1
|
Bass AL, DiCicco E, Kaukinen KH, Li S, Johnson R, Powell J, Isaac V, Dedeluk NB, Bateman AW, Miller KM. Infectious agent release and Pacific salmon exposure at Atlantic salmon farms revealed by environmental DNA. Sci Rep 2024; 14:31488. [PMID: 39732981 PMCID: PMC11682043 DOI: 10.1038/s41598-024-83250-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/12/2024] [Indexed: 12/30/2024] Open
Abstract
The potential risk posed by infectious agents (IAs) associated with netpen aquaculture to wild fishes is determined based on the "release" of IAs from netpens into the environment, the "exposure" of the wild fish to those released agents, and the "consequence" for wild fish experiencing infection by those agents. Information available to characterize these three factors is often lacking, and the occurrence of transmission from aquaculture to wild fish as well as potential consequences of such transmission are difficult to observe. In this study, we utilized environmental DNA (eDNA) to characterize the release of dozens of IAs from, and exposure of Pacific salmon to, Atlantic salmon aquaculture. We combined these factors with the consequence of infection, as determined by the literature, to identify IAs that may pose a risk to wild salmon exposed to aquaculture in British Columbia, Canada. Over an 18-month period, eDNA samples were collected from seven active and four inactive netpen aquaculture sites in the Broughton Archipelago, BC. A meta-analytical mean across 22 IAs showed that the odds of IA detection at active sites was 4.3 (95% confidence interval = 2.3:8.1) times higher than at inactive sites, with 11 IAs in particular demonstrating a pattern consistent with elevated release. Oncorhynchus tshawytscha was the only Pacific salmon species presenting eDNA detections more likely to occur around and within active netpens relative to inactive sites. After considering the evidence of negative consequences of infection (from previous literature) in tandem with release model results, we determined that Tenacibaculum maritimum, Tenacibaculum finnmarkense, Ichthyobodo spp., and Piscine orthoreovirus are potential risks to Pacific salmon exposed to marine netpen aquaculture. These IAs, and others demonstrating patterns consistent with release but with insufficient prior research to evaluate the consequences of infection, require further studies that identify the factors influencing the intensity of release, the spatial extent of release around netpens, and the prevalence of infection in wild fish within known distances from netpens.
Collapse
Affiliation(s)
- Arthur L Bass
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, V9T 6N7, Canada.
| | | | - Karia H Kaukinen
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, V9T 6N7, Canada
| | - Shaorong Li
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, V9T 6N7, Canada
| | - Rick Johnson
- Kwikwasut'inuxw Haxwa'mis First Nation, Alert Bay, V0N 1A0, Canada
| | - John Powell
- Mamalilikulla First Nation, Campbell River, V9W 8C9, Canada
| | - Victor Isaac
- 'Namgis First Nation, Alert Bay, V0N 1A0, Canada
| | | | | | - Kristina M Miller
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, V9T 6N7, Canada
| |
Collapse
|
2
|
Krkosek M, Bateman AW, Bass AL, Bugg WS, Connors BM, Deeg CM, Di Cicco E, Godwin S, Grimm J, Krichel L, Mordecai G, Morton A, Peacock S, Shea D, Riddell B, Miller KM. Pathogens from salmon aquaculture in relation to conservation of wild Pacific salmon in Canada. SCIENCE ADVANCES 2024; 10:eadn7118. [PMID: 39413187 PMCID: PMC11482380 DOI: 10.1126/sciadv.adn7118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/21/2024] [Indexed: 10/18/2024]
Abstract
The spread of pathogens from farmed salmon is a conservation concern for wild Pacific salmon in British Columbia (BC), Canada. Three pathogens are prevalent in farmed Atlantic salmon in BC, spill over to wild Pacific salmon, and are linked to negative impacts on wild salmon: Piscine orthoreovirus, Tenacibaculum spp., and sea lice (Lepeophtheirus salmonis). Molecular screening of infectious agents in farmed and wild salmon and environmental DNA highlights a further 4 agents that are likely elevated near salmon farms and 37 that co-occur in wild and farmed salmon. Pathogens likely affect wild salmon indirectly by mediating migration, competition, and predation. Current net-pen aquaculture practices pose these risks to numerous populations of all species of wild salmon in BC, most of which are not covered in Government of Canada science and advisory reports. Climate change, pathogen evolution, and changes to disease management and aquaculture regulations will influence future risks.
