genus within the phyllostomid subfamily Glossophaginae. However, Anoura species limits remain debated, and phylogenetic relationships remain poorly known, because previous studies used limited Anoura taxon sampling or focused primarily on higher-level relationships. Here, we conduct the first phylogenomic study of Anoura by analyzing 2039 genome-wide ultraconserved elements (UCEs) sequenced for 42 individuals from 8 Anoura species/lineages plus two outgroups. Overall, our results based on UCEs resolved relationships in the genus and supported (1) the monophyly of small-bodied Anoura species (previously genus Lonchoglossa); (2) monotypic status of A. caudifer; and (3) nested positions of "A. carishina", A. caudifer aequatoris, and A. geoffroyi peruana specimens within A. latidens, A. caudifer and A. geoffroyi, respectively (suggesting that these taxa are not distinct species). Additionally, (4) phylogenetic networks allowing reticulate edges did not explain gene tree discordance better than the species tree (without introgression), indicating that a coalescent model accounting for discordance solely through incomplete lineage sorting fit our data well. Sensitivity analyses indicated that our species tree results were not adversely affected by varying taxon sampling across loci. Tree calibration and Bayesian coalescent analyses dated the onset of diversification within Anoura to around ∼ 6-9 million years ago in the Miocene, with extant species diverging mainly within the past ∼ 4 million years. We inferred a historical biogeographical scenario for Anoura of parapatric speciation fragmenting the range of a wide-ranging ancestral lineage centered in the Central to Northern Andes, along with Pliocene-Pleistocene dispersal or founder event speciation in Amazonia and the Brazilian Atlantic forest during the last ∼ 2.5 million years.
Collapse
Affiliation(s)
- Camilo A Calderón-Acevedo
- Department of Biology, University of Missouri-St. Louis, One University Blvd., 223 Research Bldg., St. Louis, MO 63121, USA; Department of Earth and Environmental Science, Rutgers University, 195 University Ave., Boyden Hall 433, Newark, NJ, 07102 USA.
| | - Justin C Bagley
- Department of Biology, University of Missouri-St. Louis, One University Blvd., 223 Research Bldg., St. Louis, MO 63121, USA; Department of Biology, Jacksonville State University, 242 Martin Hall, 700 Pelham Rd North, Jacksonville, AL 36265, USA; Department of Biology, Virginia Commonwealth University, 1000 W Cary St., Suite 126, Richmond, VA 23284, USA.
| | - Nathan Muchhala
- Department of Biology, University of Missouri-St. Louis, One University Blvd., 223 Research Bldg., St. Louis, MO 63121, USA.
| |
Collapse
|
10
|
Cruaud A, Delvare G, Nidelet S, Sauné L, Ratnasingham S, Chartois M, Blaimer BB, Gates M, Brady SG, Faure S, van Noort S, Rossi JP, Rasplus JY. Ultra-Conserved Elements and morphology reciprocally illuminate conflicting phylogenetic hypotheses in Chalcididae (Hymenoptera, Chalcidoidea). Cladistics 2021; 37:1-35. [PMID: 34478176 DOI: 10.1111/cla.12416] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2020] [Indexed: 11/30/2022] Open
Abstract
Recent technical advances combined with novel computational approaches have promised the acceleration of our understanding of the tree of life. However, when it comes to hyperdiverse and poorly known groups of invertebrates, studies are still scarce. As published phylogenies will be rarely challenged by future taxonomists, careful attention must be paid to potential analytical bias. We present the first molecular phylogenetic hypothesis for the family Chalcididae, a group of parasitoid wasps, with a representative sampling (144 ingroups and seven outgroups) that covers all described subfamilies and tribes, and 82% of the known genera. Analyses of 538 Ultra-Conserved Elements (UCEs) with supermatrix (RAxML and IQTREE) and gene tree reconciliation approaches (ASTRAL, ASTRID) resulted in highly supported topologies in overall agreement with morphology but reveal conflicting topologies for some of the deepest nodes. To resolve these conflicts, we explored the phylogenetic tree space with clustering and gene genealogy interrogation methods, analyzed marker and taxon properties that could bias inferences and performed a thorough morphological analysis (130 characters encoded for 40 taxa representative of the diversity). This joint analysis reveals that UCEs enable attainment of resolution between ancestry and convergent/divergent evolution when morphology is not informative enough, but also shows that a systematic exploration of bias with different analytical methods and a careful analysis of morphological features is required to prevent publication of artifactual results. We highlight a GC content bias for maximum-likelihood approaches, an artifactual mid-point rooting of the ASTRAL tree and a deleterious effect of high percentage of missing data (>85% missing UCEs) on gene tree reconciliation methods. Based on the results we propose a new classification of the family into eight subfamilies and ten tribes that lay the foundation for future studies on the evolutionary history of Chalcididae.
