1
|
Bouras A, Fabre A, Zattara H, Handallou S, Desseigne F, Kientz C, Prieur F, Peysselon M, Legrand C, Calavas L, Saurin JC, Wang Q. Hereditary Colorectal Cancer and Polyposis Syndromes Caused by Variants in Uncommon Genes. Genes Chromosomes Cancer 2024; 63:e23263. [PMID: 39120161 DOI: 10.1002/gcc.23263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
A substantial number of hereditary colorectal cancer (CRC) and colonic polyposis cannot be explained by alteration in confirmed predisposition genes, such as mismatch repair (MMR) genes, APC and MUTYH. Recently, a certain number of potential predisposition genes have been suggested, involving each a small number of cases reported so far. Here, we describe the detection of rare variants in the NTLH1, AXIN2, RNF43, BUB1, and TP53 genes in nine unrelated patients who were suspected for inherited CRC and/or colonic polyposis. Seven of them were classified as pathogenic or likely pathogenic variants (PV/LPV). Clinical manifestations of carriers were largely consistent with reported cases with, nevertheless, distinct characteristics. PV/LPV in these uncommon gene can be responsible for up to 2.7% of inherited CRC or colonic polyposis syndromes. Our findings provide supporting evidence for the role of these genes in cancer predisposition, and contribute to the determination of related cancer spectrum and cancer risk for carriers, allowing for the establishment of appropriate screening strategy and genetic counseling in affected families.
Collapse
Affiliation(s)
- Ahmed Bouras
- Laboratory of Constitutional Genetics for Frequent Cancer HCL-CLB, Centre Léon Bérard, Lyon, France
- Inserm U1052, Lyon Cancer Research Center, Lyon, France
| | - Aurélie Fabre
- Department of Genetics, Hôpital d'Enfants de La Timone, AP-HM, Marseille, France
| | - Hélène Zattara
- Department of Genetics, Hôpital d'Enfants de La Timone, AP-HM, Marseille, France
| | - Sandrine Handallou
- Cancer Genetics Unit, Department of Public Health, Centre Léon Bérard, Lyon, France
| | | | - Caroline Kientz
- Department of Clinical, Chromosomal and Molecular Genetics, Hôpital Nord, CHU Saint Etienne, Saint Etienne, France
| | - Fabienne Prieur
- Department of Clinical, Chromosomal and Molecular Genetics, Hôpital Nord, CHU Saint Etienne, Saint Etienne, France
| | - Magalie Peysselon
- Genetic Service, Department of Genetics and Procreation, CHU Grenoble Alpes, Grenoble, France
| | - Clémentine Legrand
- Genetic Service, Department of Genetics and Procreation, CHU Grenoble Alpes, Grenoble, France
| | - Laura Calavas
- Department of Gastroenterology and Endoscopy, Edouard Herriot Hospital, Lyon, France
| | | | - Qing Wang
- Laboratory of Constitutional Genetics for Frequent Cancer HCL-CLB, Centre Léon Bérard, Lyon, France
- Inserm U1052, Lyon Cancer Research Center, Lyon, France
| |
Collapse
|
2
|
Stoltze UK, Hagen CM, van Overeem Hansen T, Byrjalsen A, Gerdes AM, Yakimov V, Rasmussen S, Bækvad-Hansen M, Hougaard DM, Schmiegelow K, Hjalgrim H, Wadt K, Bybjerg-Grauholm J. Combinatorial batching of DNA for ultralow-cost detection of pathogenic variants. Genome Med 2023; 15:17. [PMID: 36918911 PMCID: PMC10013285 DOI: 10.1186/s13073-023-01167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) based population screening holds great promise for disease prevention and earlier diagnosis, but the costs associated with screening millions of humans remain prohibitive. New methods for population genetic testing that lower the costs of NGS without compromising diagnostic power are needed. METHODS We developed double batched sequencing where DNA samples are batch-sequenced twice - directly pinpointing individuals with rare variants. We sequenced batches of at-birth blood spot DNA using a commercial 113-gene panel in an explorative (n = 100) and a validation (n = 100) cohort of children who went on to develop pediatric cancers. All results were benchmarked against individual whole genome sequencing data. RESULTS We demonstrated fully replicable detection of cancer-causing germline variants, with positive and negative predictive values of 100% (95% CI, 0.91-1.00 and 95% CI, 0.98-1.00, respectively). Pathogenic and clinically actionable variants were detected in RB1, TP53, BRCA2, APC, and 19 other genes. Analyses of larger batches indicated that our approach is highly scalable, yielding more than 95% cost reduction or less than 3 cents per gene screened for rare disease-causing mutations. We also show that double batched sequencing could cost-effectively prevent childhood cancer deaths through broad genomic testing. CONCLUSIONS Our ultracheap genetic diagnostic method, which uses existing sequencing hardware and standard newborn blood spots, should readily open up opportunities for population-wide risk stratification using genetic screening across many fields of clinical genetics and genomics.