Collapse
Affiliation(s)
- Martin Krkosek
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON M5S 3B2, Canada
- Salmon Coast Field Station, General Delivery, Simoom Sound, BC V0P 1S0, Canada
| | - Andrew W. Bateman
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON M5S 3B2, Canada
- Salmon Coast Field Station, General Delivery, Simoom Sound, BC V0P 1S0, Canada
- Pacific Salmon Foundation, 1385 W 8th Ave #320, Vancouver, BC V6H 3V9, Canada
| | - Arthur L. Bass
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - William S. Bugg
- Pacific Salmon Foundation, 1385 W 8th Ave #320, Vancouver, BC V6H 3V9, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Brendan M. Connors
- Institute of Ocean Sciences, Fisheries and Oceans in Canada, 9860 W Saanich Rd, Sidney, BC V8L 5T5, Canada
| | - Christoph M. Deeg
- Pacific Salmon Foundation, 1385 W 8th Ave #320, Vancouver, BC V6H 3V9, Canada
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Emiliano Di Cicco
- Pacific Salmon Foundation, 1385 W 8th Ave #320, Vancouver, BC V6H 3V9, Canada
| | - Sean Godwin
- Salmon Coast Field Station, General Delivery, Simoom Sound, BC V0P 1S0, Canada
- Pacific Salmon Foundation, 1385 W 8th Ave #320, Vancouver, BC V6H 3V9, Canada
- Bodega Marine Laboratory, University of California, Davis, 2099 Westshore Rd, Bodega Bay, CA 94923, USA
- Department of Environmental Science and Policy, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jaime Grimm
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON M5S 3B2, Canada
| | - Leila Krichel
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON M5S 3B2, Canada
- Salmon Coast Field Station, General Delivery, Simoom Sound, BC V0P 1S0, Canada
| | - Gideon Mordecai
- Institute for the Oceans and Fisheries, University of British Columbia, AERL, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Alexandra Morton
- Salmon Coast Field Station, General Delivery, Simoom Sound, BC V0P 1S0, Canada
- Raincoast Research Society, Sointula, BC V0N 3E0, Canada
| | - Stephanie Peacock
- Salmon Coast Field Station, General Delivery, Simoom Sound, BC V0P 1S0, Canada
- Pacific Salmon Foundation, 1385 W 8th Ave #320, Vancouver, BC V6H 3V9, Canada
| | - Dylan Shea
- NORCE Norwegian Research Centre, Nygårdsgaten 112, 5008 Bergen, Norway
| | - Brian Riddell
- Pacific Salmon Foundation, 1385 W 8th Ave #320, Vancouver, BC V6H 3V9, Canada
| | - Kristina M. Miller
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
3
|
Morton A, Routledge R, Hrushowy S, Kibenge M, Kibenge F. Correction: The effect of exposure to farmed salmon on piscine orthoreovirus infection and fitness in wild Pacific salmon in British Columbia, Canada. PLoS One 2023; 18:e0282687. [PMID: 36862722 PMCID: PMC9980744 DOI: 10.1371/journal.pone.0282687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0188793.].
Collapse
|
4
|
Vallejos-Vidal E, Reyes-López FE, Sandino AM, Imarai M. Sleeping With the Enemy? The Current Knowledge of Piscine Orthoreovirus (PRV) Immune Response Elicited to Counteract Infection. Front Immunol 2022; 13:768621. [PMID: 35464421 PMCID: PMC9019227 DOI: 10.3389/fimmu.2022.768621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Piscine orthoreovirus (PRV) is a virus in the genus Orthoreovirus of the Reoviridae family, first described in 2010 associated with Heart and Skeletal Muscle Inflammation (HSMI) in Atlantic salmon (Salmo salar). Three phases of PRV infection have been described, the early entry and dissemination, the acute dissemination phase, and the persistence phase. Depending on the PRV genotype and the host, infection can last for life. Mechanisms of immune response to PRV infection have been just beginning to be studied and the knowledge in this matter is here revised. PRV induces a classical antiviral immune response in experimental infection of salmonid erythrocytes, including transcriptional upregulation of ifn-α, rig-i, mx, and pkr. In addition, transcript upregulation of tcra, tcrb, cd2, il-2, cd4-1, ifn-γ, il-12, and il-18 has been observed in Atlantic salmon infected with PRV, indicating that PRV elicited a Th1 type response probably as a host defense strategy. The high expression levels of cd8a, cd8b, and granzyme-A in PRV-infected fish suggest a positive modulatory effect on the CTL-mediated immune response. This is consistent with PRV-dependent upregulation of the genes involved in antigen presentation, including MHC class I, transporters, and proteasome components. We also review the potential immune mechanisms associated with the persistence phenotype of PRV-infected fish and its consequence for the development of a secondary infection. In this scenario, the application of a vaccination strategy is an urgent and challenging task due to the emergence of this viral infection that threatens salmon farming.