Collapse
Affiliation(s)
- Astrid Cruaud
- CBGP, CIRAD, INRAe, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Gérard Delvare
- CBGP, CIRAD, INRAe, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France.,UMR CBGP, CIRAD, F-34398, Montpellier, France
| | - Sabine Nidelet
- CBGP, CIRAD, INRAe, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Laure Sauné
- CBGP, CIRAD, INRAe, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Marguerite Chartois
- CBGP, CIRAD, INRAe, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | | | - Michael Gates
- USDA, ARS, SEL, c/o Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Seán G Brady
- Department of Entomology, Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Sariana Faure
- Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| | - Simon van Noort
- Research and Exhibitions Department, South African Museum, Iziko Museums of South Africa, PO Box 61, Cape Town, 8000, South Africa.,Department of Biological Sciences, University of Cape Town, Private Bag, Rondebosch, 7701, Cape Town, South Africa
| | - Jean-Pierre Rossi
- CBGP, CIRAD, INRAe, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Jean-Yves Rasplus
- CBGP, CIRAD, INRAe, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| |
Collapse
|
11
|
Beaulieu JM, O'Meara BC, Gilchrist MA. A Spatially Explicit Model of Stabilizing Selection for Improving Phylogenetic Inference. Mol Biol Evol 2021; 38:1641-1652. [PMID: 33306127 PMCID: PMC8042768 DOI: 10.1093/molbev/msaa318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Ultraconserved elements (UCEs) are stretches of hundreds of nucleotides with highly conserved cores flanked by variable regions. Although the selective forces responsible for the preservation of UCEs are unknown, they are nonetheless believed to contain phylogenetically meaningful information from deep to shallow divergence events. Phylogenetic applications of UCEs assume the same degree of rate heterogeneity applies across the entire locus, including variable flanking regions. We present a Wright–Fisher model of selection on nucleotides (SelON) which includes the effects of mutation, drift, and spatially varying, stabilizing selection for an optimal nucleotide sequence. The SelON model assumes the strength of stabilizing selection follows a position-dependent Gaussian function whose exact shape can vary between UCEs. We evaluate SelON by comparing its performance to a simpler and spatially invariant GTR+Γ model using an empirical data set of 400 vertebrate UCEs used to determine the phylogenetic position of turtles. We observe much improvement in model fit of SelON over the GTR+Γ model, and support for turtles as sister to lepidosaurs. Overall, the UCE-specific parameters SelON estimates provide a compact way of quantifying the strength and variation in selection within and across UCEs. SelON can also be extended to include more realistic mapping functions between sequence and stabilizing selection as well as allow for greater levels of rate heterogeneity. By more explicitly modeling the nature of selection on UCEs, SelON and similar approaches can be used to better understand the biological mechanisms responsible for their preservation across highly divergent taxa and long evolutionary time scales.
Collapse
Affiliation(s)
- Jeremy M Beaulieu
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Brian C O'Meara
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - Michael A Gilchrist
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
12
|
Evolution of host use in fungivorous ciid beetles (Coleoptera: Ciidae): Molecular phylogeny focusing on Japanese taxa. Mol Phylogenet Evol 2021; 162:107197. [PMID: 33962008 DOI: 10.1016/j.ympev.2021.107197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 11/22/2022]
Abstract
Consumer-resource interactions between trophic levels are ubiquitous and important factors in shaping the diversity of insects. However, dietary patterns such as host specificity and conservatism have been insufficiently examined in fungivorous insects. Here we reconstructed the evolutionary history of host use in fungivorous ciid beetles (Coleoptera: Ciidae) and tested for host conservatism. Phylogenetic relationships among 49 species from Japan were inferred by using a large sequence data set from ultraconserved elements (UCEs). In addition, sequences of three genes (COI, 28S rRNA, 18S rRNA) were analyzed to reconstruct the phylogeny for 130 OTUs from a broader range of taxa and geographic regions using the UCE tree as a backbone topology. We found that Ciini and Orophiini are not recovered as reciprocally monophyletic groups. As previously suggested, the largest genus Cis Latreille was also not monophyletic. Ancestral-state reconstruction of host use in both datasets showed that Ciidae species were clustered by host-use group across the tree. This pattern was confirmed by the significantly lower transition rate compared with expectations under the random shift hypothesis. The observed conservatism in host use implied these beetles possess unique adaptations to specific fungal taxa, just as herbivorous insects are adapted to specific plant taxa.
