1
|
Wang S, Song M, Wang C, Dou X, Wang X, Li X. Mechanisms underlying soil microbial regulation of available phosphorus in a temperate forest exposed to long-term nitrogen addition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166403. [PMID: 37597553 DOI: 10.1016/j.scitotenv.2023.166403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
With exogenous nitrogen (N) input into soil, phosphorus (P) could become a limiting nutrient for plant growth. Soil microbes play a crucial role in regulating soil P cycle and availability. P functional genes, further, regulate soil P availability. It is unclear how the addition of N in different chemical forms and rates influences the composition of soil microbes associated with P cycling and the abundance of P functional genes. A long-term experiment of N addition in three chemical forms with two levels in a temperate forest was performed to reveal the influences and the underlying mechanisms. We found that both chemical N forms and N rates selected for different P-solubilizing microbes. Ammonia form-N increased the abundances of P-solubilizing bacteria at low and high rates. Continuous N deposition included a significant decrease in soil pH and inhibited the viability and activity of bacterial communities in soil, especially the P-solubilizing bacteria. Thus, it restricted inorganic P mobilization and led to a decrease in soil available P. In addition, ammonium-N enhanced the relative abundance of most of the functional genes related to organic P mineralization, while nitrate-N presented a decrease trend. Ammonium-N significantly decreased most of the functional genes relevant to P transportation, whereas the other chemical N forms did not change them. Although N-addition consistently decreased the functional genes relevant to inorganic P solubilization, two of them (ppx and ppa) were the exceptions and showed an increase trend. N addition also decreased soil pH and altered soil properties, and indirectly contributed to the changes in community composition of P-solubilizing microbes and the abundances of multiple P functional genes. Our results provide a mechanistic explanation for the regulation of microbes on N-induced available P limitation via tuning the compositions of P-solubilizing microbes and the abundances of multiple P functional genes.
Collapse
Affiliation(s)
- Shiqi Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Minghua Song
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, A11, Datun Road, Chaoyang District, Beijing 100101, China
| | - Chunmei Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Xiaomin Dou
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xinqing Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xingyue Li
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
2
|
Xiao S, Wang C, Yu K, Liu G, Wu S, Wang J, Niu S, Zou J, Liu S. Enhanced CO 2 uptake is marginally offset by altered fluxes of non-CO 2 greenhouse gases in global forests and grasslands under N deposition. GLOBAL CHANGE BIOLOGY 2023; 29:5829-5849. [PMID: 37485988 DOI: 10.1111/gcb.16869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023]
Abstract
Despite the increasing impact of atmospheric nitrogen (N) deposition on terrestrial greenhouse gas (GHG) budget, through driving both the net atmospheric CO2 exchange and the emission or uptake of non-CO2 GHGs (CH4 and N2 O), few studies have assessed the climatic impact of forests and grasslands under N deposition globally based on different bottom-up approaches. Here, we quantify the effects of N deposition on biomass C increment, soil organic C (SOC), CH4 and N2 O fluxes and, ultimately, the net ecosystem GHG balance of forests and grasslands using a global comprehensive dataset. We showed that N addition significantly increased plant C uptake (net primary production) in forests and grasslands, to a larger extent for the aboveground C (aboveground net primary production), whereas it only caused a small or insignificant enhancement of SOC pool in both upland systems. Nitrogen addition had no significant effect on soil heterotrophic respiration (RH ) in both forests and grasslands, while a significant N-induced increase in soil CO2 fluxes (RS , soil respiration) was observed in grasslands. Nitrogen addition significantly stimulated soil N2 O fluxes in forests (76%), to a larger extent in grasslands (87%), but showed a consistent trend to decrease soil uptake of CH4 , suggesting a declined sink capacity of forests and grasslands for atmospheric CH4 under N enrichment. Overall, the net GHG balance estimated by the net ecosystem production-based method (forest, 1.28 Pg CO2 -eq year-1 vs. grassland, 0.58 Pg CO2 -eq year-1 ) was greater than those estimated using the SOC-based method (forest, 0.32 Pg CO2 -eq year-1 vs. grassland, 0.18 Pg CO2 -eq year-1 ) caused by N addition. Our findings revealed that the enhanced soil C sequestration by N addition in global forests and grasslands could be only marginally offset (1.5%-4.8%) by the combined effects of its stimulation of N2 O emissions together with the reduced soil uptake of CH4 .
Collapse
Affiliation(s)
- Shuqi Xiao
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
| | - Chao Wang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
| | - Kai Yu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
| | - Genyuan Liu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
| | - Shuang Wu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jinyang Wang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuli Niu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Jianwen Zou
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shuwei Liu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Responses of Soil N2O Emission and CH4 Uptake to N Input in Chinese Forests across Climatic Zones: A Meta-Study. ATMOSPHERE 2022. [DOI: 10.3390/atmos13071145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Enhanced nitrogen (N) deposition has shown significant impacts on forest greenhouse gas emissions. Previous studies have suggested that Chinese forests may exhibit stronger N2O sources and dampened CH4 sinks under aggravated N saturation. To gain a common understanding of the N effects on forest N2O and CH4 fluxes, many have conducted global-scale meta-analyses. However, such effects have not been quantified particularly for China. Here, we present a meta-study of the N input effects on soil N2O emission and CH4 uptake in Chinese forests across climatic zones. The results suggest that enhanced N inputs significantly increase soil N2O emission (+115.8%) and decrease CH4 uptake (−13.4%). The mean effects were stronger for N2O emission and weaker for CH4 uptake in China compared with other global sites, despite being statistically insignificant. Subtropical forest soils have the highest emission factor (2.5%) and may respond rapidly to N inputs; in relatively N-limited temperate forests, N2O and CH4 fluxes are less sensitive to N inputs. Factors including forest type, N form and rate, as well as soil pH, may also govern the responses of N2O and CH4 fluxes. Our findings pinpoint the important role of Southern Chinese forests in the regional N2O and CH4 budgets.
