1
|
Fernando D, Ahmed AU, Williams BRG. Therapeutically targeting the unique disease landscape of pediatric high-grade gliomas. Front Oncol 2024; 14:1347694. [PMID: 38525424 PMCID: PMC10957575 DOI: 10.3389/fonc.2024.1347694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
Pediatric high-grade gliomas (pHGG) are a rare yet devastating malignancy of the central nervous system's glial support cells, affecting children, adolescents, and young adults. Tumors of the central nervous system account for the leading cause of pediatric mortality of which high-grade gliomas present a significantly grim prognosis. While the past few decades have seen many pediatric cancers experiencing significant improvements in overall survival, the prospect of survival for patients diagnosed with pHGGs has conversely remained unchanged. This can be attributed in part to tumor heterogeneity and the existence of the blood-brain barrier. Advances in discovery research have substantiated the existence of unique subgroups of pHGGs displaying alternate responses to different therapeutics and varying degrees of overall survival. This highlights a necessity to approach discovery research and clinical management of the disease in an alternative subtype-dependent manner. This review covers traditional approaches to the therapeutic management of pHGGs, limitations of such methods and emerging alternatives. Novel mutations which predominate the pHGG landscape are highlighted and the therapeutic potential of targeting them in a subtype specific manner discussed. Collectively, this provides an insight into issues in need of transformative progress which arise during the management of pHGGs.
Collapse
Affiliation(s)
- Dasun Fernando
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Afsar U. Ahmed
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Bryan R. G. Williams
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
2
|
Kim R, Leal AD, Parikh A, Ryan DP, Wang S, Bahamon B, Gupta N, Moss A, Pye J, Miao H, Inguilizian H, Cleary JM. A phase I, first-in-human study of TAK-164, an antibody-drug conjugate, in patients with advanced gastrointestinal cancers expressing guanylyl cyclase C. Cancer Chemother Pharmacol 2023; 91:291-300. [PMID: 36738333 PMCID: PMC10068631 DOI: 10.1007/s00280-023-04507-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
PURPOSE Guanylyl cyclase C (GCC) is highly expressed in several gastrointestinal malignancies and preclinical studies suggest that it is a promising target for antibody-based therapeutics. This phase I trial assessed the safety and tolerability of TAK-164, an investigational, anti-GCC antibody-drug conjugate (NCT03449030). METHODS Thirty-one patients with GCC-positive, advanced gastrointestinal cancers received intravenous TAK-164 on day 1 of 21-day cycles. Dose escalation proceeded based on cycle 1 safety data via a Bayesian model. RESULTS Median age was 58 years (range 32-72), 25 patients (80.6%) had colorectal carcinoma, and median number of prior therapies was four. No dose-limiting toxicities (DLTs) were reported during cycle 1 DLT evaluation period. After cycle 2 dosing, 3 patients reported dose-limiting treatment-emergent adverse events (TEAEs): grade 3 pyrexia and grade 5 hepatic failure (0.19 mg/kg), grade 4 hepatic failure and platelet count decreased (0.25 mg/kg), grade 3 nausea, grade 4 platelet and neutrophil count decreased (0.25 mg/kg). The recommended phase II dose (RP2D) was 0.064 mg/kg. Common TAK-164-related TEAEs included platelet count decreased (58.1%), fatigue (38.7%), and anemia (32.3%). There was a dose-dependent increase in TAK-164 exposure over the range, 0.032-0.25 mg/kg. TAK-164 half-life ranged from 63.5 to 159 h. One patient (0.008 mg/kg) with high baseline GCC expression had an unconfirmed partial response. CONCLUSIONS TAK-164 appeared to have a manageable safety profile at 0.064 mg/kg. Hepatic toxicity was identified as a potential risk. The RP2D of 0.064 mg/kg was considered insufficient to derive clinical benefit; there are no plans for further clinical development. CLINICAL TRIAL REGISTRATION NCT03449030.