Collapse
Affiliation(s)
- Ulrik Kristoffer Stoltze
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Blegdamsvej 9, 2100, KBH Ø, Denmark. .,Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, 2100, KBH Ø, Denmark.
| | - Christian Munch Hagen
- Department of Congenital Disorders, Statens Serum Institute, 2300, KBH S, Artillerivej 5, Denmark
| | - Thomas van Overeem Hansen
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, 2100, KBH Ø, Denmark.,Department of Clinical Medicine, Copenhagen University, Blegdamsvej 3B, 2200, KBH N, Denmark
| | - Anna Byrjalsen
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, 2100, KBH Ø, Denmark
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, 2100, KBH Ø, Denmark
| | - Victor Yakimov
- Department of Congenital Disorders, Statens Serum Institute, 2300, KBH S, Artillerivej 5, Denmark
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, Copenhagen University, Blegdamsvej 3B, 2200, KBH N, Denmark
| | - Marie Bækvad-Hansen
- Department of Congenital Disorders, Statens Serum Institute, 2300, KBH S, Artillerivej 5, Denmark
| | - David Michael Hougaard
- Department of Congenital Disorders, Statens Serum Institute, 2300, KBH S, Artillerivej 5, Denmark
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Blegdamsvej 9, 2100, KBH Ø, Denmark.,Department of Clinical Medicine, Copenhagen University, Blegdamsvej 3B, 2200, KBH N, Denmark
| | - Henrik Hjalgrim
- Department of Clinical Medicine, Copenhagen University, Blegdamsvej 3B, 2200, KBH N, Denmark.,Danish Cancer Society Research Centre, Danish Cancer Society, Strandboulevarden 49, 2100, KBH Ø, Denmark.,Department of Epidemiology Research, Statens Serum Institut, 2300, KBH S, Artillerivej 5, Denmark.,Department of Haematology, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark
| | - Karin Wadt
- Department of Clinical Genetics, Rigshospitalet, Blegdamsvej 9, 2100, KBH Ø, Denmark
| | - Jonas Bybjerg-Grauholm
- Department of Congenital Disorders, Statens Serum Institute, 2300, KBH S, Artillerivej 5, Denmark.
| |
Collapse
|
3
|
Cine N, Ugurtas C, Gokbayrak M, Aydin D, Demir G, Kuru S, Sunnetci-Akkoyunlu D, Eren-Keskin S, Simsek T, Cabuk D, Aksu MG, Canturk NZ, Savli H. The role of next-generation sequencing in the examination of signaling genes in Brca1/2-negative breast cancer cases. Ann Hum Genet 2023; 87:28-49. [PMID: 36479692 DOI: 10.1111/ahg.12488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Breast cancer is the most prevalent malignancy in women worldwide. Although pathogenic variants in the BRCA1/2 genes are responsible for the majority of hereditary breast cancer cases, a substantial proportion of patients are negative for pathogenic variations in these genes. In cancers, the signal transduction pathways of the cell are usually affected first. Therefore, this study aimed to detect and classified genetic variations in non-BRCA signaling genes and investigate the underlying genetic causes of susceptibility to breast cancer. METHODS Ninety-six patients without pathogenic variants in the BRCA1/2 genes who met the inclusion criteria were enrolled in the study, and 34 genes were analyzed using next-generation sequencing (NGS) for genetic analysis. RESULTS Based on the ClinVar database or American College of Medical Genetics criteria, a total of 55 variants of 16 genes were detected in 43 (44.8%) of the 96 patients included in the study. The pathogenic variants were found in the TP53, CHEK2, and RET genes, whereas the likely pathogenic variants were found in the FGFR1, FGFR3, EGFR, and NOTCH1 genes. CONCLUSION The examination of signaling genes in patients who met the established criteria for hereditary breast cancer but were negative for BRCA1/2 pathogenic variants provided additional information for approximately 8% of the families. The results of the present study suggest that NGS is a powerful tool for investigating the underlying genetic causes of occurrence and progression of breast cancer.