Collapse
Affiliation(s)
- Eva Vallejos-Vidal
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Felipe E Reyes-López
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana María Sandino
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Mónica Imarai
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
5
|
Mordecai GJ, Miller KM, Bass AL, Bateman AW, Teffer AK, Caleta JM, Di Cicco E, Schulze AD, Kaukinen KH, Li S, Tabata A, Jones BR, Ming TJ, Joy JB. Aquaculture mediates global transmission of a viral pathogen to wild salmon. SCIENCE ADVANCES 2021; 7:7/22/eabe2592. [PMID: 34039598 PMCID: PMC8153721 DOI: 10.1126/sciadv.abe2592] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/07/2021] [Indexed: 05/07/2023]
Abstract
Global expansion of aquaculture and agriculture facilitates disease emergence and catalyzes transmission to sympatric wildlife populations. The health of wild salmon stocks critically concerns Indigenous peoples, commercial and recreational fishers, and the general public. Despite potential impact of viral pathogens such as Piscine orthoreovirus-1 (PRV-1) on endangered wild salmon populations, their epidemiology in wild fish populations remains obscure, as does the role of aquaculture in global and local spread. Our phylogeographic analyses of PRV-1 suggest that development of Atlantic salmon aquaculture facilitated spread from Europe to the North and South East Pacific. Phylogenetic analysis and reverse transcription polymerase chain reaction surveillance further illuminate the circumstances of emergence of PRV-1 in the North East Pacific and provide strong evidence for Atlantic salmon aquaculture as a source of infection in wild Pacific salmon. PRV-1 is now an important infectious agent in critically endangered wild Pacific salmon populations, fueled by aquacultural transmission.
Collapse
Affiliation(s)
- Gideon J Mordecai
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada.
- Department of Forest and Conservation Sciences, Forest Sciences Centre, 3041 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Arthur L Bass
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Andrew W Bateman
- Pacific Salmon Foundation, 1682 W 7th Ave., Vancouver, BC V6J 4S6, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Room 3055, Toronto, ON M5S 3B2, Canada
- Salmon Coast Field Station General Delivery, Simoom Sound, BC V0P 1S0, Canada
| | - Amy K Teffer
- David H. Smith Conservation Research Fellowship, Society for Conservation Biology, Washington, DC, USA
| | - Jessica M Caleta
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Emiliano Di Cicco
- Pacific Salmon Foundation, 1682 W 7th Ave., Vancouver, BC V6J 4S6, Canada
| | - Angela D Schulze
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Karia H Kaukinen
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Shaorong Li
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Amy Tabata
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Brad R Jones
- BC Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
- Bioinformatics Programme, University of British Columbia, Vancouver, BC, Canada
| | - Tobi J Ming
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Jeffrey B Joy
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- BC Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
- Bioinformatics Programme, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Morton A, Routledge R, Hrushowy S, Kibenge M, Kibenge F. Correction: The effect of exposure to farmed salmon on piscine orthoreovirus infection and fitness in wild Pacific salmon in British Columbia, Canada. PLoS One 2021; 16:e0248912. [PMID: 33725019 PMCID: PMC7963067 DOI: 10.1371/journal.pone.0248912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
7
|
Polinski MP, Vendramin N, Cuenca A, Garver KA. Piscine orthoreovirus: Biology and distribution in farmed and wild fish. JOURNAL OF FISH DISEASES 2020; 43:1331-1352. [PMID: 32935367 DOI: 10.1111/jfd.13228] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Piscine orthoreovirus (PRV) is a common and widely distributed virus of salmonids. Since its discovery in 2010, the virus has been detected in wild and farmed stocks from North America, South America, Europe and East Asia in both fresh and salt water environments. Phylogenetic analysis suggests three distinct genogroups of PRV with generally discrete host tropisms and/or regional patterns. PRV-1 is found mainly in Atlantic (Salmo salar), Chinook (Oncorhynchus tshawytscha) and Coho (Oncorhynchus kisutch) Salmon of Europe and the Americas; PRV-2 has only been detected in Coho Salmon of Japan; and PRV-3 has been reported primarily in Rainbow Trout (Oncorhynchus mykiss) in Europe. All three genotypes can establish high-load systemic infections by targeting red blood cells for principal replication. Each genotype has also demonstrated potential to cause circulatory disease. At the same time, high-load PRV infections occur in non-diseased salmon and trout, indicating a complexity for defining PRV's role in disease aetiology. Here, we summarize the current body of knowledge regarding PRV following 10 years of study.
