1
|
Zhang Y, Anderson RC, You C, Purba A, Yan M, Maclean P, Liu Z, Ulluwishewa D. Lactiplantibacillus plantarum ST-III and Lacticaseibacillus rhamnosus KF7 Enhance the Intestinal Epithelial Barrier in a Dual-Environment In Vitro Co-Culture Model. Microorganisms 2024; 12:873. [PMID: 38792703 PMCID: PMC11124027 DOI: 10.3390/microorganisms12050873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Intestinal barrier hyperpermeability, which is characterised by impaired tight junction proteins, is associated with a variety of gastrointestinal and systemic diseases. Therefore, maintaining intestinal barrier integrity is considered one of the effective strategies to reduce the risk of such disorders. This study aims to investigate the potential benefits of two probiotic strains (Lactiplantibacillus plantarum ST-III and Lacticaseibacillus rhamnosus KF7) on intestinal barrier function by using a physiologically relevant in vitro model of the intestinal epithelium. Our results demonstrate that both strains increased transepithelial electrical resistance, a measure of intestinal barrier integrity. Immunolocalisation studies indicated that this improvement in barrier function was not due to changes in the co-localisation of the tight junction (TJ) proteins ZO-1 and occludin. However, we observed several modifications in TJ-related genes in response to the probiotics, including the upregulation of transmembrane and cytosolic TJ proteins, as well as TJ signalling proteins. Gene expression modulation was strain- and time-dependent, with a greater number of differentially expressed genes and higher fold-change being observed in the L. plantarum ST-III group and at the latter timepoint. Further studies to investigate how the observed gene expression changes can lead to enhanced barrier function will aid in the development of probiotic foods to help improve intestinal barrier function.
Collapse
Affiliation(s)
- Yilin Zhang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; (Y.Z.); (C.Y.); (M.Y.)
| | - Rachel C. Anderson
- AgResearch, Te Ohu Rangahau Kai, Palmerston North 4410, New Zealand; (R.C.A.); (A.P.)
| | - Chunping You
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; (Y.Z.); (C.Y.); (M.Y.)
| | - Ajitpal Purba
- AgResearch, Te Ohu Rangahau Kai, Palmerston North 4410, New Zealand; (R.C.A.); (A.P.)
| | - Minghui Yan
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; (Y.Z.); (C.Y.); (M.Y.)
| | - Paul Maclean
- AgResearch, Grasslands Research Centre, Palmerston North 4410, New Zealand;
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; (Y.Z.); (C.Y.); (M.Y.)
| | - Dulantha Ulluwishewa
- AgResearch, Te Ohu Rangahau Kai, Palmerston North 4410, New Zealand; (R.C.A.); (A.P.)
| |
Collapse
|
2
|
Ma Q, Zhang X, Li X, Liu L, Liu S, Hao D, Bora AFM, Kouame KJEP, Xu Y, Liu W, Li J. Novel trends and challenges in fat modification of next-generation infant formula: Considering the structure of milk fat globules to improve lipid digestion and metabolism of infants. Food Res Int 2023; 174:113574. [PMID: 37986523 DOI: 10.1016/j.foodres.2023.113574] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
Differences in the composition and structure of lipid droplets in infant formula (IF) and human milk (HM) can affect the fat digestion of infants, leading to high risk of metabolic diseases during later stages of growth. Recently, interest in simulating HM fat (HMF) has gradually increased due to its beneficial functions for infants. Much research focuses on the simulation of fatty acids and triacylglycerols. Enzymatic combined with new technologies such as carbodiimide coupling immobilization enzymes, solvent-free synthesis, and microbial fermentation can improve the yield of simulated HMF. Furthermore, fat modification in next-generation IF requires attention to the impact on the structure and function of milk fat globules (MFG). This review also summarizes the latest reports on MFG structure simulation, mainly related to the addition method and sequence of membrane components, and other milk processing steps. Although some of the simulated HMF technologies and products have been applied to currently commercially available IF, the cost is still high. Furthermore, understanding the fat decomposition of simulated HMF during digestion and assessing its nutritional effects on infants later in life is also a huge challenge. New process development and more clinical studies are needed to construct and evaluate simulated HMF in the future.