Collapse
Affiliation(s)
- Richard Kim
- Department of Gastroenterology Oncology, Moffitt Cancer Center, Vincent A. Stabile Research Building, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.
| | - Alexis D Leal
- Division of Medical Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Aparna Parikh
- Division of Hematology and Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - David P Ryan
- Division of Hematology and Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Shining Wang
- Oncology Clinical Science, Takeda Development Center Americas, Inc. (TDCA), Lexington, MA, USA
| | - Brittany Bahamon
- Translational Medicine, Takeda Development Center Americas, Inc. (TDCA), Lexington, MA, USA
| | - Neeraj Gupta
- Quantitative Clinical Pharmacology, Takeda Development Center Americas, Inc. (TDCA), Lexington, MA, USA
| | - Aaron Moss
- Pharmacology/Toxicology, Audentes Therapeutics, Inc., San Francisco, CA, USA
| | - Joanna Pye
- Oncology Statistics, Takeda Development Center Americas, Inc. (TDCA), Lexington, MA, USA
| | - Harry Miao
- Clinical Development, Takeda Development Center Americas, Inc. (TDCA), Lexington, MA, USA
| | - Haig Inguilizian
- Global Patient Safety and Evaluation, Takeda Development Center Americas, Inc. (TDCA), Lexington, MA, USA
| | - James M Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Shaik BB, Katari NK, Jonnalagadda SB. Role of Natural Products in Developing Novel Anticancer Agents: A Perspective. Chem Biodivers 2022; 19:e202200535. [DOI: 10.1002/cbdv.202200535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/06/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Baji Baba Shaik
- Department of Chemistry School of Science GITAM Deemed to be University Hyderabad Telangana 502329 India
- School of Chemistry & Physics Westville Campus University of KwaZulu-Natal Chiltern Hills Durban 4000 South Africa
| | - Naresh Kumar Katari
- Department of Chemistry School of Science GITAM Deemed to be University Hyderabad Telangana 502329 India
- School of Chemistry & Physics Westville Campus University of KwaZulu-Natal Chiltern Hills Durban 4000 South Africa
| | - Sreekantha Babu Jonnalagadda
- School of Chemistry & Physics Westville Campus University of KwaZulu-Natal Chiltern Hills Durban 4000 South Africa
| |
Collapse
|
4
|
Yu L, Li Y. Involvement of Intestinal Enteroendocrine Cells in Neurological and Psychiatric Disorders. Biomedicines 2022; 10:biomedicines10102577. [PMID: 36289839 PMCID: PMC9599815 DOI: 10.3390/biomedicines10102577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Neurological and psychiatric patients have increased dramatically in number in the past few decades. However, effective treatments for these diseases and disorders are limited due to heterogeneous and unclear pathogenic mechanisms. Therefore, further exploration of the biological aspects of the disease, and the identification of novel targets to develop alternative treatment strategies, is urgently required. Systems-level investigations have indicated the potential involvement of the brain–gut axis and intestinal microbiota in the pathogenesis and regulation of neurological and psychiatric disorders. While intestinal microbiota is crucial for maintaining host physiology, some important sensory and regulatory cells in the host should not be overlooked. Intestinal epithelial enteroendocrine cells (EECs) residing in the epithelium throughout intestine are the key regulators orchestrating the communication along the brain-gut-microbiota axis. On one hand, EECs sense changes in luminal microorganisms via microbial metabolites; on the other hand, they communicate with host body systems via neuroendocrine molecules. Therefore, EECs are believed to play important roles in neurological and psychiatric disorders. This review highlights the involvement of EECs and subtype cells, via secretion of endocrine molecules, in the development and regulation of neurological and psychiatric disorders, including Parkinson’s disease (PD), schizophrenia, visceral pain, neuropathic pain, and depression. Moreover, the current paper summarizes the potential mechanism of EECs in contributing to disease pathogenesis. Examination of these mechanisms may inspire and lead to the development of new aspects of treatment strategies for neurological and psychiatric disorders in the future.