Collapse
Affiliation(s)
- Mark P Polinski
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Niccoló Vendramin
- National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark
| | - Argelia Cuenca
- National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark
| | - Kyle A Garver
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| |
Collapse
|
8
|
Mordecai GJ, Di Cicco E, Günther OP, Schulze AD, Kaukinen KH, Li S, Tabata A, Ming TJ, Ferguson HW, Suttle CA, Miller KM. Discovery and surveillance of viruses from salmon in British Columbia using viral immune-response biomarkers, metatranscriptomics, and high-throughput RT-PCR. Virus Evol 2020; 7:veaa069. [PMID: 33623707 PMCID: PMC7887441 DOI: 10.1093/ve/veaa069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The emergence of infectious agents poses a continual economic and environmental challenge to aquaculture production, yet the diversity, abundance, and epidemiology of aquatic viruses are poorly characterised. In this study, we applied salmon host transcriptional biomarkers to identify and select fish in a viral disease state, but only those that were negative for known viruses based on RT-PCR screening. These fish were selected for metatranscriptomic sequencing to discover potential viral pathogens of dead and dying farmed Atlantic (Salmo salar) and Chinook (Oncorhynchus tshawytscha) salmon in British Columbia (BC). We found that the application of the biomarker panel increased the probability of discovering viruses in aquaculture populations. We discovered two viruses that have not previously been characterised in Atlantic salmon farms in BC (Atlantic salmon calicivirus and Cutthroat trout virus-2), as well as partially sequenced three putative novel viruses. To determine the epidemiology of the newly discovered or emerging viruses, we conducted high-throughput reverse transcription polymerase chain reaction (RT-PCR) and screened over 9,000 farmed and wild salmon sampled over one decade. Atlantic salmon calicivirus and Cutthroat trout virus-2 were in more than half of the farmed Atlantic salmon we tested. Importantly we detected some of the viruses we first discovered in farmed Atlantic salmon in Chinook salmon, suggesting a broad host range. Finally, we applied in situ hybridisation to determine infection and found differing cell tropism for each virus tested. Our study demonstrates that continual discovery and surveillance of emerging viruses in these ecologically important salmon will be vital for management of both aquaculture and wild resources in the future.
Collapse
Affiliation(s)
- Gideon J Mordecai
- Department of Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor Vancouver, BC Canada V5Z 1M9, Canada
- Corresponding author: E-mail:
| | - Emiliano Di Cicco
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
- Pacific Salmon Foundation, 1682 W 7th Ave, Vancouver, BC V6J 4S6, Canada
| | - Oliver P Günther
- Günther Analytics, 402-5775 Hampton Place, Vancouver, BC, V6T 2G6, Canada
| | - Angela D Schulze
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Karia H Kaukinen
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Shaorong Li
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Amy Tabata
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Tobi J Ming
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Hugh W Ferguson
- School of Veterinary Medicine, St George’s University, True Blue, GrenadaWest Indies
| | - Curtis A Suttle
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
- Department of Microbiology and Immunology, University of British Columbia, 1365 - 2350 Health Sciences Mall Vancouver, British Columbia Canada V6T 1Z3
- Department of Botany, University of British Columbia, 3156-6270 University Blvd. Vancouver, BC Canada V6T 1Z4, Canada
- Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| |
Collapse
|
9
|
Siah A, Breyta RB, Warheit KI, Gagne N, Purcell MK, Morrison D, Powell JFF, Johnson SC. Genomes reveal genetic diversity of Piscine orthoreovirus in farmed and free-ranging salmonids from Canada and USA. Virus Evol 2020; 6:veaa054. [PMID: 33381304 PMCID: PMC7751156 DOI: 10.1093/ve/veaa054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Piscine orthoreovirus (PRV-1) is a segmented RNA virus, which is commonly found in salmonids in the Atlantic and Pacific Oceans. PRV-1 causes the heart and skeletal muscle inflammation disease in Atlantic salmon and is associated with several other disease conditions. Previous phylogenetic studies of genome segment 1 (S1) identified four main genogroups of PRV-1 (S1 genogroups I–IV). The goal of the present study was to use Bayesian phylogenetic inference to expand our understanding of the spatial, temporal, and host patterns of PRV-1 from the waters of the northeast Pacific. To that end, we determined the coding genome sequences of fourteen PRV-1 samples that were selected to improve our knowledge of genetic diversity across a broader temporal, geographic, and host range, including the first reported genome sequences from the northwest Atlantic (Eastern Canada). Nucleotide and amino acid sequences of the concatenated genomes and their individual segments revealed that established sequences from the northeast Pacific were monophyletic in all analyses. Bayesian inference phylogenetic trees of S1 sequences using BEAST and MrBayes also found that sequences from the northeast Pacific grouped separately from sequences from other areas. One PRV-1 sample (WCAN_BC17_AS_2017) from an escaped Atlantic salmon, collected in British Columbia but derived from Icelandic broodstock, grouped with other S1 sequences from Iceland. Our concatenated genome and S1 analysis demonstrated that PRV-1 from the northeast Pacific is genetically distinct but descended from PRV-1 from the North Atlantic. However, the analyses were inconclusive as to the timing and exact source of introduction into the northeast Pacific, either from eastern North America or from European waters of the North Atlantic. There was no evidence that PRV-1 was evolving differently between free-ranging Pacific Salmon and farmed Atlantic Salmon. The northeast Pacific PRV-1 sequences fall within genogroup II based on the classification of Garseth, Ekrem, and Biering (Garseth, A. H., Ekrem, T., and Biering, E. (2013) ‘Phylogenetic Evidence of Long Distance Dispersal and Transmission of Piscine Reovirus (PRV) between Farmed and Wild Atlantic Salmon’, PLoS One, 8: e82202.), which also includes North Atlantic sequences from Eastern Canada, Iceland, and Norway. The additional full-genome sequences herein strengthen our understanding of phylogeographical patterns related to the northeast Pacific, but a more balanced representation of full PRV-1 genomes from across its range, as well additional sequencing of archived samples, is still needed to better understand global relationships including potential transmission links among regions.
