1
|
The Anti-Cancer Activity of Pentamidine and Its Derivatives (WLC-4059) Is through Blocking the Interaction between S100A1 and RAGE V Domain. Biomolecules 2022; 13:biom13010081. [PMID: 36671465 PMCID: PMC9856166 DOI: 10.3390/biom13010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/03/2023] Open
Abstract
The S100A1 protein in humans is a calcium-binding protein. Upon Ca2+ binding to S100A1 EF-hand motifs, the conformation of S100A1 changes and promotes interactions with target proteins. RAGE consists of three domains: the cytoplasmic, transmembrane, and extracellular domains. The extracellular domain consists of C1, C2, and V domains. V domains are the primary receptors for the S100 protein. It was reported several years ago that S100A1 and RAGE V domains interact in a pathway involving S100A1-RAGE signaling, whereby S100A1 binds to the V domain, resulting in RAGE dimerization. The autophosphorylation of the cytoplasmic domain initiates a signaling cascade that regulates cell proliferation, cell growth, and tumor formation. In this study, we used pentamidine and a newly synthesized pentamidine analog (WLC-4059) to inhibit the S100A1-RAGE V interaction. 1H-15N HSQC NMR titration was carried out to characterize the interaction between mS100A1 (mutant S100A1, C86S) and pentamidine analogs. We found that pentamidine analogs interact with S100A1 via 1H-15N HSQC NMR spectroscopy. Based on the results, we utilized the HADDOCK program to generate structures of the mS100A1-WLC-4059 binary complex. Interestingly, the binary complex overlapped with the complex crystal structure of the mS100A1-RAGE-V domain, proving that WLC-4059 blocks interaction sites between S100A1 and RAGE-V. A WST-1 cell proliferation assay also supported these results. We conclude that pentamidine analogs could potentially enhance therapeutic approaches against cancers.
Collapse
|
2
|
Dong H, Zhang Y, Huang Y, Deng H. Pathophysiology of RAGE in inflammatory diseases. Front Immunol 2022; 13:931473. [PMID: 35967420 PMCID: PMC9373849 DOI: 10.3389/fimmu.2022.931473] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a non-specific multi-ligand pattern recognition receptor capable of binding to a range of structurally diverse ligands, expressed on a variety of cell types, and performing different functions. The ligand-RAGE axis can trigger a range of signaling events that are associated with diabetes and its complications, neurological disorders, cancer, inflammation and other diseases. Since RAGE is involved in the pathophysiological processes of many diseases, targeting RAGE may be an effective strategy to block RAGE signaling.
Collapse
|
3
|
Parveen N, Lin YL, Chou RH, Sun CM, Yu C. Synthesis of Novel Suramin Analogs With Anti-Proliferative Activity via FGF1 and FGFRD2 Blockade. Front Chem 2022; 9:764200. [PMID: 35047478 PMCID: PMC8763243 DOI: 10.3389/fchem.2021.764200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
A promising approach in cancer therapy is the inhibition of cell proliferation using small molecules. In this study, we report the synthesis of suramin derivatives and their applications. We used NMR spectroscopy and docking simulations to confirm binding sites and three-dimensional models of the ligand-protein complex. The WST-1 assay was used to assess cell viability and cell proliferation in vitro to evaluate the inhibition of protein-protein interactions and to investigate the anti-proliferative activities in a breast cancer cell line. All the suramin derivatives showed anti-proliferative activity by blocking FGF1 binding to its receptor FGFRD2. The dissociation constant was measured by fluorescence spectroscopy. The suramin compound derivatives synthesized herein show potential as novel therapeutic agents for their anti-proliferative activity via the inhibition of protein-protein interactions. The cytotoxicity of these suramin derivatives was lower than that of the parent suramin compound, which may be considered a significant advancement in this field. Thus, these novel suramin derivatives may be considered superior anti-metastasis molecules than those of suramin.