Collapse
Affiliation(s)
- Liangen Yu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yihang Li
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Correspondence:
| |
Collapse
|
5
|
Menezes B, Khera E, Calopiz M, Smith MD, Ganno ML, Cilliers C, Abu-Yousif AO, Linderman JJ, Thurber GM. Pharmacokinetics and Pharmacodynamics of TAK-164 Antibody Drug Conjugate Coadministered with Unconjugated Antibody. AAPS J 2022; 24:107. [PMID: 36207468 PMCID: PMC10754641 DOI: 10.1208/s12248-022-00756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
The development of new antibody-drug conjugates (ADCs) has led to the approval of 7 ADCs by the FDA in 4 years. Given the impact of intratumoral distribution on efficacy of these therapeutics, coadministration of unconjugated antibody with ADC has been shown to improve distribution and efficacy of several ADCs in high and moderately expressed tumor target systems by increasing tissue penetration. However, the benefit of coadministration in low expression systems is less clear. TAK-164, an ADC composed of an anti-GCC antibody (5F9) conjugated to a DGN549 payload, has demonstrated heterogeneous distribution and bystander killing. Here, we evaluated the impact of 5F9 coadministration on distribution and efficacy of TAK-164 in a primary human tumor xenograft mouse model. Coadministration was found to improve the distribution of TAK-164 within the tumor, but it had no significant impact (increase or decrease) on efficacy. Experimental and computational evidence indicates that this was not a result of tumor saturation, increased binding to perivascular cells, or compensatory bystander effects. Rather, the cellular potency of DGN549 was matched with the single-cell uptake of TAK-164 making its IC50 close to its equilibrium binding affinity (KD), and as such, coadministration dilutes total DGN549 in cells below the maximum cytotoxic concentration, thereby offsetting an increased number of targeted cells with decreased ability to kill each cell. These results provide new insights on matching payload potency to ADC delivery to help identify when increasing tumor penetration is beneficial for improving ADC efficacy and demonstrate how mechanistic simulations can be leveraged to design clinically effective ADCs.
Collapse
Affiliation(s)
- Bruna Menezes
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, Michigan, 48109, USA
| | - Eshita Khera
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, Michigan, 48109, USA
| | - Melissa Calopiz
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, Michigan, 48109, USA
| | - Michael D Smith
- Takeda Development Center Americas-Inc. TDCA, Oncology, Lexington, Massachussetts, USA
| | - Michelle L Ganno
- Takeda Development Center Americas-Inc. TDCA, Oncology, Lexington, Massachussetts, USA
| | - Cornelius Cilliers
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, Michigan, 48109, USA
| | - Adnan O Abu-Yousif
- Takeda Development Center Americas-Inc. TDCA, Oncology, Lexington, Massachussetts, USA
| | - Jennifer J Linderman
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, Michigan, 48109, USA
- Department of Biomedical Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, Michigan, 48109, USA
| | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, Michigan, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
6
|
Cheng-Sánchez I, Moya-Utrera F, Porras-Alcalá C, López-Romero JM, Sarabia F. Antibody-Drug Conjugates Containing Payloads from Marine Origin. Mar Drugs 2022; 20:md20080494. [PMID: 36005497 PMCID: PMC9410405 DOI: 10.3390/md20080494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are an important class of therapeutics for the treatment of cancer. Structurally, an ADC comprises an antibody, which serves as the delivery system, a payload drug that is a potent cytotoxin that kills cancer cells, and a chemical linker that connects the payload with the antibody. Unlike conventional chemotherapy methods, an ADC couples the selective targeting and pharmacokinetic characteristics related to the antibody with the potent cytotoxicity of the payload. This results in high specificity and potency by reducing off-target toxicities in patients by limiting the exposure of healthy tissues to the cytotoxic drug. As a consequence of these outstanding features, significant research efforts have been devoted to the design, synthesis, and development of ADCs, and several ADCs have been approved for clinical use. The ADC field not only relies upon biology and biochemistry (antibody) but also upon organic chemistry (linker and payload). In the latter, total synthesis of natural and designed cytotoxic compounds, together with the development of novel synthetic strategies, have been key aspects of the consecution of clinical ADCs. In the case of payloads from marine origin, impressive structural architectures and biological properties are observed, thus making them prime targets for chemical synthesis and the development of ADCs. In this review, we explore the molecular and biological diversity of ADCs, with particular emphasis on those containing marine cytotoxic drugs as the payload.