Collapse
Affiliation(s)
- Qian Ma
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Xiuxiu Zhang
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China.
| | - Lu Liu
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China.
| | - Shuming Liu
- Heilongjiang Beingmate Dairy Company Ltd, Suihua 151499, China
| | - Donghai Hao
- Heilongjiang Beingmate Dairy Company Ltd, Suihua 151499, China
| | - Awa Fanny Massounga Bora
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Kouadio Jean Eric-Parfait Kouame
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Yanling Xu
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St. Xiangfang Dist, 150030 Harbin, China
| | - Wenli Liu
- Heilongjiang Beingmate Dairy Company Ltd, Suihua 151499, China
| | - Jiajun Li
- Heilongjiang Yaolan Dairy Technology Stock Company Ltd, Harbin 150010, China
| |
Collapse
|
3
|
Gautier T, Fahet N, Tamanai-Shacoori Z, Oliviero N, Blot M, Sauvager A, Burel A, Gall SDL, Tomasi S, Blat S, Bousarghin L. Roseburia intestinalis Modulates PYY Expression in a New a Multicellular Model including Enteroendocrine Cells. Microorganisms 2022; 10:2263. [PMID: 36422333 PMCID: PMC9694292 DOI: 10.3390/microorganisms10112263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 09/10/2024] Open
Abstract
The gut microbiota contributes to human health and disease; however, the mechanisms by which commensal bacteria interact with the host are still unclear. To date, a number of in vitro systems have been designed to investigate the host-microbe interactions. In most of the intestinal models, the enteroendocrine cells, considered as a potential link between gut bacteria and several human diseases, were missing. In the present study, we have generated a new model by adding enteroendocrine cells (ECC) of L-type (NCI-H716) to the one that we have previously described including enterocytes, mucus, and M cells. After 21 days of culture with the other cells, enteroendocrine-differentiated NCI-H716 cells showed neuropods at their basolateral side and expressed their specific genes encoding proglucagon (GCG) and chromogranin A (CHGA). We showed that this model could be stimulated by commensal bacteria playing a key role in health, Roseburia intestinalis and Bacteroides fragilis, but also by a pathogenic strain such as Salmonella Heidelberg. Moreover, using cell-free supernatants of B. fragilis and R. intestinalis, we have shown that R. intestinalis supernatant induced a significant increase in IL-8 and PYY but not in GCG gene expression, while B. fragilis had no impact. Our data indicated that R. intestinalis produced short chain fatty acids (SCFAs) such as butyrate whereas B. fragilis produced more propionate. However, these SCFAs were probably not the only metabolites implicated in PYY expression since butyrate alone had no effect. In conclusion, our new quadricellular model of gut epithelium could be an effective tool to highlight potential beneficial effects of bacteria or their metabolites, in order to develop new classes of probiotics.