Collapse
Affiliation(s)
- Nuzhat Parveen
- Chemistry Department, National Tsing Hua University, Hsinchu, Taiwan
| | - Yan-Liang Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ruey-Hwang Chou
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Laboratory and Biotechnology, Asia University, Taichung, Taiwan
| | - Chung-Ming Sun
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chin Yu
- Chemistry Department, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
4
|
Skerrett-Byrne DA, Bromfield EG, Murray HC, Jamaluddin MFB, Jarnicki AG, Fricker M, Essilfie AT, Jones B, Haw TJ, Hampsey D, Anderson AL, Nixon B, Scott RJ, Wark PAB, Dun MD, Hansbro PM. Time-resolved proteomic profiling of cigarette smoke-induced experimental chronic obstructive pulmonary disease. Respirology 2021; 26:960-973. [PMID: 34224176 DOI: 10.1111/resp.14111] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/01/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVE Chronic obstructive pulmonary disease (COPD) is the third leading cause of illness and death worldwide. Current treatments aim to control symptoms with none able to reverse disease or stop its progression. We explored the major molecular changes in COPD pathogenesis. METHODS We employed quantitative label-based proteomics to map the changes in the lung tissue proteome of cigarette smoke-induced experimental COPD that is induced over 8 weeks and progresses over 12 weeks. RESULTS Quantification of 7324 proteins enabled the tracking of changes to the proteome. Alterations in protein expression profiles occurred in the induction phase, with 18 and 16 protein changes at 4- and 6-week time points, compared to age-matched controls, respectively. Strikingly, 269 proteins had altered expression after 8 weeks when the hallmark pathological features of human COPD emerge, but this dropped to 27 changes at 12 weeks with disease progression. Differentially expressed proteins were validated using other mouse and human COPD bronchial biopsy samples. Major changes in RNA biosynthesis (heterogeneous nuclear ribonucleoproteins C1/C2 [HNRNPC] and RNA-binding protein Musashi homologue 2 [MSI2]) and modulators of inflammatory responses (S100A1) were notable. Mitochondrial dysfunction and changes in oxidative stress proteins also occurred. CONCLUSION We provide a detailed proteomic profile, identifying proteins associated with the pathogenesis and disease progression of COPD establishing a platform to develop effective new treatment strategies.
Collapse
Affiliation(s)
- David A Skerrett-Byrne
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia
| | - Elizabeth G Bromfield
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia.,Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Heather C Murray
- University of Newcastle, Callaghan, New South Wales, Australia.,Cancer Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - M Fairuz B Jamaluddin
- University of Newcastle, Callaghan, New South Wales, Australia.,Cancer Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Andrew G Jarnicki
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Michael Fricker
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia
| | - Ama T Essilfie
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Bernadette Jones
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia
| | - Tatt J Haw
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia
| | - Daniel Hampsey
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia
| | - Amanda L Anderson
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia
| | - Brett Nixon
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia
| | - Rodney J Scott
- University of Newcastle, Callaghan, New South Wales, Australia.,Cancer Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia
| | - Matthew D Dun
- University of Newcastle, Callaghan, New South Wales, Australia.,Cancer Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia.,Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Milardi D, Gazit E, Radford SE, Xu Y, Gallardo RU, Caflisch A, Westermark GT, Westermark P, Rosa CL, Ramamoorthy A. Proteostasis of Islet Amyloid Polypeptide: A Molecular Perspective of Risk Factors and Protective Strategies for Type II Diabetes. Chem Rev 2021; 121:1845-1893. [PMID: 33427465 PMCID: PMC10317076 DOI: 10.1021/acs.chemrev.0c00981] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The possible link between hIAPP accumulation and β-cell death in diabetic patients has inspired numerous studies focusing on amyloid structures and aggregation pathways of this hormone. Recent studies have reported on the importance of early oligomeric intermediates, the many roles of their interactions with lipid membrane, pH, insulin, and zinc on the mechanism of aggregation of hIAPP. The challenges posed by the transient nature of amyloid oligomers, their structural heterogeneity, and the complex nature of their interaction with lipid membranes have resulted in the development of a wide range of biophysical and chemical approaches to characterize the aggregation process. While the cellular processes and factors activating hIAPP-mediated cytotoxicity are still not clear, it has recently been suggested that its impaired turnover and cellular processing by proteasome and autophagy may contribute significantly toward toxic hIAPP accumulation and, eventually, β-cell death. Therefore, studies focusing on the restoration of hIAPP proteostasis may represent a promising arena for the design of effective therapies. In this review we discuss the current knowledge of the structures and pathology associated with hIAPP self-assembly and point out the opportunities for therapy that a detailed biochemical, biophysical, and cellular understanding of its aggregation may unveil.