Collapse
Affiliation(s)
- Iván Cheng-Sánchez
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Correspondence:
| | - Federico Moya-Utrera
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; (F.M.-U.); (C.P.-A.); (J.M.L.-R.); (F.S.)
| | - Cristina Porras-Alcalá
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; (F.M.-U.); (C.P.-A.); (J.M.L.-R.); (F.S.)
| | - Juan M. López-Romero
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; (F.M.-U.); (C.P.-A.); (J.M.L.-R.); (F.S.)
| | - Francisco Sarabia
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; (F.M.-U.); (C.P.-A.); (J.M.L.-R.); (F.S.)
| |
Collapse
|
7
|
Wang N, Mei Q, Wang Z, Zhao L, Zhang D, Liao D, Zuo J, Xie H, Jia Y, Kong F. Research Progress of Antibody–Drug Conjugate Therapy for Advanced Gastric Cancer. Front Oncol 2022; 12:889017. [PMID: 35692796 PMCID: PMC9177940 DOI: 10.3389/fonc.2022.889017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric cancer is an intractable malignant tumor that has the fifth highest morbidity and the third highest mortality in the world. Even though various treatment options did much to ameliorate the prognosis of advanced gastric cancer, the survival time remained unsatisfactory. It is significant to develop new therapeutic agents to improve the long-term outcome. Antibody–drug conjugate is an innovative and potent antineoplastic drug composed of a specifically targeted monoclonal antibody, a chemical linker, and a small molecule cytotoxic payload. Powerful therapeutic efficacy and moderate toxicity are its preponderant advantages, which imply the inevitable pharmaceutical developments to meet the demand for individualized precision therapy. Nevertheless, it is unavoidable that there is a phenomenon of drug resistance in this agent. This article systematically reviewed the recent progress of antibody–drug conjugates in advanced gastric cancer therapy.
Collapse
Affiliation(s)
- Na Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qingyun Mei
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ziwei Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lu Zhao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Dou Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Dongying Liao
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jinhui Zuo
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongxia Xie
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- *Correspondence: Fanming Kong,
| |
Collapse
|
8
|
Singh D, Dheer D, Samykutty A, Shankar R. Antibody drug conjugates in gastrointestinal cancer: From lab to clinical development. J Control Release 2021; 340:1-34. [PMID: 34673122 DOI: 10.1016/j.jconrel.2021.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022]
Abstract
The antibody-drug conjugates (ADCs) are one the fastest growing biotherapeutics in oncology and are still in their infancy in gastrointestinal (GI) cancer for clinical applications to improve patient survival. The ADC based approach is developed with tumor specific antigen, antibody carrying cytotoxic agents to precisely target and deliver chemotherapeutics at the tumor site. To date, 11 ADCs have been approved by US-FDA, and more than 80 are in the clinical development phase for different oncological indications. However, The ADCs based therapies in GI cancers are still far from having high-efficient clinical outcomes. The limited success of these ADCs and lessons learned from the past are now being used to develop a newer generation of ADC against GI cancers. In this review, we did a comprehensive assessment of the key components of ADCs, including tumor marker, antibody, cytotoxic payload, and linkage strategy, with a focus on technical improvement and some future trends in the pipeline for clinical translation. The various preclinical and clinical ADCs used in gastrointestinal malignancies, their target, composition and bioconjugation, along with preclinical and clinical outcomes, are discussed. The emphasis is also given to new generation ADCs employing novel mAb, payload, linker, and bioconjugation methods are also included.