Collapse
|
13
|
Freitas FV, Branstetter MG, Griswold T, Almeida EAB. Partitioned Gene-Tree Analyses and Gene-Based Topology Testing Help Resolve Incongruence in a Phylogenomic Study of Host-Specialist Bees (Apidae: Eucerinae). Mol Biol Evol 2021; 38:1090-1100. [PMID: 33179746 PMCID: PMC7947843 DOI: 10.1093/molbev/msaa277] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Incongruence among phylogenetic results has become a common occurrence in analyses of genome-scale data sets. Incongruence originates from uncertainty in underlying evolutionary processes (e.g., incomplete lineage sorting) and from difficulties in determining the best analytical approaches for each situation. To overcome these difficulties, more studies are needed that identify incongruences and demonstrate practical ways to confidently resolve them. Here, we present results of a phylogenomic study based on the analysis 197 taxa and 2,526 ultraconserved element (UCE) loci. We investigate evolutionary relationships of Eucerinae, a diverse subfamily of apid bees (relatives of honey bees and bumble bees) with >1,200 species. We sampled representatives of all tribes within the group and >80% of genera, including two mysterious South American genera, Chilimalopsis and Teratognatha. Initial analysis of the UCE data revealed two conflicting hypotheses for relationships among tribes. To resolve the incongruence, we tested concatenation and species tree approaches and used a variety of additional strategies including locus filtering, partitioned gene-trees searches, and gene-based topological tests. We show that within-locus partitioning improves gene tree and subsequent species-tree estimation, and that this approach, confidently resolves the incongruence observed in our data set. After exploring our proposed analytical strategy on eucerine bees, we validated its efficacy to resolve hard phylogenetic problems by implementing it on a published UCE data set of Adephaga (Insecta: Coleoptera). Our results provide a robust phylogenetic hypothesis for Eucerinae and demonstrate a practical strategy for resolving incongruence in other phylogenomic data sets.
Collapse
Affiliation(s)
- Felipe V Freitas
- Laboratório de Biologia Comparada e Abelhas (LBCA), Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Pollinating Insects Research Unit, Utah State University, Logan, UT
| | - Michael G Branstetter
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Pollinating Insects Research Unit, Utah State University, Logan, UT
| | - Terry Griswold
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Pollinating Insects Research Unit, Utah State University, Logan, UT
| | - Eduardo A B Almeida
- Laboratório de Biologia Comparada e Abelhas (LBCA), Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
14
|
Girón JC. Status of knowledge of the broad-nosed weevils of Colombia (Coleoptera, Curculionidae, Entiminae). NEOTROPICAL BIOLOGY AND CONSERVATION 2020. [DOI: 10.3897/neotropical.15.e59713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Broad-nosed weevils in the subfamily Entiminae (Coleoptera: Curculionidae) are highly diverse, not only in terms of number of species, but also in their sizes, forms and colours. There are eight tribes, 50 genera and 224 entimine species recorded from Colombia: seven genera and 142 species are considered endemic and only a handful of species, which are recognised as pests of Citrus or potatoes, are broadly known. The large diversity of this subfamily in the country is only superficially known and even though genus level identifications are generally achievable, species identification remains quite challenging, due in part to limited access to broadly-scattered basic information. Summaries of available information and bibliographic resources for each of the tribes represented in Colombia are offered, along with a checklist of the species of Entiminae recorded from the country, obtained from literature and a pictorial key for tribal recognition. New combinations are proposed for eight species of the genus Lanterius Alonso-Zarazaga & Lyal. Information on the distribution of entimine species in Colombia is compiled for the first time, including complete references to each original description and available taxonomic revisions. About a third of the species of Entiminae remain as recorded from the country without specific locality information. In addition, genus level distributional maps are presented, generated from data obtained from four Colombian entomological collections. Lastly, some challenges for entimine identification in Colombia, which likely extend throughout the Neotropical region, are briefly discussed. This contribution aims, in part, to facilitate and promote entimine research in northern South America.