Collapse
Affiliation(s)
- Danilo Milardi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, 95126 Catania, Italy
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rodrigo U Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| | - Gunilla T Westermark
- Department of Medical Cell Biology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Per Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Carmelo La Rosa
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 41809-1055, United States
| |
Collapse
|
6
|
Mendelman N, Meirovitch E. SRLS Analysis of 15N- 1H NMR Relaxation from the Protein S100A1: Dynamic Structure, Calcium Binding, and Related Changes in Conformational Entropy. J Phys Chem B 2021; 125:805-816. [PMID: 33449683 DOI: 10.1021/acs.jpcb.0c10124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report on amide (N-H) NMR relaxation from the protein S100A1 analyzed with the slowly relaxing local structure (SRLS) approach. S100A1 comprises two calcium-binding "EF-hands" (helix-loop-helix motifs) connected by a linker. The dynamic structure of this protein, in both calcium-free and calcium-bound form, is described as the restricted local N-H motion coupled to isotropic protein tumbling. The restrictions are given by a rhombic potential, u (∼10 kT), the local motion by a diffusion tensor with rate constant D2 (∼109 s-1), and principal axis tilted from the N-H bond at angle β (10-20°). This parameter combination provides a physically insightful picture of the dynamic structure of S100A1 from the N-H bond perspective. Calcium binding primarily affects the C-terminal EF-hand, among others slowing down the motion of helices III and IV approximately 10-fold. Overall, it brings about significant changes in the shape of the local potential, u, and the orientation of the local diffusion axis, β. Conformational entropy derived from u makes an unfavorable entropic contribution to the free energy of calcium binding estimated at 8.6 ± 0.5 kJ/mol. The N-terminal EF-hand undergoes moderate changes. These findings provide new insights into the calcium-binding process. The same data were analyzed previously with the extended model-free (EMF) method, which is a simple limit of SRLS. In that interpretation, the protein tumbles anisotropically. Locally, calcium binding increases ordering in the loops of S100A1 and conformational exchange (Rex) in the helices of its N-terminal EF-hand. These are very unusual features. We show that they most likely stem from problematic data-fitting, oversimplifications inherent in EMF, and experimental imperfections. Rex is shown to be mainly a fit parameter. By reanalyzing the experimental data with SRLS, which is largely free of these deficiencies, we obtain-as delineated above-physically-relevant structural, kinetic, geometric, and binding information.
Collapse
Affiliation(s)
- Netanel Mendelman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Eva Meirovitch
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
7
|
Carvalho A, Lu J, Francis JD, Moore RE, Haley KP, Doster RS, Townsend SD, Johnson JG, Damo SM, Gaddy JA. S100A12 in Digestive Diseases and Health: A Scoping Review. Gastroenterol Res Pract 2020; 2020:2868373. [PMID: 32184815 PMCID: PMC7061133 DOI: 10.1155/2020/2868373] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/05/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Calgranulin proteins are an important class of molecules involved in innate immunity. These members of the S100 class of the EF-hand family of calcium-binding proteins have numerous cellular and antimicrobial functions. One protein in particular, S100A12 (also called EN-RAGE or calgranulin C), is highly abundant in neutrophils during acute inflammation and has been implicated in immune regulation. Structure-function analyses reveal that S100A12 has the capacity to bind calcium, zinc, and copper, processes that contribute to nutritional immunity against invading microbial pathogens. S100A12 is a ligand for the receptor for advanced glycation end products (RAGE), toll-like receptor 4 (TLR4), and CD36, which promote cellular and immunological pathways to alter inflammation. We conducted a scoping review of the existing literature to define what is known about the association of S100A12 with digestive disease and health. Results suggest that S100A12 is implicated in gastroenteritis, necrotizing enterocolitis, gastritis, gastric cancer, Crohn's disease, irritable bowel syndrome, inflammatory bowel disease, and digestive tract cancers. Together, these results reveal S100A12 is an important molecule broadly associated with the pathogenesis of digestive diseases.