Collapse
Affiliation(s)
- Davinder Singh
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divya Dheer
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhilash Samykutty
- Stephenson Comprehensive Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA.
| | - Ravi Shankar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
Zhang Z, Song J, Xie C, Pan J, Lu W, Liu M. Pancreatic Cancer: Recent Progress of Drugs in Clinical Trials. AAPS JOURNAL 2021; 23:29. [PMID: 33580411 DOI: 10.1208/s12248-021-00556-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022]
Abstract
Pancreatic cancer is a highly malignant tumor and one of the primary causes of cancer-related death. Because pancreatic cancer is difficult to diagnose in the early course of the disease, most patients present with advanced lesions at the time of diagnosis, and only 20% of patients are eligible for surgery. Consequently, drug treatment has become extremely important. At present, the main treatment regimens for pancreatic cancer are gemcitabine and the FORFIRINOX and MPACT regimens. However, none of these regimens substantially improves the prognosis of patients with pancreatic cancer. Extensive efforts have been dedicated to the study of pancreatic cancer in recent years. With the development and clinical application of biological targeted drugs, the biological targeted treatment of tumors has been widely accepted. Therefore, this article used relevant clinical trial data to summarize the research progress of traditional chemotherapy drugs and biological targeted drugs for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Zhiyi Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Jie Song
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Cao Xie
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Jun Pan
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Min Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
10
|
Lisby AN, Flickinger JC, Bashir B, Weindorfer M, Shelukar S, Crutcher M, Snook AE, Waldman SA. GUCY2C as a biomarker to target precision therapies for patients with colorectal cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021; 6:117-129. [PMID: 34027103 DOI: 10.1080/23808993.2021.1876518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction Colorectal cancer (CRC) is one of the most-deadly malignancies worldwide. Current therapeutic regimens for CRC patients are relatively generic, based primarily on disease type and stage, with little variation. As the field of molecular oncology advances, so too must therapeutic management of CRC. Understanding molecular heterogeneity has led to a new-found promotion for precision therapy in CRC; underlining the diversity of molecularly targeted therapies based on individual tumor characteristics. Areas covered We review current approaches for the treatment of CRC and discuss the potential of precision therapy in advanced CRC. We highlight the utility of the intestinal protein guanylyl cyclase C (GUCY2C), as a multi-purpose biomarker and unique therapeutic target in CRC. Here, we summarize current GUCY2C-targeted approaches for treatment of CRC. Expert opinion The GUCY2C biomarker has multi-faceted utility in medicine. Developmental investment of GUCY2C as a diagnostic and therapeutic biomarker offers a variety of options taking the molecular characteristics of cancer into account. From GUCY2C-targeted therapies, namely cancer vaccines, CAR-T cells, and monoclonal antibodies, to GUCY2C agonists for chemoprevention in those who are at high risk for developing colorectal cancer, the utility of this protein provides many avenues for exploration with significance in the field of precision medicine.
Collapse
Affiliation(s)
- Amanda N Lisby
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - John C Flickinger
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Babar Bashir
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Megan Weindorfer
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Sanjna Shelukar
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Madison Crutcher
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| |
Collapse
|
11
|
Khera E, Cilliers C, Smith MD, Ganno ML, Lai KC, Keating TA, Kopp A, Nessler I, Abu-Yousif AO, Thurber GM. Quantifying ADC bystander payload penetration with cellular resolution using pharmacodynamic mapping. Neoplasia 2020; 23:210-221. [PMID: 33385970 PMCID: PMC7779838 DOI: 10.1016/j.neo.2020.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
With the recent approval of 3 new antibody drug conjugates (ADCs) for solid tumors, this class of drugs is gaining momentum for the targeted treatment of cancer. Despite significant investment, there are still fundamental issues that are incompletely understood. Three of the recently approved ADCs contain payloads exhibiting bystander effects, where the payload can diffuse out of a targeted cell into adjacent cells. These effects are often studied using a mosaic of antigen positive and negative cells. However, the distance these payloads can diffuse in tumor tissue while maintaining a lethal concentration is unclear. Computational studies suggest bystander effects partially compensate for ADC heterogeneity in tumors in addition to targeting antigen negative cells. However, this type of study is challenging to conduct experimentally due to the low concentrations of extremely potent payloads. In this work, we use a series of 3-dimensional cell culture and primary human tumor xenograft studies to directly track fluorescently labeled ADCs and indirectly follow the payload via an established pharmacodynamic marker (γH2A. X). Using TAK-164, an anti-GCC ADC undergoing clinical evaluation, we show that the lipophilic DNA-alkylating payload, DGN549, penetrates beyond the cell targeted layer in GCC-positive tumor spheroids and primary human tumor xenograft models. The penetration distance is similar to model predictions, where the lipophilicity results in moderate tissue penetration, thereby balancing improved tissue penetration with sufficient cellular uptake to avoid significant washout. These results aid in mechanistic understanding of the interplay between antigen heterogeneity, bystander effects, and heterogeneous delivery of ADCs in the tumor microenvironment to design clinically effective therapeutics.
