1
|
Abdelmoneim MS, Hafez EE, Dawood MFA, Hammad SF, Ghazy MA. Toxicity of bisphenol A and p-nitrophenol on tomato plants: Morpho-physiological, ionomic profile, and antioxidants/defense-related gene expression studies. Biomol Concepts 2024; 15:bmc-2022-0049. [PMID: 38924751 DOI: 10.1515/bmc-2022-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Bisphenol A (BPA) and p-nitrophenol (PNP) are emerging contaminants of soils due to their wide presence in agricultural and industrial products. Thus, the present study aimed to integrate morpho-physiological, ionic homeostasis, and defense- and antioxidant-related genes in the response of tomato plants to BPA or PNP stress, an area of research that has been scarcely studied. In this work, increasing the levels of BPA and PNP in the soil intensified their drastic effects on the biomass and photosynthetic pigments of tomato plants. Moreover, BPA and PNP induced osmotic stress on tomato plants by reducing soluble sugars and soluble proteins relative to control. The soil contamination with BPA and PNP treatments caused a decline in the levels of macro- and micro-elements in the foliar tissues of tomatoes while simultaneously increasing the contents of non-essential micronutrients. The Fourier transform infrared analysis of the active components in tomato leaves revealed that BPA influenced the presence of certain functional groups, resulting in the absence of some functional groups, while on PNP treatment, there was a shift observed in certain functional groups compared to the control. At the molecular level, BPA and PNP induced an increase in the gene expression of polyphenol oxidase and peroxidase, with the exception of POD gene expression under BPA stress. The expression of the thaumatin-like protein gene increased at the highest level of PNP and a moderate level of BPA without any significant effect of both pollutants on the expression of the tubulin (TUB) gene. The comprehensive analysis of biochemical responses in tomato plants subjected to BPA and PNP stress illustrates valuable insights into the mechanisms underlying tolerance to these pollutants.
Collapse
Affiliation(s)
- Mahmoud S Abdelmoneim
- Biotechnology program, Basic and Applied Science Institute, Egypt-Japan University of Science and Technology (E-JUST), 21934, New Borg El-Arab City, Alexandrina, Egypt
- Botany and Microbiology Department, Faculty of Science, Assiut University, 71515, Assiut, Egypt
| | - Elsayed E Hafez
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), 21934, New Borg El-Arab city, Alexandrina, Egypt
| | - Mona F A Dawood
- Botany and Microbiology Department, Faculty of Science, Assiut University, 71515, Assiut, Egypt
| | - Sherif F Hammad
- Pharm D program, Egypt-Japan University of Science and Technology (E-JUST), 21934, New Borg El-Arab City, Alexandrina, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, 11795, Ain Helwan, Cairo, Egypt
| | - Mohamed A Ghazy
- Biotechnology program, Basic and Applied Science Institute, Egypt-Japan University of Science and Technology (E-JUST), 21934, New Borg El-Arab City, Alexandrina, Egypt
- Biochemistry Department, Faculty of Science, Ain Shams University, 11566, Cairo, Egypt
| |
Collapse
|
2
|
Comparative Study of Image Quality in Time-Correlated Single-Photon Counting Computed Tomography. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3017702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Kumar S, Kumar S, Mohapatra T. Interaction Between Macro- and Micro-Nutrients in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:665583. [PMID: 34040623 PMCID: PMC8141648 DOI: 10.3389/fpls.2021.665583] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/06/2021] [Indexed: 05/03/2023]
Abstract
Nitrogen (N), phosphorus (P), sulfur (S), zinc (Zn), and iron (Fe) are some of the vital nutrients required for optimum growth, development, and productivity of plants. The deficiency of any of these nutrients may lead to defects in plant growth and decreased productivity. Plant responses to the deficiency of N, P, S, Fe, or Zn have been studied mainly as a separate event, and only a few reports discuss the molecular basis of biological interaction among the nutrients. Macro-nutrients like N, P, and/or S not only show the interacting pathways for each other but also affect micro-nutrient pathways. Limited reports are available on the investigation of two-by-two or multi-level nutrient interactions in plants. Such studies on the nutrient interaction pathways suggest that an MYB-like transcription factor, phosphate starvation response 1 (PHR1), acts as a master regulator of N, P, S, Fe, and Zn homeostasis. Similarly, light-responsive transcription factors were identified to be involved in modulating nutrient responses in Arabidopsis. This review focuses on the recent advances in our understanding of how plants coordinate the acquisition, transport, signaling, and interacting pathways for N, P, S, Fe, and Zn nutrition at the molecular level. Identification of the important candidate genes for interactions between N, P, S, Fe, and/or Zn metabolic pathways might be useful for the breeders to improve nutrient use efficiency and yield/quality of crop plants. Integrated studies on pathways interactions/cross-talks between macro- and micro-nutrients in the agronomically important crop plants would be essential for sustainable agriculture around the globe, particularly under the changing climatic conditions.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Suresh Kumar, ; , orcid.org/0000-0002-7127-3079
| | | | | |
Collapse
|
4
|