Collapse
Affiliation(s)
- Alexandre Carvalho
- Internal Medicine Program, St. Joseph Mercy Hospital, Ann Arbor, Michigan, USA
| | - Jacky Lu
- Department of Pathology, Microbiology, And Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jamisha D. Francis
- Department of Pathology, Microbiology, And Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Rebecca E. Moore
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Kathryn P. Haley
- Department of Biomedical Sciences, Grand Valley State University, Allendale, Michigan, USA
| | - Ryan S. Doster
- Department of Pathology, Microbiology, And Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Steven D. Townsend
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeremiah G. Johnson
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Steven M. Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee, USA
- Departments of Biochemistry and Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jennifer A. Gaddy
- Department of Pathology, Microbiology, And Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Tennessee Valley Healthcare Systems, Department of Veterans Affairs, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Chan J, Zou J, Ortiz CL, Chang Chien CH, Pan RL, Yang LW. DR-SIP: protocols for higher order structure modeling with distance restraints- and cyclic symmetry-imposed packing. Bioinformatics 2020; 36:449-461. [PMID: 31347658 DOI: 10.1093/bioinformatics/btz579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 07/05/2019] [Accepted: 07/18/2019] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Quaternary structure determination for transmembrane/soluble proteins requires a reliable computational protocol that leverages observed distance restraints and/or cyclic symmetry (Cn symmetry) found in most homo-oligomeric transmembrane proteins. RESULTS We survey 118 X-ray crystallographically solved structures of homo-oligomeric transmembrane proteins (HoTPs) and find that ∼97% are Cn symmetric. Given the prevalence of Cn symmetric HoTPs and the benefits of incorporating geometry restraints in aiding quaternary structure determination, we introduce two new filters, the distance-restraints (DR) and the Symmetry-Imposed Packing (SIP) filters. SIP relies on a new method that can rebuild the closest ideal Cn symmetric complex from docking poses containing a homo-dimer without prior knowledge of the number (n) of monomers. Using only the geometrical filter, SIP, near-native poses of 7 HoTPs in their monomeric states can be correctly identified in the top-10 for 71% of all cases, or 29% among 31 HoTP structures obtained through homology modeling, while ZDOCK alone returns 14 and 3%, respectively. When the n is given, the optional n-mer filter is applied with SIP and returns the near-native poses for 76% of the test set within the top-10, outperforming M-ZDOCK's 55% and Sam's 47%. While applying only SIP to three HoTPs that comes with distance restraints, we found the near-native poses were ranked 1st, 1st and 10th among 54 000 possible decoys. The results are further improved to 1st, 1st and 3rd when both DR and SIP filters are used. By applying only DR, a soluble system with distance restraints is recovered at the 1st-ranked pose. AVAILABILITY AND IMPLEMENTATION https://github.com/capslockwizard/drsip. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Justin Chan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan.,Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Sciences, Academia Sinica, Taipei, Taiwan
| | - Jinhao Zou
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan.,UTHealth Graduate School of Biomedical Science, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Chi-Hong Chang Chien
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Rong-Long Pan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Lee-Wei Yang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan.,Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Sciences, Academia Sinica, Taipei, Taiwan.,Physics Division, National Center for Theoretical Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