Collapse
Affiliation(s)
- A Siah
- British Columbia Centre for Aquatic Health Sciences, 871A Island Highway, V9W 2C2, Campbell River, BC, Canada
| | - R B Breyta
- School of Aquatic Fisheries Sciences, University of Washington, Western Fisheries Research Center, USGS, 6505 NE 65th Street Seattle, WA 98115-5016, USA
| | - K I Warheit
- Washington Department of Fish and Wildlife PO Box 43200, Olympia, WA 98504-3200, USA
| | - N Gagne
- Gulf Fisheries Center, Fisheries & Oceans, 343 Université Ave, Moncton, NB E1C 5K4, Canada
| | - M K Purcell
- Western Fisheries Research Center, U.S. Geological Survey, 56505 NE 65th Street Seattle, WA 98115-5016, USA
| | - D Morrison
- Mowi Canada West, Campbell River, BC, Canada
| | - J F F Powell
- British Columbia Centre for Aquatic Health Sciences, 871A Island Highway, V9W 2C2, Campbell River, BC, Canada
| | - S C Johnson
- Fisheries & Oceans Canada, Nanaimo, British Columbia, Canada
| |
Collapse
|
10
|
Purcell MK, Powers RL, Taksdal T, McKenney D, Conway CM, Elliott DG, Polinski M, Garver K, Winton J. Consequences of Piscine orthoreovirus genotype 1 (PRV-1) infections in Chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch) and rainbow trout (O. mykiss). JOURNAL OF FISH DISEASES 2020; 43:719-728. [PMID: 32476167 PMCID: PMC7384080 DOI: 10.1111/jfd.13182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 05/02/2023]
Abstract
Piscine orthoreovirus genotype 1 (PRV-1) is the causative agent of heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar L.). The virus has also been found in Pacific salmonids in western North America, raising concerns about the risk to native salmon and trout. Here, we report the results of laboratory challenges using juvenile Chinook salmon, coho salmon and rainbow trout injected with tissue homogenates from Atlantic salmon testing positive for PRV-1 or with control material. Fish were sampled at intervals to assess viral RNA transcript levels, haematocrit, erythrocytic inclusions and histopathology. While PRV-1 replicated in all species, there was negligible mortality in any group. We observed a few erythrocytic inclusion bodies in fish from the PRV-1-infected groups. At a few time points, haematocrits were significantly lower in the PRV-1-infected groups relative to controls, but in no case was anaemia noted. The most common histopathological finding was mild, focal myocarditis in both the non-infected controls and PRV-1-infected fish. All cardiac lesions were judged mild, and none were consistent with those of HSMI. Together, these results suggest all three species are susceptible to PRV-1 infection, but in no case did infection cause notable disease in these experiments.