Collapse
Affiliation(s)
- Thomas Gautier
- Institut NUMECAN, INSERM, Univ Rennes, INRAE, F-35000 Rennes, France
| | - Nelly Fahet
- Institut NUMECAN, INSERM, Univ Rennes, INRAE, F-35000 Rennes, France
| | | | - Nolwenn Oliviero
- Institut NUMECAN, INSERM, Univ Rennes, INRAE, F-35000 Rennes, France
| | - Marielle Blot
- ISCR (Institut des Sciences Chimiques de Rennes)-UMR CNRS 6226, Univ Rennes, CNRS, F-35000 Rennes, France
| | - Aurélie Sauvager
- ISCR (Institut des Sciences Chimiques de Rennes)-UMR CNRS 6226, Univ Rennes, CNRS, F-35000 Rennes, France
| | - Agnes Burel
- Plateforme Microscopie Electronique MRic/ISFR Biosit/Campus Santé, Univ Rennes, F-35000 Rennes, France
| | | | - Sophie Tomasi
- ISCR (Institut des Sciences Chimiques de Rennes)-UMR CNRS 6226, Univ Rennes, CNRS, F-35000 Rennes, France
| | - Sophie Blat
- Institut NUMECAN, INSERM, Univ Rennes, INRAE, F-35000 Rennes, France
| | - Latifa Bousarghin
- Institut NUMECAN, INSERM, Univ Rennes, INRAE, F-35000 Rennes, France
| |
Collapse
|
4
|
Thum C, Wall C, Day L, Szeto IMY, Li F, Yan Y, Barnett MPG. Changes in Human Milk Fat Globule Composition Throughout Lactation: A Review. Front Nutr 2022; 9:835856. [PMID: 35634409 PMCID: PMC9137899 DOI: 10.3389/fnut.2022.835856] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/22/2022] [Indexed: 01/19/2023] Open
Abstract
There has been a growing interest in understanding how the relative levels of human milk fat globule (MFG) components change over the course of lactation, how they differ between populations, and implications of these changes for the health of the infant. In this article, we describe studies published over the last 30 years which have investigated components of the MFG in term milk, focusing on changes over the course of lactation and highlighting infant and maternal factors that may influence these changes. We then consider how the potential health benefits of some of the milk fat globule membrane (MFGM) components and derived ingredients relate to compositional and functional aspects and how these change throughout lactation. The results show that the concentrations of phospholipids, gangliosides, cholesterol, fatty acids and proteins vary throughout lactation, and such changes are likely to reflect the changing requirements of the growing infant. There is a lack of consistent trends for changes in phospholipids and gangliosides across lactation which may reflect different methodological approaches. Other factors such as maternal diet and geographical location have been shown to influence human MFGM composition. The majority of research on the health benefits of MFGM have been conducted using MFGM ingredients derived from bovine milk, and using animal models which have clearly demonstrated the role of the MFGM in supporting cognitive and immune health of infants at different stages of growth and development.
Collapse
Affiliation(s)
- Caroline Thum
- AgResearch Ltd, Te Ohu Rangahau Kai, Palmerston North, New Zealand
- *Correspondence: Caroline Thum
| | - Clare Wall
- Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Li Day
- AgResearch Ltd, Te Ohu Rangahau Kai, Palmerston North, New Zealand
| | - Ignatius M. Y. Szeto
- Yili Maternal and Infant Nutrition Institute, Inner Mongolia Yili Industrial Group, Co., Ltd, Beijing, China
- Inner Mongolia Dairy Technology Research Institute Co., Ltd, Hohhot, China
| | - Fang Li
- Yili Maternal and Infant Nutrition Institute, Inner Mongolia Yili Industrial Group, Co., Ltd, Beijing, China
- Inner Mongolia Dairy Technology Research Institute Co., Ltd, Hohhot, China
| | - Yalu Yan
- Yili Maternal and Infant Nutrition Institute, Inner Mongolia Yili Industrial Group, Co., Ltd, Beijing, China
- Inner Mongolia Dairy Technology Research Institute Co., Ltd, Hohhot, China
| | | |
Collapse
|
5
|
Morrin ST, Buck RH, Farrow M, Hickey RM. Milk-derived anti-infectives and their potential to combat bacterial and viral infection. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
6
|
Brink LR, Lönnerdal B. Milk fat globule membrane: the role of its various components in infant health and development. J Nutr Biochem 2020; 85:108465. [PMID: 32758540 DOI: 10.1016/j.jnutbio.2020.108465] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022]
Abstract
Breastfeeding confers many benefits to the breast-fed infant which are reflected by better short-term and long-term outcomes as compared to formula-fed infants. Many components of breast milk are likely to contribute to these favorable outcomes, and there has recently been focus on the milk fat globule membrane (MFGM). This fraction is a heterogenous mixture of proteins (many of them glycosylated), phospholipids, sphingolipids, gangliosides, choline, sialic acid and cholesterol which is lacking in infant formula as milk fat (which is also low in these components) is replaced by vegetable oils. Many of these components have been shown to have biological effects, and there is considerable evidence from preclinical studies and clinical trials that providing bovine MFGM results in improved outcomes, in particular with regard to infections and neurodevelopment. Since bovine MFGM is commercially available, it is possible to add it to infant formula. There are, however, considerable variations in composition among commercial sources of bovine MFGM, and as it is not known which of the individual components provide the various bioactivities, it becomes important to critically review studies to date and to delineate the mechanisms behind the activities observed. In this review, we critically examine the preclinical and clinical studies on MFGM and its components in relation to resistance to infections, cognitive development, establishment of gut microbiota and infant metabolism, and discuss possible mechanisms of action.