Min J, Pua R, Kim C, Park M, Lee J, Ye SJ, Cho S. A weighted rebinned backprojection-filtration algorithm from partially beam-blocked data for a single-scan cone-beam CT with hybrid type scatter correction. Med Phys 2019; 46:1182-1197. [PMID: 30592313 DOI: 10.1002/mp.13365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Scatter contamination constitutes a dominant source of degradation of image quality in cone-beam computed tomography (CBCT). We have recently developed an analytic image reconstruction method with a scatter correction capability from the partially blocked cone-beam data out of a single scan. Despite its easy implementation and its computational efficiency, the developed method may result in additional image artifacts for a large cone angle geometry due to data inconsistency. To improve the image quality at a large cone angle, we propose a weighted rebinned backprojection-filtration (wrBPF) algorithm in conjunction with a hybrid type scatter correction approach. METHODS The proposed method uses a beam-blocker array that provides partial data for scatter correction and image reconstruction and that only blocks the beam within a limited cone angle. This design allows a chance to keep the image quality at larger cone angles by use of data redundancy since the projection data corresponding to larger cone angles are not blocked. However, the scatter correction would not be straightforward. In order to correct for the scatter in the projections at larger cone angles, we propose a novel scatter correction method combining a measurement-based and a convolution-based method. We first estimated the scatter signal using a measurement-based method in the partially beam-blocked regions, and then optimized the fitting parameters of a convolution-kernel that can be used for scatter correction in the projections at larger cone angles. For image reconstruction, we developed a wrBPF with butterfly filtering. We have conducted an experimental study to validate the proposed algorithm for image reconstruction and scatter correction. RESULTS The experimental results revealed that the developed reconstruction method makes full use of the benefits of partial beam-blocking for scatter correction and image reconstruction and at the same time enhances image quality at larger cone angles by use of an optimized convolution-based scatter correction. CONCLUSIONS The proposed method that enjoys the advantages of both measurement-based and convolution-based methods for scatter correction has successfully demonstrated its capability of reconstructing accurate images out of a single scan in circular CBCT.
Collapse
Affiliation(s)
- Jonghwan Min
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology(KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Rizza Pua
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology(KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Changhwan Kim
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology(KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Miran Park
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology(KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jongha Lee
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology(KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Medical Imaging R&D Group, Health&Medical Equipment Business, Samsung Electronics, Suwon, 16677, Republic of Korea
| | - Sung-Joon Ye
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, 16229, Republic of Korea
| | - Seungryong Cho
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology(KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,KAIST Institutes for Health Science and Technology & for IT Convergence, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
5
|
Zhao C, Zhong Y, Duan X, Zhang Y, Huang X, Wang J, Jin M. 4D cone-beam computed tomography (CBCT) using a moving blocker for simultaneous radiation dose reduction and scatter correction. Phys Med Biol 2018; 63:115007. [PMID: 29722297 PMCID: PMC5995796 DOI: 10.1088/1361-6560/aac229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Four-dimensional (4D) x-ray cone-beam computed tomography (CBCT) is important for a precise radiation therapy for lung cancer. Due to the repeated use and 4D acquisition over a course of radiotherapy, the radiation dose becomes a concern. Meanwhile, the scatter contamination in CBCT deteriorates image quality for treatment tasks. In this work, we propose the use of a moving blocker (MB) during the 4D CBCT acquisition ('4D MB') and to combine motion-compensated reconstruction to address these two issues simultaneously. In 4D MB CBCT, the moving blocker reduces the x-ray flux passing through the patient and collects the scatter information in the blocked region at the same time. The scatter signal is estimated from the blocked region for correction. Even though the number of projection views and projection data in each view are not complete for conventional reconstruction, 4D reconstruction with a total-variation (TV) constraint and a motion-compensated temporal constraint can utilize both spatial gradient sparsity and temporal correlations among different phases to overcome the missing data problem. The feasibility simulation studies using the 4D NCAT phantom showed that 4D MB with motion-compensated reconstruction with 1/3 imaging dose reduction could produce satisfactory images and achieve 37% improvement on structural similarity (SSIM) index and 55% improvement on root mean square error (RMSE), compared to 4D reconstruction at the regular imaging dose without scatter correction. For the same 4D MB data, 4D reconstruction outperformed 3D TV reconstruction by 28% on SSIM and 34% on RMSE. A study of synthetic patient data also demonstrated the potential of 4D MB to reduce the radiation dose by 1/3 without compromising the image quality. This work paves the way for more comprehensive studies to investigate the dose reduction limit offered by this novel 4D MB method using physical phantom experiments and real patient data based on clinical relevant metrics.
Collapse
Affiliation(s)
- Cong Zhao
- Dept. of Physics, University of Texas at Arlington, Arlington, TX 76019
| | - Yuncheng Zhong
- Dept. of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Xinhui Duan
- Dept. of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - You Zhang
- Dept. of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Xiaokun Huang
- Dept. of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jing Wang
- Dept. of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Mingwu Jin
- Dept. of Physics, University of Texas at Arlington, Arlington, TX 76019
| |
Collapse
|