Collapse
|
15
|
Bossert S, Murray EA, Pauly A, Chernyshov K, Brady SG, Danforth BN. Gene Tree Estimation Error with Ultraconserved Elements: An Empirical Study on Pseudapis Bees. Syst Biol 2020; 70:803-821. [PMID: 33367855 DOI: 10.1093/sysbio/syaa097] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/18/2020] [Accepted: 12/02/2020] [Indexed: 11/12/2022] Open
Abstract
Summarizing individual gene trees to species phylogenies using two-step coalescent methods is now a standard strategy in the field of phylogenomics. However, practical implementations of summary methods suffer from gene tree estimation error, which is caused by various biological and analytical factors. Greatly understudied is the choice of gene tree inference method and downstream effects on species tree estimation for empirical data sets. To better understand the impact of this method choice on gene and species tree accuracy, we compare gene trees estimated through four widely used programs under different model-selection criteria: PhyloBayes, MrBayes, IQ-Tree, and RAxML. We study their performance in the phylogenomic framework of $>$800 ultraconserved elements from the bee subfamily Nomiinae (Halictidae). Our taxon sampling focuses on the genus Pseudapis, a distinct lineage with diverse morphological features, but contentious morphology-based taxonomic classifications and no molecular phylogenetic guidance. We approximate topological accuracy of gene trees by assessing their ability to recover two uncontroversial, monophyletic groups, and compare branch lengths of individual trees using the stemminess metric (the relative length of internal branches). We further examine different strategies of removing uninformative loci and the collapsing of weakly supported nodes into polytomies. We then summarize gene trees with ASTRAL and compare resulting species phylogenies, including comparisons to concatenation-based estimates. Gene trees obtained with the reversible jump model search in MrBayes were most concordant on average and all Bayesian methods yielded gene trees with better stemminess values. The only gene tree estimation approach whose ASTRAL summary trees consistently produced the most likely correct topology, however, was IQ-Tree with automated model designation (ModelFinder program). We discuss these findings and provide practical advice on gene tree estimation for summary methods. Lastly, we establish the first phylogeny-informed classification for Pseudapis s. l. and map the distribution of distinct morphological features of the group. [ASTRAL; Bees; concordance; gene tree estimation error; IQ-Tree; MrBayes, Nomiinae; PhyloBayes; RAxML; phylogenomics; stemminess].
Collapse
Affiliation(s)
- Silas Bossert
- Department of Entomology, Cornell University, Comstock Hall, Ithaca, NY 14853, USA.,Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA.,Department of Entomology, Washington State University, Pullman, Washington 99164, USA
| | - Elizabeth A Murray
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA.,Department of Entomology, Washington State University, Pullman, Washington 99164, USA
| | - Alain Pauly
- O.D. Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, 1000 Brussels, Belgium
| | - Kyrylo Chernyshov
- College of Arts and Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Seán G Brady
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Bryan N Danforth
- Department of Entomology, Cornell University, Comstock Hall, Ithaca, NY 14853, USA
| |
Collapse
|
16
|
Affiliation(s)
- Naoyuki Nakahama
- Institute of Natural and Environmental Sciences, University of Hyogo Sanda City Japan
- The Museum of Nature and Human Activities, Hyogo Sanda City Japan
| |
Collapse
|
17
|
Van Dam MH, Henderson JB, Esposito L, Trautwein M. Genomic Characterization and Curation of UCEs Improves Species Tree Reconstruction. Syst Biol 2020; 70:307-321. [PMID: 32750133 PMCID: PMC7875437 DOI: 10.1093/sysbio/syaa063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Ultraconserved genomic elements (UCEs) are generally treated as independent loci in phylogenetic analyses. The identification pipeline for UCE probes does not require prior knowledge of genetic identity, only selecting loci that are highly conserved, single copy, without repeats, and of a particular length. Here, we characterized UCEs from 11 phylogenomic studies across the animal tree of life, from birds to marine invertebrates. We found that within vertebrate lineages, UCEs are mostly intronic and intergenic, while in invertebrates, the majority are in exons. We then curated four different sets of UCE markers by genomic category from five different studies including: birds, mammals, fish, Hymenoptera (ants, wasps, and bees), and Coleoptera (beetles). Of genes captured by UCEs, we find that many are represented by two or more UCEs, corresponding to nonoverlapping segments of a single gene. We considered these UCEs to be nonindependent, merged all UCEs that belonged to a particular gene, constructed gene and species trees, and then evaluated the subsequent effect of merging cogenic UCEs on gene and species tree reconstruction. Average bootstrap support for merged UCE gene trees was significantly improved across all data sets apparently driven by the increase in loci length. Additionally, we conducted simulations and found that gene trees generated from merged UCEs were more accurate than those generated by unmerged UCEs. As loci length improves gene tree accuracy, this modest degree of UCE characterization and curation impacts downstream analyses and demonstrates the advantages of incorporating basic genomic characterizations into phylogenomic analyses. [Anchored hybrid enrichment; ants; ASTRAL; bait capture; carangimorph; Coleoptera; conserved nonexonic elements; exon capture; gene tree; Hymenoptera; mammal; phylogenomic markers; songbird; species tree; ultraconserved elements; weevils.]