Collapse
Affiliation(s)
- Lauren R Brink
- Department of Nutrition, University of California, Davis, 95616
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, 95616.
| |
Collapse
|
7
|
Palmano KP, MacGibbon AKH, Gunn CA, Schollum LM. In Vitro and In Vivo Anti-inflammatory Activity of Bovine Milkfat Globule (MFGM)-derived Complex Lipid Fractions. Nutrients 2020; 12:E2089. [PMID: 32679677 PMCID: PMC7400859 DOI: 10.3390/nu12072089] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/30/2022] Open
Abstract
Numerous health related properties have been reported for bovine milk fat globule membrane (MFGM) and its components. Here we present novel data on the in vitro and in vivo anti-inflammatory activity of various MFGM preparations which confirm and extend the concept of MFGM as a dietary anti-inflammatory agent. Cell-based assays were used to test the ability of MFGM preparations to modulate levels of the inflammatory mediators IL-1β, nitric oxide, superoxide anion, cyclo-oxygenase-2, and neutrophil elastase. In rat models of arthritis, using MFGM fractions as dietary interventions, the phospholipid-enriched MFGM isolates were effective in reducing adjuvant-induced paw swelling while there was a tendency for the ganglioside-enriched isolate to reduce carrageenan-induced rat paw oedema. These results indicate that the anti-inflammatory activity of MFGM, rather than residing in a single component, is contributed to by an array of components acting in concert against various inflammatory targets. This confirms the potential of MFGM as a nutritional intervention for the mitigation of chronic and acute inflammatory conditions.
Collapse
Affiliation(s)
- Kate P. Palmano
- Retired from Fonterra Research & Development Centre, Palmerston North 4442, New Zealand;
| | | | - Caroline A. Gunn
- Fonterra Research & Development Centre, Palmerston North 4442, New Zealand; (C.A.G.); (L.M.S.)
| | - Linda M. Schollum
- Fonterra Research & Development Centre, Palmerston North 4442, New Zealand; (C.A.G.); (L.M.S.)
| |
Collapse
|
8
|
Thum C, Young W, Montoya CA, Roy NC, McNabb WC. In vitro Fermentation of Digested Milk Fat Globule Membrane From Ruminant Milk Modulates Piglet Ileal and Caecal Microbiota. Front Nutr 2020; 7:91. [PMID: 32733910 PMCID: PMC7363764 DOI: 10.3389/fnut.2020.00091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Lipids in milk are secreted as a triacylglycerol core surrounded by a trilayer membrane, the milk fat globule membrane (MFGM). This membrane, known to have important roles in infant brain and intestinal development, is composed of proteins, glycoproteins, and complex lipids. We hypothesized that some of the beneficial properties of MFGM are due to its effects on the gastrointestinal microbiota. This study aimed to determine the effect of a commercial phospholipid concentrate (PC) and enriched bovine, caprine, and ovine MFGM fractions on ileal and hindgut microbiota in vitro. Digestion of PC and MFGMs was conducted using an in vitro model based on infant gastric and small intestine conditions. The recovered material was then in vitro fermented with ileal and caecal inocula prepared from five piglets fed a commercial formula for 20 days before ileal and caecal digesta were collected. After each fermentation, samples were collected to determine organic acid production and microbiota composition using 16S rRNA sequencing. All substrates, except PC (5%), were primarily fermented by the ileal microbiota (8–14%) (P < 0.05). PC and caprine MFGM reduced ileal microbiota alpha diversity compared to ileal inoculum. Caprine MFGM increased and PC reduced the ileal ratio of firmicutes:proteobacteria (P < 0.05), respectively, compared to the ileal inoculum. Bovine and ovine MFGMs increased ileal production of acetic, butyric, and caproic acids compared to other substrates and reduced the proportions of ileal proteobacteria (P < 0.0001). There was a limited fermentation of bovine (3%), caprine (2%), and ovine (2%) MFGMs by the caecal microbiota compared to PC (14%). In general, PC and all MFGMs had a reduced effect on caecal microbiota at a phylum level although MFG source-specific effects were observed at the genus level. These indicate that the main effects of the MFGM in the intestinal microbial population appears to occur in the ileum.