Collapse
Affiliation(s)
- Naci Cine
- Department of Medical Genetics, Kocaeli University Faculty of Medicine, Kocaeli, Turkey.,Department of Medical Genetics and Molecular Biology, Kocaeli University Institute of Health Sciences, Kocaeli, Turkey
| | - Cansu Ugurtas
- Department of Medical Genetics, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Merve Gokbayrak
- Department of Medical Genetics, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Duygu Aydin
- Department of Medical Genetics, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Gulhan Demir
- Department of Medical Genetics, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Seda Kuru
- Department of Medical Genetics, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | | | - Seda Eren-Keskin
- Department of Medical Genetics, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Turgay Simsek
- Department of General Surgery, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Devrim Cabuk
- Department of Medical Oncology, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Maksut Gorkem Aksu
- Department of Radiation Oncology, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Nuh Zafer Canturk
- Department of General Surgery, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Hakan Savli
- Department of Medical Genetics, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| |
Collapse
|
4
|
Kai M, Kubo M, Shikada S, Hayashi S, Morisaki T, Yamada M, Takao Y, Shimazaki A, Harada Y, Kaneshiro K, Mizuuchi Y, Shindo K, Nakamura M. A novel germline mutation of TP53 with breast cancer diagnosed as Li-Fraumeni syndrome. Surg Case Rep 2022; 8:197. [PMID: 36219266 PMCID: PMC9554102 DOI: 10.1186/s40792-022-01546-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/28/2022] [Indexed: 11/10/2022] Open
Abstract
TP53 is a tumor suppressor gene and, when dysfunctional, it is known to be involved in the development of cancers. Li-Fraumeni syndrome (LFS) is a hereditary tumor with autosomal dominant inheritance that develops in people with germline pathogenic variants of TP53. LFS frequently develops in parallel to tumors, including breast cancer. We describe a novel germline mutation in TP53 identified by performing a multi-gene panel assay in a breast cancer patient with bilateral breast cancer.
Collapse
Affiliation(s)
- Masaya Kai
- Department of Surgery and Oncology, Graduate of School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Makoto Kubo
- Department of Surgery and Oncology, Graduate of School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- Department of Clinical Genetics and Medicine, Kyushu University Hospital, Fukuoka, Japan.
| | - Sawako Shikada
- Department of Clinical Genetics and Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Saori Hayashi
- Department of Surgery and Oncology, Graduate of School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Clinical Genetics and Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Takafumi Morisaki
- Department of Surgery and Oncology, Graduate of School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Mai Yamada
- Department of Surgery and Oncology, Graduate of School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuka Takao
- Department of Surgery and Oncology, Graduate of School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akiko Shimazaki
- Department of Surgery and Oncology, Graduate of School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yurina Harada
- Department of Surgery and Oncology, Graduate of School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazuhisa Kaneshiro
- Department of Surgery and Oncology, Graduate of School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yusuke Mizuuchi
- Department of Surgery and Oncology, Graduate of School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Clinical Genetics and Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Koji Shindo
- Department of Surgery and Oncology, Graduate of School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate of School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
5
|
Cancer-related Mutations with Local or Long-range Effects on an Allosteric Loop of p53. J Mol Biol 2022; 434:167663. [PMID: 35659507 DOI: 10.1016/j.jmb.2022.167663] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 12/31/2022]
Abstract
The tumor protein 53 (p53) is involved in transcription-dependent and independent processes. Several p53 variants related to cancer have been found to impact protein stability. Other variants, on the contrary, might have little impact on structural stability and have local or long-range effects on the p53 interactome. Our group previously identified a loop in the DNA binding domain (DBD) of p53 (residues 207-213) which can recruit different interactors. Experimental structures of p53 in complex with other proteins strengthen the importance of this interface for protein-protein interactions. We here characterized with structure-based approaches somatic and germline variants of p53 which could have a marginal effect in terms of stability and act locally or allosterically on the region 207-213 with consequences on the cytosolic functions of this protein. To this goal, we studied 1132 variants in the p53 DBD with structure-based approaches, accounting also for protein dynamics. We focused on variants predicted with marginal effects on structural stability. We then investigated each of these variants for their impact on DNA binding, dimerization of the p53 DBD, and intramolecular contacts with the 207-213 region. Furthermore, we identified variants that could modulate long-range the conformation of the region 207-213 using a coarse-grain model for allostery and all-atom molecular dynamics simulations. Our predictions have been further validated using enhanced sampling methods for 15 variants. The methodologies used in this study could be more broadly applied to other p53 variants or cases where conformational changes of loop regions are essential in the function of disease-related proteins.