9
|
Mitran CI, Nicolae I, Tampa M, Mitran MI, Caruntu C, Sarbu MI, Ene CD, Matei C, Ionescu AC, Georgescu SR, Popa MI. The Relationship between the Soluble Receptor for Advanced Glycation End Products and Oxidative Stress in Patients with Palmoplantar Warts. ACTA ACUST UNITED AC 2019; 55:medicina55100706. [PMID: 31635193 PMCID: PMC6843152 DOI: 10.3390/medicina55100706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
Abstract
Background and objectives: Warts are the most common lesions caused by human papillomavirus (HPV). Recent research suggests that oxidative stress and inflammation are involved in the pathogenesis of HPV-related lesions. It has been shown that the soluble receptor for advanced glycation end products (sRAGE) may act as a protective factor against the deleterious effects of inflammation and oxidative stress, two interconnected processes. However, in HPV infection, the role of sRAGE, constitutively expressed in the skin, has not been investigated in previous studies. Materials and Methods: In order to analyze the role of sRAGE in warts, we investigated the link between sRAGE and the inflammatory response on one hand, and the relationship between sRAGE and the total oxidant/antioxidant status (TOS/TAS) on the other hand, in both patients with palmoplantar warts (n = 24) and healthy subjects as controls (n = 28). Results: Compared to the control group, our results showed that patients with warts had lower levels of sRAGE (1036.50 ± 207.60 pg/mL vs. 1215.32 ± 266.12 pg/mL, p < 0.05), higher serum levels of TOS (3.17 ± 0.27 vs. 2.93 ± 0.22 µmol H2O2 Eq/L, p < 0.01), lower serum levels of TAS (1.85 ± 0.12 vs. 2.03 ± 0.14 µmol Trolox Eq/L, p < 0.01) and minor variations of the inflammation parameters (high sensitivity-CRP, interleukin-6, fibrinogen, and erythrocyte sedimentation rate). Moreover, in patients with warts, sRAGE positively correlated with TAS (r = 0.43, p < 0.05), negatively correlated with TOS (r = −0.90, p < 0.01), and there was no significant correlation with inflammation parameters. There were no significant differences regarding the studied parameters between groups when we stratified the patients according to the number of the lesions and disease duration. Conclusions: Our results suggest that sRAGE acts as a negative regulator of oxidative stress and could represent a mediator involved in the development of warts. However, we consider that the level of sRAGE cannot be used as a biomarker for the severity of warts. To the best of our knowledge, this is the first study to demonstrate that sRAGE could be involved in HPV pathogenesis and represent a marker of oxidative stress in patients with warts.
Collapse
Affiliation(s)
- Cristina Iulia Mitran
- "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania.
- "Cantacuzino" National Medico-Military Institute for Research and Development, 011233 Bucharest, Romania.
| | - Ilinca Nicolae
- "Victor Babes" Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania.
| | - Mircea Tampa
- "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania.
- "Victor Babes" Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania.
| | - Madalina Irina Mitran
- "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania.
- "Cantacuzino" National Medico-Military Institute for Research and Development, 011233 Bucharest, Romania.
| | - Constantin Caruntu
- "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania.
- "Prof. N. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania.
| | - Maria Isabela Sarbu
- "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania.
| | | | - Clara Matei
- "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania.
| | | | - Simona Roxana Georgescu
- "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania.
- "Victor Babes" Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania.
| | - Mircea Ioan Popa
- "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania.
- "Cantacuzino" National Medico-Military Institute for Research and Development, 011233 Bucharest, Romania.