Collapse
Affiliation(s)
| | - Rachel L. Powers
- U.S. Geological SurveyWestern Fisheries Research CenterSeattleWAUSA
| | | | - Doug McKenney
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWAUSA
| | - Carla M. Conway
- U.S. Geological SurveyWestern Fisheries Research CenterSeattleWAUSA
| | - Diane G. Elliott
- U.S. Geological SurveyWestern Fisheries Research CenterSeattleWAUSA
| | - Mark Polinski
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimoBCCanada
| | - Kyle Garver
- Pacific Biological Station, Fisheries and Oceans CanadaNanaimoBCCanada
| | - James Winton
- U.S. Geological SurveyWestern Fisheries Research CenterSeattleWAUSA
| |
Collapse
|
11
|
Jia B, Delphino MKVC, Awosile B, Hewison T, Whittaker P, Morrison D, Kamaitis M, Siah A, Milligan B, Johnson SC, Gardner IA. Review of infectious agent occurrence in wild salmonids in British Columbia, Canada. JOURNAL OF FISH DISEASES 2020; 43:153-175. [PMID: 31742733 DOI: 10.1111/jfd.13084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Wild Pacific salmonids (WPS) are economically and culturally important to the Pacific North region. Most recently, some populations of WPS have been in decline. Of hypothesized factors contributing to the decline, infectious agents have been postulated to increase the risk of mortality in Pacific salmon. We present a literature review of both published journal and unpublished data to describe the distribution of infectious agents reported in wild Pacific salmonid populations in British Columbia (BC), Canada. We targeted 10 infectious agents, considered to potentially cause severe economic losses in Atlantic salmon or be of conservation concern for wild salmon in BC. The findings indicated a low frequency of infectious hematopoietic necrosis virus, piscine orthoreovirus, viral haemorrhagic septicaemia virus, Aeromonas salmonicida, Renibacterium salmoninarum, Piscirickettsia salmonis and other Rickettsia-like organisms, Yersinia ruckeri, Tenacibaculum maritimum and Moritella viscosa. No positive results were reported for infestations with Paramoeba perurans in peer-reviewed papers and the DFO Fish Pathology Program database. This review synthesizes existing information, as well as gaps therein, that can support the design and implementation of a long-term surveillance programme of infectious agents in wild salmonids in BC.
Collapse
Affiliation(s)
- Beibei Jia
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Marina K V C Delphino
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Babafela Awosile
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Tim Hewison
- Grieg Seafood BC Ltd., Campbell River, BC, Canada
| | | | | | | | - Ahmed Siah
- British Columbia Centre for Aquatic Health Sciences, Campbell River, BC, Canada
| | | | - Stewart C Johnson
- Pacific Biological Station, Fisheries and Oceans Canada (DFO), Nanaimo, BC, Canada
| | - Ian A Gardner
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| |
Collapse
|
12
|
Kibenge MJT, Wang Y, Gayeski N, Morton A, Beardslee K, McMillan B, Kibenge FSB. Piscine orthoreovirus sequences in escaped farmed Atlantic salmon in Washington and British Columbia. Virol J 2019; 16:41. [PMID: 30940162 PMCID: PMC6444584 DOI: 10.1186/s12985-019-1148-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/19/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Piscine orthoreovirus (PRV) is an emergent virus in salmon aquaculture belonging to the family Reoviridae. PRV is associated with a growing list of pathological conditions including heart and skeletal inflammation (HSMI) of farmed Atlantic salmon. Despite widespread PRV infection in commercially farmed Atlantic salmon, information on PRV prevalence and on the genetic sequence variation of PRV in Atlantic salmon on the north Pacific Coast is limited. METHODS Feral Atlantic salmon caught in Washington State and British Columbia following a large containment failure at a farm in northern Puget Sound were sampled. Fish tissues were tested for PRV by RT-qPCR assay for segment L1 and conventional RT-PCR for PRV segment S1. The PCR products were sequenced and their relationship to PRV strains in GenBank was determined using phylogenetic analysis and nucleotide and amino acid homology comparisons. RESULTS Following the escape of 253,000 Atlantic salmon from a salmon farm in Washington State, USA, 72/73 tissue samples from 27 Atlantic salmon captured shortly after the escape tested PRV-positive. We estimate PRV-prevalence in the source farm population at 95% or greater. The PRV found in the fish was identified as PRV sub-genotype Ia and very similar to PRV from farmed Atlantic salmon in Iceland. This correlates with the source of the fish in the farm. Eggs of infected fish were positive for PRV indicating the possibility of vertical transfer and spread with fish egg transports. CONCLUSIONS PRV prevalence was close to 100% in farmed Atlantic salmon that were caught in Washington State and British Columbia following a large containment failure at a farm in northern Puget Sound. The PRV strains present in the escaped Atlantic salmon were very similar to the PRV strain reported in farmed Atlantic salmon from the source hatchery in Iceland that was used to stock commercial aquaculture sites in Washington State. This study emphasizes the need to screen Atlantic salmon broodstock for PRV, particularly where used to supply eggs to the global Atlantic salmon farming industry thereby improving our understanding of PRV epidemiology.