Collapse
|
6
|
Irshaid L, Clark M, Fadare O, Finberg KE, Parkash V. Endometrial Carcinoma as the Presenting Malignancy in a Teenager With a Pathogenic TP53 Germline Mutation: A Case Report and Literature Review. Int J Gynecol Pathol 2022; 41:258-267. [PMID: 33990091 DOI: 10.1097/pgp.0000000000000792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Patients with germline TP53 mutations are characterized by the occurrence of multiple early-onset malignancies. The characteristic syndrome is Li-Fraumeni syndrome (OMIM # 151623), an autosomal dominant disorder typified by premenopausal breast carcinoma, adrenal cortical tumors, bone and soft tissue sarcomas, leukemias, and tumors of the brain and spinal cord. Gynecologic malignancies are uncommonly reported in families harboring TP53 mutations, and the predominant tumor type reported is ovarian. Uterine carcinoma has been reported only a handful of times in patients with germline TP53 mutations, none as a presenting tumor in a teenager. We report on an 18-year-old patient who presented with grade 3, high-stage endometrioid endometrial carcinoma. Sequencing detected a single-nucleotide substitution in the TP53 gene (NM_000546.6:c.818G>A), encoding the missense substitution p.Arg273His (R273H) in both the tumor and normal tissue, consistent with a germline mutation. We discuss the biology of the TP53 gene and p53 protein, with emphasis on the R273H mutation. We also review the literature on endometrial carcinoma in patients with germline TP53 mutations.
Collapse
|
7
|
Kaissarian NM, Meyer D, Kimchi-Sarfaty C. Synonymous Variants: Necessary Nuance in our Understanding of Cancer Drivers and Treatment Outcomes. J Natl Cancer Inst 2022; 114:1072-1094. [PMID: 35477782 PMCID: PMC9360466 DOI: 10.1093/jnci/djac090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/24/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Once called "silent mutations" and assumed to have no effect on protein structure and function, synonymous variants are now recognized to be drivers for some cancers. There have been significant advances in our understanding of the numerous mechanisms by which synonymous single nucleotide variants (sSNVs) can affect protein structure and function by affecting pre-mRNA splicing, mRNA expression, stability, folding, miRNA binding, translation kinetics, and co-translational folding. This review highlights the need for considering sSNVs in cancer biology to gain a better understanding of the genetic determinants of human cancers and to improve their diagnosis and treatment. We surveyed the literature for reports of sSNVs in cancer and found numerous studies on the consequences of sSNVs on gene function with supporting in vitro evidence. We also found reports of sSNVs that have statistically significant associations with specific cancer types but for which in vitro studies are lacking to support the reported associations. Additionally, we found reports of germline and somatic sSNVs that were observed in numerous clinical studies and for which in silico analysis predicts possible effects on gene function. We provide a review of these investigations and discuss necessary future studies to elucidate the mechanisms by which sSNVs disrupt protein function and are play a role in tumorigeneses, cancer progression, and treatment efficacy. As splicing dysregulation is one of the most well recognized mechanisms by which sSNVs impact protein function, we also include our own in silico analysis for predicting which sSNVs may disrupt pre-mRNA splicing.
Collapse
Affiliation(s)
- Nayiri M Kaissarian
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Douglas Meyer
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Chava Kimchi-Sarfaty
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|