| |
Collapse
|
10
|
Heizmann CW. S100 proteins: Diagnostic and prognostic biomarkers in laboratory medicine. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1197-1206. [DOI: 10.1016/j.bbamcr.2018.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/12/2018] [Indexed: 01/04/2023]
|
11
|
Heizmann CW. Ca 2+-Binding Proteins of the EF-Hand Superfamily: Diagnostic and Prognostic Biomarkers and Novel Therapeutic Targets. Methods Mol Biol 2019; 1929:157-186. [PMID: 30710273 DOI: 10.1007/978-1-4939-9030-6_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A multitude of Ca2+-sensor proteins containing the specific Ca2+-binding motif (helix-loop-helix, called EF-hand) are of major clinical relevance in a many human diseases. Measurements of troponin, the first intracellular Ca-sensor protein to be discovered, is nowadays the "gold standard" in the diagnosis of patients with acute coronary syndrome (ACS). Mutations have been identified in calmodulin and linked to inherited ventricular tachycardia and in patients affected by severe cardiac arrhythmias. Parvalbumin, when introduced into the diseased heart by gene therapy to increase contraction and relaxation speed, is considered to be a novel therapeutic strategy to combat heart failure. S100 proteins, the largest subgroup with the EF-hand protein family, are closely associated with cardiovascular diseases, various types of cancer, inflammation, and autoimmune pathologies. The intention of this review is to summarize the clinical importance of this protein family and their use as biomarkers and potential drug targets, which could help to improve the diagnosis of human diseases and identification of more selective therapeutic interventions.
Collapse
Affiliation(s)
- Claus W Heizmann
- Department of Pediatrics, Division of Clinical Chemistry and Biochemistry, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
12
|
Khan MI, Dowarha D, Katte R, Chou RH, Filipek A, Yu C. Lysozyme as the anti-proliferative agent to block the interaction between S100A6 and the RAGE V domain. PLoS One 2019; 14:e0216427. [PMID: 31071146 PMCID: PMC6508705 DOI: 10.1371/journal.pone.0216427] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/20/2019] [Indexed: 12/18/2022] Open
Abstract
In this report, using NMR and molecular modeling, we have studied the structure of lysozyme-S100A6 complex and the influence of tranilast [N-(3, 4-dimethoxycinnamoyl) anthranilic acid], an antiallergic drug which binds to lysozyme, on lysozyme-S100A6 and S100A6-RAGE complex formation and, finally, on cell proliferation. We have found that tranilast may block the S100A6-lysozyme interaction and enhance binding of S100A6 to RAGE. Using WST1 assay, we have found that lysozyme, most probably by blocking the interaction between S100A6 and RAGE, inhibits cell proliferation while tranilast may reverse this effect by binding to lysozyme. In conclusion, studies presented in this work, describing the protein-protein/-drug interactions, are of great importance for designing new therapies to treat diseases associated with cell proliferation such as cancers.
Collapse
Affiliation(s)
- Md. Imran Khan
- National Tsing Hua University, Chemistry Department, Hsinchu, Taiwan
| | - Deepu Dowarha
- National Tsing Hua University, Chemistry Department, Hsinchu, Taiwan
| | - Revansiddha Katte
- National Tsing Hua University, Chemistry Department, Hsinchu, Taiwan
| | - Ruey-Hwang Chou
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Anna Filipek
- Laboratory of Calcium Binding Proteins, Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw, Poland
| | - Chin Yu
- National Tsing Hua University, Chemistry Department, Hsinchu, Taiwan
| |
Collapse
|
13
|
S100A4 inhibits cell proliferation by interfering with the S100A1-RAGE V domain. PLoS One 2019; 14:e0212299. [PMID: 30779808 PMCID: PMC6380570 DOI: 10.1371/journal.pone.0212299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 01/30/2019] [Indexed: 01/28/2023] Open
Abstract
The Ca2+-dependent human S100A4 (Mts1) protein is part of the S100 family. Here, we studied the interactions of S100A4 with S100A1 using nuclear magnetic resonance (NMR) spectroscopy. We used the chemical shift perturbed residues from HSQC to model S100A4 and S100A1 complex with HADDOCK software. We observed that S100A1 and the RAGE V domain have an analogous binding area in S100A4. We discovered that S100A4 acts as an antagonist among the RAGE V domain and S100A1, which inhibits tumorigenesis and cell proliferation. We used a WST-1 assay to examine the bioactivity of S100A1 and S100A4. This study could possibly be beneficial for evaluating new proteins for the treatment of diseases.
Collapse
|