Collapse
Affiliation(s)
- Matthew H Van Dam
- Entomology Department, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA 94118, USA.,Center for Comparative Genomics, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA 94118, USA
| | - James B Henderson
- Center for Comparative Genomics, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA 94118, USA
| | - Lauren Esposito
- Entomology Department, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA 94118, USA.,Center for Comparative Genomics, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA 94118, USA
| | - Michelle Trautwein
- Entomology Department, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA 94118, USA.,Center for Comparative Genomics, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Dr., San Francisco, CA 94118, USA
| |
Collapse
|
18
|
Girón JC, Chamorro ML. Variability and distribution of the golden-headed weevil Compsus auricephalus (Say) (Curculionidae: Entiminae: Eustylini). Biodivers Data J 2020; 8:e55474. [PMID: 32733144 PMCID: PMC7365837 DOI: 10.3897/bdj.8.e55474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/03/2020] [Indexed: 11/12/2022] Open
Abstract
Background The golden-headed weevil Compsus auricephalus is a native and fairly widespread species across the southern U.S.A. extending through Central America south to Panama. There are two recognised morphotypes of the species: the typical green form, with pink to cupreous head and part of the legs and the uniformly white to pale brown form. There are other Central and South American species of Compsus and related genera of similar appearance that make it challenging to provide accurate identifications of introduced species at ports of entry. New information Here, we re-describe the species, provide images of the habitus, miscellaneous morphological structures and male and female genitalia. We discuss the morphological variation of Compsus auricephalus across its distributional range, by revising and updating its distributional range, based on data from entomological collections in the U.S.A. and Canada. The revised distribution of C. auricephalus extends as far south as Zacapa in Guatemala. Records south from there correspond to a different species, with affinities to C. auricephalus that we discuss and illustrate. We also discuss morphological affinities and differences with other similar species. Furthermore, we summarise information regarding the biology, host plants and natural enemies of C. auricephalus.
Collapse
Affiliation(s)
- Jennifer C Girón
- Natural Science Research Laboratory, Museum of Texas Tech University, Lubbock, United States of America Natural Science Research Laboratory, Museum of Texas Tech University Lubbock United States of America
| | - M Lourdes Chamorro
- Systematic Entomology Laboratory, ARS, USDA, c/o National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of America Systematic Entomology Laboratory, ARS, USDA, c/o National Museum of Natural History, Smithsonian Institution Washington, DC United States of America
| |
Collapse
|
19
|
Chan KO, Hutter CR, Wood PL, Grismer LL, Brown RM. Larger, unfiltered datasets are more effective at resolving phylogenetic conflict: Introns, exons, and UCEs resolve ambiguities in Golden-backed frogs (Anura: Ranidae; genus Hylarana). Mol Phylogenet Evol 2020; 151:106899. [PMID: 32590046 DOI: 10.1016/j.ympev.2020.106899] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/18/2020] [Accepted: 06/17/2020] [Indexed: 01/01/2023]
Abstract
Using FrogCap, a recently-developed sequence-capture protocol, we obtained >12,000 highly informative exons, introns, and ultraconserved elements (UCEs), which we used to illustrate variation in evolutionary histories of these classes of markers, and to resolve long-standing systematic problems in Southeast Asian Golden-backed frogs of the genus-complex Hylarana. We also performed a comprehensive suite of analyses to assess the relative performance of different genetic markers, data filtering strategies, tree inference methods, and different measures of branch support. To reduce gene tree estimation error, we filtered the data using different thresholds of taxon completeness (missing data) and parsimony informative sites (PIS). We then estimated species trees using concatenated datasets and Maximum Likelihood (IQ-TREE) in addition to summary (ASTRAL-III), distance-based (ASTRID), and site-based (SVDQuartets) multispecies coalescent methods. Topological congruence and branch support were examined using traditional bootstrap, local posterior probabilities, gene concordance factors, quartet frequencies, and quartet scores. Our results did not yield a single concordant topology. Instead, introns, exons, and UCEs clearly possessed different phylogenetic signals, resulting in conflicting, yet strongly-supported phylogenetic estimates. However, a combined analysis comprising the most informative introns, exons, and UCEs converged on a similar topology across all analyses, with the exception of SVDQuartets. Bootstrap values were consistently high despite high levels of incongruence and high proportions of gene trees supporting conflicting topologies. Although low bootstrap values did indicate low heuristic support, high bootstrap support did not necessarily reflect congruence or support for the correct topology. This study reiterates findings of some previous studies, which demonstrated that traditional bootstrap values can produce positively misleading measures of support in large phylogenomic datasets. We also showed a remarkably strong positive relationship between branch length and topological congruence across all datasets, implying that very short internodes remain a challenge to resolve, even with orders of magnitude more data than ever before. Overall, our results demonstrate that more data from unfiltered or combined datasets produced superior results. Although data filtering reduced gene tree incongruence, decreased amounts of data also biased phylogenetic estimation. A point of diminishing returns was evident, at which higher congruence (from more stringent filtering) at the expense of amount of data led to topological error as assessed by comparison to more complete datasets across different genomic markers. Additionally, we showed that applying a parameter-rich model to a partitioned analysis of concatenated data produces better results compared to unpartitioned, or even partitioned analysis using model selection. Despite some lingering uncertainties, a combined analysis of our genomic data and sequences supplemented from GenBank (on the basis of a few gene regions) revealed highly supported novel systematic arrangements. Based on these new findings, we transfer Amnirana nicobariensis into the genus Indosylvirana; and I. milleti and Hylarana celebensis to the genus Papurana. We also provisionally place H. attigua in the genus Papurana pending verification from positively identified (voucher substantiated) samples.