Collapse
Affiliation(s)
- Eshita Khera
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Cornelius Cilliers
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | - Anna Kopp
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ian Nessler
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Abu-Yousif AO, Cvet D, Gallery M, Bannerman BM, Ganno ML, Smith MD, Lai KC, Keating TA, Stringer B, Kamali A, Eng K, Koseoglu S, Zhu A, Xia CQ, Landen MS, Borland M, Robertson R, Bolleddula J, Qian MG, Fretland J, Veiby OP. Preclinical Antitumor Activity and Biodistribution of a Novel Anti-GCC Antibody-Drug Conjugate in Patient-derived Xenografts. Mol Cancer Ther 2020; 19:2079-2088. [PMID: 32788205 DOI: 10.1158/1535-7163.mct-19-1102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/04/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022]
Abstract
Guanylyl cyclase C (GCC) is a unique therapeutic target with expression restricted to the apical side of epithelial cell tight junctions thought to be only accessible by intravenously administered agents on malignant tissues where GCC expression is aberrant. In this study, we sought to evaluate the therapeutic potential of a second-generation investigational antibody-dug conjugate (ADC), TAK-164, comprised of a human anti-GCC mAb conjugated via a peptide linker to the highly cytotoxic DNA alkylator, DGN549. The in vitro binding, payload release, and in vitro activity of TAK-164 was characterized motivating in vivo evaluation. The efficacy of TAK-164 and the relationship to exposure, pharmacodynamic marker activation, and biodistribution was evaluated in xenograft models and primary human tumor xenograft (PHTX) models. We demonstrate TAK-164 selectively binds to, is internalized by, and has potent cytotoxic effects against GCC-expressing cells in vitro A single intravenous administration of TAK-164 (0.76 mg/kg) resulted in significant growth rate inhibition in PHTX models of metastatic colorectal cancer. Furthermore, imaging studies characterized TAK-164 uptake and activity and showed positive relationships between GCC expression and tumor uptake which correlated with antitumor activity. Collectively, our data suggest that TAK-164 is highly active in multiple GCC-positive tumors including those refractory to TAK-264, a GCC-targeted auristatin ADC. A strong relationship between uptake of 89Zr-labeled TAK-164, levels of GCC expression and, most notably, response to TAK-164 therapy in GCC-expressing xenografts and PHTX models. These data supported the clinical development of TAK-164 as part of a first-in-human clinical trial (NCT03449030).
Collapse
Affiliation(s)
- Adnan O Abu-Yousif
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts.