Collapse
Affiliation(s)
- Molly J. T. Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave, Charlottetown, P.E.I C1A 4P3 Canada
| | - Yingwei Wang
- School of Mathematical and Computational Sciences, University of Prince Edward Island, 550 University Ave, Charlottetown, P.E.I C1A 4P3 Canada
| | - Nick Gayeski
- Wild Fish Conservancy, PO Box 402, 15629 Main St. NE, Duvall, WA 98019 USA
| | - Alexandra Morton
- Raincoast Research Society, Box 399, Sointula, BC V0N 3E0 Canada
| | - Kurt Beardslee
- Wild Fish Conservancy, PO Box 402, 15629 Main St. NE, Duvall, WA 98019 USA
| | - Bill McMillan
- Wild Fish Conservancy, PO Box 402, 15629 Main St. NE, Duvall, WA 98019 USA
| | - Frederick S. B. Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave, Charlottetown, P.E.I C1A 4P3 Canada
| |
Collapse
|
13
|
Thakur KK, Vanderstichel R, Kaukinen K, Nekouei O, Laurin E, Miller KM. Infectious agent detections in archived Sockeye salmon (Oncorhynchus nerka) samples from British Columbia, Canada (1985-94). JOURNAL OF FISH DISEASES 2019; 42:533-547. [PMID: 30742305 DOI: 10.1111/jfd.12951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 05/06/2023]
Abstract
In response to concerns that novel infectious agents were introduced through the movement of eggs as Atlantic salmon aquaculture developed in British Columbia (BC), Canada, we estimated the prevalence of infectious agents in archived return-migrating Sockeye salmon, from before and during aquaculture expansion in BC (1985-94). Of 45 infectious agents assessed through molecular assays in 652 samples, 23 (7 bacterial, 2 viral and 14 parasitic) were detected in liver tissue from six regions in BC. Prevalence ranged from 0.005 to 0.83 and varied significantly by region and year. Agent diversity ranged from 0 to 12 per fish (median 4), with the lowest diversity observed in fish from the Trans-Boundary and Central Coast regions. Agents known to be endemic in Sockeye salmon in BC, including Flavobacterium psychrophilum, Infectious haematopoietic necrosis virus, Ceratonova shasta and Parvicapsula minibicornis, were commonly observed. Others, such as Kudoa thyrsites and Piscirikettsia salmonis, were also detected. Surprisingly, infectious agents described only recently in BC salmon, Ca. Branchiomonas cysticola, Parvicapsula pseudobranchicola and Paranucleospora theridion, were also detected, indicating their potential presence prior to the expansion of the aquaculture industry. In general, our data suggest that agent distributions may not have substantially changed because of the salmon aquaculture industry.
Collapse
Affiliation(s)
- Krishna K Thakur
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Raphaël Vanderstichel
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Karia Kaukinen
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | - Omid Nekouei
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Emilie Laurin
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| |
Collapse
|
14
|
Zhang Y, Polinski MP, Morrison PR, Brauner CJ, Farrell AP, Garver KA. High-Load Reovirus Infections Do Not Imply Physiological Impairment in Salmon. Front Physiol 2019; 10:114. [PMID: 30930782 PMCID: PMC6425399 DOI: 10.3389/fphys.2019.00114] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/30/2019] [Indexed: 12/14/2022] Open
Abstract
The recent ubiquitous detection of PRV among salmonids has sparked international concern about the cardiorespiratory performance of infected wild and farmed salmon. Piscine orthoreovirus (PRV) has been shown to create substantial viremia in salmon by targeting erythrocytes for principle replication. In some instances, infections develop into heart and skeletal muscle inflammation (HSMI) or other pathological conditions affecting the respiratory system. Critical to assessing the seriousness of PRV infections are controlled infection studies that measure physiological impairment to critical life support systems. Respiratory performance is such a system and here multiple indices were measured to test the hypothesis that a low-virulence strain of PRV from Pacific Canada compromises the cardiorespiratory capabilities of Atlantic salmon. Contrary to this hypothesis, the oxygen affinity and carrying capacity of erythrocytes were unaffected by PRV despite the presence of severe viremia, minor heart pathology and transient cellular activation of antiviral response pathways. Similarly, PRV-infected fish had neither sustained nor appreciable differences in respiratory capabilities compared with control fish. The lack of functional harm to salmon infected with PRV in this instance highlights that, in an era of unprecedented virus discovery, detection of viral infection does not necessarily imply bodily harm and that viral load is not always a suitable predictor of disease within a host organism.