Collapse
Affiliation(s)
- Kin Onn Chan
- Lee Kong Chian National History Museum, Faculty of Science, National University of Singapore, 2 Conservatory Drive, 117377, Singapore.
| | - Carl R Hutter
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA; Museum of Natural Sciences and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Perry L Wood
- Museum of Natural Sciences and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; Department of Biological Sciences & Museum of Natural History, Auburn University, Auburn, AL 36849, USA
| | - L Lee Grismer
- Herpetology Laboratory, Department of Biology, La Sierra University, 4500 Riverwalk Parkway, Riverside, CA 92505, USA
| | - Rafe M Brown
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
20
|
Rhodén C, Wahlberg E. The phylogeny of Empis and Rhamphomyia (Diptera, Empididae) investigated using UCEs including an over 150 years old museum specimen. EVOLUTIONARY SYSTEMATICS 2020. [DOI: 10.3897/evolsyst.4.49537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The genera Empis Linneus, 1758 and Rhamphomyia Meigen, 1822 (Empidoidea, Empididae Latreille, 1809) are two large genera of flies commonly named dagger flies. They are widely distributed in the world with most species described from the Palearctic Region. Empis comprises about 810 described species and Rhamphomyia comprises about 610 described species, together they represent one third of the known species diversity in Empididae. Two recent studies on the phylogeny of the two genera using Sanger sequencing on a few genetic markers, did not support monophyly of them. In this study high throughput sequencing of target enriched molecular data of ultraconserved elements or UCEs was used to investigate the phylogenetic relationships of included representatives of the genera. This method has proven useful on old and dry museum specimens with high amounts of degraded DNA, which was also tested herein. For this purpose, a commercially synthesized bait kit has previously been developed for Diptera which this study was the first one to test. Three out of nine old and dry museum specimens were successfully sequenced, one with an age of at least 154 years. Higher DNA concentration yielded a greater number of reads. Analyses conducted in the study confirmed that both Empis and Rhamphomyia are non-monophyletic.
Collapse
|
21
|
Gustafson GT, Alexander A, Sproul JS, Pflug JM, Maddison DR, Short AEZ. Ultraconserved element (UCE) probe set design: Base genome and initial design parameters critical for optimization. Ecol Evol 2019; 9:6933-6948. [PMID: 31312430 PMCID: PMC6617817 DOI: 10.1002/ece3.5260] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 01/10/2023] Open
Abstract
Targeted capture and enrichment approaches have proven effective for phylogenetic study. Ultraconserved elements (UCEs) in particular have exhibited great utility for phylogenomic analyses, with the software package phyluce being among the most utilized pipelines for UCE phylogenomics, including probe design. Despite the success of UCEs, it is becoming increasing apparent that diverse lineages require probe sets tailored to focal taxa in order to improve locus recovery. However, factors affecting probe design and methods for optimizing probe sets to focal taxa remain underexplored. Here, we use newly available beetle (Coleoptera) genomic resources to investigate factors affecting UCE probe set design using phyluce. In particular, we explore the effects of stringency during initial design steps, as well as base genome choice on resulting probe sets and locus recovery. We found that both base genome choice and initial bait design stringency parameters greatly alter the number of resultant probes included in final probe sets and strongly affect the number of loci detected and recovered during in silico testing of these probe sets. In addition, we identify attributes of base genomes that correlated with high performance in probe design. Ultimately, we provide a recommended workflow for using phyluce to design an optimized UCE probe set that will work across a targeted lineage, and use our findings to develop a new, open-source UCE probe set for beetles of the suborder Adephaga.