Collapse
|
4
|
High Level of Ammonium Nitrogen Increases Net Ecosystem Productivity in a Quercus liaotungensis Forest in Northern China. ATMOSPHERE 2022. [DOI: 10.3390/atmos13060889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Forest ecosystems are vital to the terrestrial ecosystem’s carbon (C) cycle. The effects of nitrogen (N) addition on C sequestration in forest ecosystems are critical for better understanding C dynamics when facing an increase in N availability. We conducted a six-year field experiment to examine the effects of N addition on C sequestration and net ecosystem productivity (NEP) in a Quercus liaotungensis forest in northern China. N addition resulted in a significant increase in biomass C storage (17.54–48.62%) and changed the distribution patterns of above and belowground biomass C storage, resulting in a 9.64 to 23.23% reduction in the proportion of belowground biomass C compared with the control. The annual average heterotrophic respiration was significantly increased by the additional N (by 0.06–0.94 Mg C ha−1 yr1). In comparison with the control, the C sequestration efficiency driven by N addition ranged from 7.12 to 33.50 kg C/kg N. High-level N addition exerted stronger effects on ecosystem C sequestration than low-level N addition. NH4+-N, rather than NO3−-N, dominated the increase in ecosystem C sequestration. We found that Q. liaotungensis forest acted as a C sink. The increase in NEP in the study forest in northern China was mainly due to an increase in net primary productivity (NPP) caused by N addition. Atmospheric N deposition increased the C sequestration efficiency depending on the rate and form of N deposition.
Collapse
|
5
|
Contrasting effects of nitrogen and phosphorus additions on soil nitrous oxide fluxes and enzyme activities in an alpine wetland of the Tibetan Plateau. PLoS One 2019; 14:e0216244. [PMID: 31048904 PMCID: PMC6497268 DOI: 10.1371/journal.pone.0216244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/16/2019] [Indexed: 11/19/2022] Open
Abstract
Alpine wetlands are important ecosystems, but an increased availability of soil nutrients may affect their soil nitrous oxide (N2O) fluxes and key enzyme activities. We undertook a 3-year experiment of observing nitrogen (N) and/or phosphorus (P) addition to alpine wetland soils of the Tibetan Plateau, China, with measurements made of soil extracellular enzyme activities and soil N2O fluxes. Our study showed that soil N2O flux was significantly increased by 72% and 102% following N and N+P additions, respectively. N addition significantly increased acid phosphatase (AP) and β-1, 4-N-acetyl-glucosaminidase (NAG) activities by 32% and 26%, respectively. P addition alone exerted a neutral effect on soil AP activities, while increasing NAG activities. We inferred that microbes produce enzymes based on ‘resource allocation theory’, but that a series of constitutive enzymes or the treatment duration interfere with this response. Our findings suggest that N addition increases N- and P-cycling enzyme activities and soil N2O flux, whereas P addition exerts a neutral effect on P-cycling enzyme activities and N2O flux after 3 years of nutrient applications to an alpine wetland.
Collapse
|
6
|
Xie D, Si G, Zhang T, Mulder J, Duan L. Nitrogen deposition increases N 2O emission from an N-saturated subtropical forest in southwest China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1818-1824. [PMID: 30408869 DOI: 10.1016/j.envpol.2018.09.113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
Nitrous oxide (N2O) is a major greenhouse gas, with elevated emission being reported from subtropical forests that receive high nitrogen (N) deposition. After 10 years of monthly addition of ammonium nitrate (NH4NO3) or sodium nitrate (NaNO3) to a Mason pine forest at Tieshanping, near Chongqing city in Southwest China, the simulated N deposition was stopped in October 2014. The results of soil N2O emissions monitoring in different seasons during the nitrogen application period showed that nitrogen addition significantly increased soil N2O emission. In general, the N2O emission fluxes were positively correlated to nitrate (NO3-) concentrations in soil solution, supporting the important role of denitrification in N2O production, which was also modified by environmental factors such as soil temperature and moisture. After stopping the application of nitrogen, the soil N2O emissions from the treatment plots were no longer significantly higher than those from the reference plots, implying that a decrease in nitrogen deposition in the future would cause a decrease in N2O emission. Although the major forms of N deposition, NH4+ and NO3-, had not shown significantly different effects on soil N2O emission, the reduction in NH4+ deposition may decrease the NO3- concentrations in soil solution faster than the reduction in NO3- deposition, and thus be more effective in reducing N2O emission from N-saturated forest soil in the future.
Collapse
Affiliation(s)
- Danni Xie
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Gaoyue Si
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Ting Zhang
- Shenzhen Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, PR China
| | - Jan Mulder
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Box 5003, NO-1432, Ås, Norway
| | - Lei Duan
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China; Collaborative Innovation Centre for Regional Environmental Quality, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
7
|
Xu K, Wang C, Yang X. Correction: Five-year study of the effects of simulated nitrogen deposition levels and forms on soil nitrous oxide emissions from a temperate forest in northern China. PLoS One 2018; 13:e0196622. [PMID: 29694422 PMCID: PMC5918794 DOI: 10.1371/journal.pone.0196622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|