Collapse
Affiliation(s)
- Yangfan Zhang
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Mark P Polinski
- Aquatic Diagnostics and Genomics Division, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Phillip R Morrison
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada
| | - Colin J Brauner
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada
| | - Anthony P Farrell
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada.,Department of Zoology, The University of British Columbia, Vancouver, BC, Canada
| | - Kyle A Garver
- Aquatic Diagnostics and Genomics Division, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| |
Collapse
|
15
|
Adamek M, Hellmann J, Flamm A, Teitge F, Vendramin N, Fey D, Riße K, Blakey F, Rimstad E, Steinhagen D. Detection of piscine orthoreoviruses (PRV-1 and PRV-3) in Atlantic salmon and rainbow trout farmed in Germany. Transbound Emerg Dis 2018; 66:14-21. [PMID: 30230250 DOI: 10.1111/tbed.13018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 08/06/2018] [Accepted: 09/06/2018] [Indexed: 01/10/2023]
Abstract
Piscine orthoreoviruses (PRVs) are emerging pathogens causing circulatory disorders in salmonids. PRV-1 is the etiological cause of heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar), characterized by epicarditis, inflammation and necrosis of the myocardium, myositis and necrosis of red skeletal muscle. In 2017, two German breeding farms for Atlantic salmon and rainbow trout (Oncorhynchus mykiss) experienced disease outbreaks with mortalities of 10% and 20% respectively. The main clinical signs were exhaustion and lethargic behaviour. During examinations, PRV-1 in salmon and PRV-3 in trout were detected for the first time in Germany. Further analyses also indicated the presence of Aeromonas salmonicida in internal tissues of both species. While PRV-1 could be putatively linked with the disease in Atlantic salmon, most of the rainbow trout suffered from an infection with A. salmonicida and not with PRV-3. Interestingly, the sequence analysis suggests that the German PRV-3 isolate is more similar to a Chilean PRV-3 isolate from Coho salmon (Oncorhynchus kisutch) than to PRV-3 from rainbow trout from Norway. This indicates a wide geographic distribution of this virus or dispersal by global trade. These findings indicate that infections with PRVs should be considered when investigating disease outbreaks in salmonids.
Collapse
Affiliation(s)
- Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, Hannover, Germany
| | - John Hellmann
- Department Fisheries Ecology, North Rhine Westphalian State Agency for Nature, Environment and Consumer Protection, Albaum, Germany
| | - Agnes Flamm
- Hesse State Laboratory, Control of Fish Diseases, Giessen, Germany
| | - Felix Teitge
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, Hannover, Germany
| | - Niccolò Vendramin
- Fish Diseases, Division for Diagnostics & Scientific Advice, National Veterinary Institute, Technical University of Denmark, Lyngby, Denmark
| | - Daniel Fey
- Department Fisheries Ecology, North Rhine Westphalian State Agency for Nature, Environment and Consumer Protection, Albaum, Germany
| | - Karin Riße
- Hesse State Laboratory, Control of Fish Diseases, Giessen, Germany
| | - Franziska Blakey
- Hesse State Laboratory, Control of Fish Diseases, Giessen, Germany
| | - Espen Rimstad
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
16
|
Di Cicco E, Ferguson HW, Kaukinen KH, Schulze AD, Li S, Tabata A, Günther OP, Mordecai G, Suttle CA, Miller KM. The same strain of Piscine orthoreovirus (PRV-1) is involved in the development of different, but related, diseases in Atlantic and Pacific Salmon in British Columbia. Facets (Ott) 2018. [DOI: 10.1139/facets-2018-0008] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Piscine orthoreovirus Strain PRV-1 is the causative agent of heart and skeletal muscle inflammation (HSMI) in Atlantic salmon ( Salmo salar Linnaeus, 1758). Given its high prevalence in net pen salmon, debate has arisen on whether PRV poses a risk to migratory salmon, especially in British Columbia (BC) where commercially important wild Pacific salmon are in decline. Various strains of PRV have been associated with diseases in Pacific salmon, including erythrocytic inclusion body syndrome (EIBS), HSMI-like disease, and jaundice/anemia in Japan, Norway, Chile and Canada. We examined the developmental pathway of HSMI and jaundice/anemia associated with PRV-1 in farmed Atlantic and chinook ( Oncorhynchus tshawytscha (Walbaum, 1792)) salmon in BC, respectively. In situ hybridization localized PRV-1 within developing lesions in both diseases. The two diseases showed dissimilar pathological pathways, with inflammatory lesions in heart and skeletal muscle in Atlantic salmon and degenerative-necrotic lesions in kidney and liver in chinook salmon, plausibly explained by differences in PRV load tolerance in red blood cells. Viral genome sequencing revealed no consistent differences in PRV-1 variants intimately involved in the development of both diseases suggesting that migratory chinook salmon may be at more than a minimal risk of disease from exposure to the high levels of PRV occurring in salmon farms.
Collapse
Affiliation(s)
- Emiliano Di Cicco
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
- Pacific Salmon Foundation, Vancouver, BC V6J 4S6, Canada
| | - Hugh W. Ferguson
- School of Veterinary Medicine, St. George’s University, True Blue, Grenada, West Indies
| | - Karia H. Kaukinen
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | - Angela D. Schulze
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | - Shaorong Li
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | - Amy Tabata
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | | | - Gideon Mordecai
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Curtis A. Suttle
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Microbiology and Immunology, Department of Botany, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kristina M. Miller
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| |
Collapse
|