Collapse
Affiliation(s)
- Grey T. Gustafson
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansas
- Biodiversity InstituteUniversity of KansasLawrenceKansas
| | - Alana Alexander
- Biodiversity InstituteUniversity of KansasLawrenceKansas
- Department of Anatomy, School of Biomedical SciencesUniversity of OtagoDunedinNew Zealand
| | - John S. Sproul
- Department of Integrative BiologyOregon State UniversityCorvallisOregon
- Department of BiologyUniversity of RochesterRochesterNew York
| | - James M. Pflug
- Department of Integrative BiologyOregon State UniversityCorvallisOregon
| | - David R. Maddison
- Department of Integrative BiologyOregon State UniversityCorvallisOregon
| | - Andrew E. Z. Short
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansas
- Biodiversity InstituteUniversity of KansasLawrenceKansas
| |
Collapse
|
22
|
Van Dam MH, Trautwein M, Spicer GS, Esposito L. Advancing mite phylogenomics: Designing ultraconserved elements for Acari phylogeny. Mol Ecol Resour 2019; 19:465-475. [PMID: 30411860 DOI: 10.1111/1755-0998.12962] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 11/30/2022]
Abstract
Mites (Acari) are one of the most diverse groups of life on Earth; yet, their evolutionary relationships are poorly understood. Also, the resolution of broader arachnid phylogeny has been hindered by an underrepresentation of mite diversity in phylogenomic analyses. To further our understanding of Acari evolution, we design targeted ultraconserved genomic elements (UCEs) probes, intended for resolving the complex relationships between mite lineages and closely related arachnids. We then test our Acari UCE baits in-silico by constructing a phylogeny using 13 existing Acari genomes, as well as 6 additional taxa from a variety of genomic sources. Our Acari-specific probe kit improves the recovery of loci within mites over an existing general arachnid UCE probe set. Our initial phylogeny recovers the major mite lineages, yet finds mites to be non-monophyletic overall, with Opiliones (harvestmen) and Ricinuleidae (hooded tickspiders) rendering Parasitiformes paraphyletic.
Collapse
Affiliation(s)
- Matthew H Van Dam
- Entomology Department, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, California
| | - Michelle Trautwein
- Entomology Department, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, California
| | - Greg S Spicer
- Department of Biology, San Francisco State University, San Francisco, California
| | - Lauren Esposito
- Entomology Department, Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, California
| |
Collapse
|
23
|
Kieran TJ, Gordon ER, Forthman M, Hoey-Chamberlain R, Kimball RT, Faircloth BC, Weirauch C, Glenn TC. Insight from an ultraconserved element bait set designed for hemipteran phylogenetics integrated with genomic resources. Mol Phylogenet Evol 2019; 130:297-303. [DOI: 10.1016/j.ympev.2018.10.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/12/2018] [Accepted: 10/20/2018] [Indexed: 02/05/2023]
|
24
|
Van Dam MH, Lam AW, Sagata K, Gewa B, Laufa R, Balke M, Faircloth BC, Riedel A. Correction: Ultraconserved elements (UCEs) resolve the phylogeny of Australasian smurf-weevils. PLoS One 2018; 13:e0205049. [PMID: 30261064 PMCID: PMC6160192 DOI: 10.1371/journal.pone.0205049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0188044.].
Collapse
|
25
|
Lam A, Toussaint EFA, Kindler C, Van Dam MH, Panjaitan R, Roderick GK, Balke M. Stream flow alone does not predict population structure of diving beetles across complex tropical landscapes. Mol Ecol 2018; 27:3541-3554. [PMID: 30030868 DOI: 10.1111/mec.14807] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 01/30/2023]
Abstract
Recent theoretical advances have hypothesized a central role of habitat persistence on population genetic structure and resulting biodiversity patterns of freshwater organisms. Here, we address the hypothesis that lotic species, or lineages adapted to comparably geologically stable running water habitats (streams and their marginal habitats), have high levels of endemicity and phylogeographic structure due to the persistent nature of their habitat. We use a nextRAD DNA sequencing approach to investigate the population structure and phylogeography of a putatively widespread New Guinean species of diving beetle, Philaccolilus ameliae (Dytiscidae). We find that P. ameliae is a complex of morphologically cryptic, but geographically and genetically well-differentiated clades. The pattern of population connectivity is consistent with theoretical predictions associated with stable lotic habitats. However, in two clades, we find a more complex pattern of low population differentiation, revealing dispersal across rugged mountains and watersheds of New Guinea up to 430 km apart. These results, while surprising, were also consistent with the original formulation of the habitat template concept by Southwood, involving lineage-idiosyncratic evolution in response to abiotic factors. In our system, low population differentiation might reflect a young species in a phase of range expansion utilizing vast available habitat. We suggest that predictions of life history variation resulting from the dichotomy between lotic and lentic organisms require more attention to habitat characterization and microhabitat choice. Our results also underpin the necessity to study fine-scale processes but at a larger geographical scale, as compared to solely documenting macroecological patterns, to understand ecological drivers of regional biodiversity. Comprehensive sampling especially of tropical lineages in complex and threatened environments such as New Guinea remains a critical challenge.