Collapse
Affiliation(s)
- Caroline Thum
- Food Nutrition & Health Team, AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Wayne Young
- Food Nutrition & Health Team, AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Carlos A Montoya
- Food Nutrition & Health Team, AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Nicole C Roy
- Food Nutrition & Health Team, AgResearch, Grasslands Research Centre, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Warren C McNabb
- Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| |
Collapse
|
9
|
Fontecha J, Brink L, Wu S, Pouliot Y, Visioli F, Jiménez-Flores R. Sources, Production, and Clinical Treatments of Milk Fat Globule Membrane for Infant Nutrition and Well-Being. Nutrients 2020; 12:E1607. [PMID: 32486129 PMCID: PMC7352329 DOI: 10.3390/nu12061607] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
Research on milk fat globule membrane (MFGM) is gaining traction. The interest is two-fold; on the one hand, it is a unique trilayer structure with specific secretory function. On the other hand, it is the basis for ingredients with the presence of phospho- and sphingolipids and glycoproteins, which are being used as food ingredients with valuable functionality, in particular, for use as a supplement in infant nutrition. This last application is at the center of this Review, which aims to contribute to understanding MFGM's function in the proper development of immunity, cognition, and intestinal trophism, in addition to other potential effects such as prevention of diseases including cardiovascular disease, impaired bone turnover and inflammation, skin conditions, and infections as well as age-associated cognitive decline and muscle loss. The phospholipid composition of MFGM from bovine milk is quite like human milk and, although there are some differences due to dairy processing, these do not result in a chemical change. The MFGM ingredients, as used to improve the formulation in different clinical studies, have indeed increased the presence of phospholipids, sphingolipids, glycolipids, and glycoproteins with the resulting benefits of different outcomes (especially immune and cognitive outcomes) with no reported adverse effects. Nevertheless, the precise mechanism(s) of action of MFGM remain to be elucidated and further basic investigation is warranted.
Collapse
Affiliation(s)
- Javier Fontecha
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CIAL, CSIC-UAM), 28049 Madrid, Spain
| | - Lauren Brink
- Department of Medical Affairs, Mead Johnson Nutrition, Evansville, IN 47721, USA; (L.B.); (S.W.)
| | - Steven Wu
- Department of Medical Affairs, Mead Johnson Nutrition, Evansville, IN 47721, USA; (L.B.); (S.W.)