Collapse
Affiliation(s)
- Athena Lam
- SNSB-Zoologische Staatssammlung München, Munich, Germany.,Department of Environmental Science, Policy and Management, University of California, Berkeley, California.,Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, California
| | | | | | - Matthew H Van Dam
- SNSB-Zoologische Staatssammlung München, Munich, Germany.,Department of Environmental Science, Policy and Management, University of California, Berkeley, California.,Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, California
| | - Rawati Panjaitan
- Department of Biology, Faculty of Sciences and Mathematics, State University of Papua (UNIPA), Manokwari, West Papua, Indonesia
| | - George K Roderick
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California
| | - Michael Balke
- SNSB-Zoologische Staatssammlung München, Munich, Germany.,GeoBioCenter, Ludwig-Maximilians-University, München, Germany
| |
Collapse
|
26
|
Herrando-Moraira S. Exploring data processing strategies in NGS target enrichment to disentangle radiations in the tribe Cardueae (Compositae). Mol Phylogenet Evol 2018; 128:69-87. [PMID: 30036700 DOI: 10.1016/j.ympev.2018.07.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 12/17/2022]
Abstract
Target enrichment is a cost-effective sequencing technique that holds promise for elucidating evolutionary relationships in fast-evolving lineages. However, potential biases and impact of bioinformatic sequence treatments in phylogenetic inference have not been thoroughly explored yet. Here, we investigate this issue with an ultimate goal to shed light into a highly diversified group of Compositae (Asteraceae) constituted by four main genera: Arctium, Cousinia, Saussurea, and Jurinea. Specifically, we compared sequence data extraction methods implemented in two easy-to-use workflows, PHYLUCE and HybPiper, and assessed the impact of two filtering practices intended to reduce phylogenetic noise. In addition, we compared two phylogenetic inference methods: (1) the concatenation approach, in which all loci were concatenated in a supermatrix; and (2) the coalescence approach, in which gene trees were produced independently and then used to construct a species tree under coalescence assumptions. Here we confirm the usefulness of the set of 1061 COS targets (a nuclear conserved orthology loci set developed for the Compositae) across a variety of taxonomic levels. Intergeneric relationships were completely resolved: there are two sister groups, Arctium-Cousinia and Saussurea-Jurinea, which are in agreement with a morphological hypothesis. Intrageneric relationships among species of Arctium, Cousinia, and Saussurea are also well defined. Conversely, conflicting species relationships remain for Jurinea. Methodological choices significantly affected phylogenies in terms of topology, branch length, and support. Across all analyses, the phylogeny obtained using HybPiper and the strictest scheme of removing fast-evolving sites was estimated as the optimal. Regarding methodological choices, we conclude that: (1) trees obtained under the coalescence approach are topologically more congruent between them than those inferred using the concatenation approach; (2) refining treatments only improved support values under the concatenation approach; and (3) branch support values are maximized when fast-evolving sites are removed in the concatenation approach, and when a higher number of loci is analyzed in the coalescence approach.
Collapse
Affiliation(s)
- Sonia Herrando-Moraira
- Botanic Institute of Barcelona (IBB, CSIC-ICUB), Pg. del Migdia, s.n., 08038 Barcelona, Spain.
| | | |
Collapse
|
27
|
Morphological and Molecular Perspectives on the Phylogeny, Evolution, and Classification of Weevils (Coleoptera: Curculionoidea): Proceedings from the 2016 International Weevil Meeting. DIVERSITY 2018. [DOI: 10.3390/d10030064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The 2016 International Weevil Meeting was held immediately after the International Congress of Entomology (ICE). It built on the topics and content of the 2016 ICE weevil symposium Phylogeny and Evolution of Weevils (Coleoptera: Curculionoidea): A Symposium in Honor of Dr. Guillermo "Willy” Kuschel. Beyond catalyzing research and collaboration, the meeting was intended to serve as a forum for identifying priorities and goals for those who study weevils. The meeting consisted of 46 invited and contributed lectures, discussion sessions and introductory remarks presented by 23 speakers along with eight contributed research posters. These were organized into three convened sessions, each lasting one day: (1) weevil morphology; (2) weevil fossils, biogeography and host/habitat associations; and (3) molecular phylogenetics and classification of weevils. Some of the topics covered included the 1K Weevils Project, major morphological character systems of adult and larval weevils, weevil morphological terminology, prospects for future morphological character discovery, phylogenetic analysis of morphological character data, the current status of weevil molecular phylogenetics and evolution, resources available for phylogenetic and comparative genomic studies of weevils, the weevil fossil record, weevil biogeography and evolution, weevil host plants, evolutionary development of the weevil rostrum, resources available for weevil identification and the current status of and challenges in weevil classification.
Collapse
|