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yves Pouliot
- STELA Dairy Research Center, Institute of Nutrition and Functional Foods (INAF), Department of Food Sciences, Laval University, Québec, QC G1V 0A6, Canada;
| | - Francesco Visioli
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy;
- IMDEA-Food, CEI UAM + CSIC, 28049 Madrid, Spain
| | - Rafael Jiménez-Flores
- Food Science and Technology Department, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Anderson RC, Dalziel JE, Haggarty NW, Dunstan KE, Gopal PK, Roy NC. Short communication: Processed bovine colostrum milk protein concentrate increases epithelial barrier integrity of Caco-2 cell layers. J Dairy Sci 2019; 102:10772-10778. [DOI: 10.3168/jds.2019-16951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022]
|
11
|
The In Vitro Protective Role of Bovine Lactoferrin on Intestinal Epithelial Barrier. Molecules 2019; 24:molecules24010148. [PMID: 30609730 PMCID: PMC6337092 DOI: 10.3390/molecules24010148] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/23/2018] [Accepted: 12/26/2018] [Indexed: 02/06/2023] Open
Abstract
The intestinal epithelial barrier plays a key protective role in the gut lumen. Bovine lactoferrin (bLF) has been reported to improve the intestinal epithelial barrier function, but its impact on tight junction (TJ) proteins has been rarely described. Human intestinal epithelial crypt cells (HIECs) were more similar to those in the human small intestine, compared with the well-established Caco-2 cells. Accordingly, both HIECs and Caco-2 cells were investigated in this study to determine the effects of bioactive protein bLF on their growth promotion and intestinal barrier function. The results showed that bLF promoted cell growth and arrested cell-cycle progression at the G2/M-phase. Moreover, bLF decreased paracellular permeability and increased alkaline phosphatase activity and transepithelial electrical resistance, strengthening barrier function. Immunofluorescence, western blot and quantitative real-time polymerase chain reaction revealed that bLF significantly increased the expression of three tight junction proteins-claudin-1, occludin, and ZO-1-at both the mRNA and protein levels, and consequently strengthened the barrier function of the two cell models. bLF in general showed higher activity in Caco-2 cells, however, HIECs also exhibited desired responses to barrier function. Therefore, bLF may be incorporated into functional foods for treatment of inflammatory bowel diseases which are caused by loss of barrier integrity.
Collapse
|
12
|
Lopez C, Cauty C, Guyomarc'h F. Unraveling the Complexity of Milk Fat Globules to Tailor Bioinspired Emulsions Providing Health Benefits: The Key Role Played by the Biological Membrane. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800201] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Lee H, Padhi E, Hasegawa Y, Larke J, Parenti M, Wang A, Hernell O, Lönnerdal B, Slupsky C. Compositional Dynamics of the Milk Fat Globule and Its Role in Infant Development. Front Pediatr 2018; 6:313. [PMID: 30460213 PMCID: PMC6232911 DOI: 10.3389/fped.2018.00313] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/02/2018] [Indexed: 12/17/2022] Open
Abstract
Human milk is uniquely optimized for the needs of the developing infant. Its composition is complex and dynamic, driven primarily by maternal genetics, and to a lesser extent by diet and environment. One important component that is gaining attention is the milk fat globule (MFG). The MFG is composed of a triglyceride-rich core surrounded by a tri-layer membrane, also known as the milk fat globule membrane (MFGM) that originates from mammary gland epithelia. The MFGM is enriched with glycerophospholipids, sphingolipids, cholesterol, and proteins, some of which are glycosylated, and are known to exert numerous biological roles. Mounting evidence suggests that the structure of the MFG and bioactive components of the MFGM may benefit the infant by aiding in the structural and functional maturation of the gut through the provision of essential nutrients and/or regulating various cellular events during infant growth and immune education. Further, antimicrobial peptides and surface carbohydrate moieties surrounding the MFG might have a pivotal role in shaping gut microbial populations, which in turn may promote protection against immune and inflammatory diseases early in life. This review seeks to: (1) understand the components of the MFG, as well as maternal factors including genetic and lifestyle factors that influence its characteristics; (2) examine the potential role of this milk component on the intestinal immune system; and (3) delineate the mechanistic roles of the MFG in infant intestinal maturation and establishment of the microbiota in the alimentary canal.
Collapse
Affiliation(s)
- Hanna Lee
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Emily Padhi
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Yu Hasegawa
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Jules Larke
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Mariana Parenti
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Aidong Wang
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Olle Hernell
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Carolyn Slupsky
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| |
Collapse
|