| | - Donna Cvet
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts
| | - Melissa Gallery
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts
| | - Bret M Bannerman
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts
| | - Michelle L Ganno
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts
| | - Michael D Smith
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts
| | | | | | - Bradley Stringer
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts
| | - Afrand Kamali
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts
| | - Kurt Eng
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts
| | - Secil Koseoglu
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts
| | | | - Cindy Q Xia
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts
| | - Melissa Saylor Landen
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts
| | - Maria Borland
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts
| | | | - Jayaprakasam Bolleddula
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts
| | - Mark G Qian
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts
| | - Jennifer Fretland
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts
| | - O Petter Veiby
- Millennium Pharmaceuticals, Inc. (a wholly owned subsidiary of Takeda Pharmaceutical Company Limited), Cambridge, Massachsetts
| |
Collapse
|
13
|
Jiang L, Feng JG, Wang G, Zhu YP, Ju HX, Li DC, Liu Y. Circulating guanylyl cyclase C (GCC) mRNA is a reliable metastatic predictor and prognostic index of colorectal cancer. Transl Cancer Res 2020; 9:1843-1850. [PMID: 35117531 PMCID: PMC8798717 DOI: 10.21037/tcr.2020.02.34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/18/2020] [Indexed: 12/15/2022]
Abstract
Background Currently, few specific biomarkers or standard cutoff values are available for circulating tumor cells (CTCs) detection and survival prediction in patients with early stage colorectal cancer (CRC). Guanylyl cyclase C (GCC) presents as a specific expression in intestinal tumor cells and during their metastases, indicating its potential application as a metastatic predictor of CRC. Methods The circulating GCC mRNA of 160 colorectal cancer patients at stage I–III was detected via quantitative real-time (qRT)-PCR in our study, and the correlation of GCC mRNA level with tumor metastasis and long-term survival was explored. Results GCC mRNA was found to be positive in 43 out of 160 CRC patients and negative in ten healthy controls. It was found that GCC mRNA over the baseline (>100 copies/µL and 200 copies/µL) showed a significant correlation with disease-free survival (DFS) and overall survival (OS) in the stage II subgroup. It was further revealed that GCC mRNA over 300 copies/µL or higher than the median value of copy numbers was significantly correlated with reduced OS and DFS in CRC patients. A nomogram model based on variables including GCC mRNA copy number was established for predicting the OS of CRC patients (AUC =0.98). Conclusions Circulating GCC mRNA over baseline is a reliable predictor for tumor metastasis and can be a prognostic index in CRC patients.
Collapse
Affiliation(s)
- Lai Jiang
- Surgical Department of Colorectal Cancer, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, China
| | - Jian-Guo Feng
- Laboratory of Molecular Biology, Institute of Cancer Research and Basic Medical Sciences of the Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, China
| | - Gang Wang
- Surgical Department of Colorectal Cancer, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, China
| | - Yu-Ping Zhu
- Surgical Department of Colorectal Cancer, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, China
| | - Hai-Xing Ju
- Surgical Department of Colorectal Cancer, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, China
| | - De-Chuan Li
- Surgical Department of Colorectal Cancer, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, China
| | - Yong Liu
- Surgical Department of Colorectal Cancer, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, China
| |
Collapse
|
14
|
Nikolaou S, Qiu S, Fiorentino F, Rasheed S, Tekkis P, Kontovounisios C. The prognostic and therapeutic role of hormones in colorectal cancer: a review. Mol Biol Rep 2018; 46:1477-1486. [PMID: 30535551 DOI: 10.1007/s11033-018-4528-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of the commonest cancers in Western society with a poor prognosis in patients with advanced disease. Targeted therapy is of increasing interest and already, targeted hormone treatment for breast and prostate cancer has improved survival. The aim of this literature review is to summarise the role of hormones in CRC prognosis and treatment. A literature review of all human and animal in vivo and in vitro studies in the last 20 years, which assessed the role of hormones in CRC treatment or prognosis, was carried out. The hormones described in this review have been subdivided according to their secretion origin. Most of the studies are based on in vitro or animal models. The main findings point to adipokines, insulin and the insulin growth factor axis as key players in the link between obesity, type 2 diabetes mellitus and a subset of CRC. Gut-derived hormones, especially uroguanylin and guanylin are being increasingly investigated as therapeutic targets, with promising results. Using hormones as prognostic and therapeutic markers in CRC is still in the preliminary stages for only a fraction of the hormones affecting the GIT. In light of the increasing interest in tailoring treatment strategies, hormones are an important area of focus in the future of CRC management.
Collapse
Affiliation(s)
- Stella Nikolaou
- Department of Colorectal Surgery, Chelsea & Westminster Hospital, London, UK. .,Department of Colorectal Surgery, Royal Marsden Hospital, London, UK. .,Department of Surgery and Cancer, Imperial College, London, UK. .,Department of Surgery and Cancer, Imperial College London, Royal Marsden Hospital, Fulham Road & Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK.
| | - Shengyang Qiu
- Department of Colorectal Surgery, Chelsea & Westminster Hospital, London, UK.,Department of Surgery and Cancer, Imperial College, London, UK
| | | | - Shahnawaz Rasheed
- Department of Colorectal Surgery, Chelsea & Westminster Hospital, London, UK.,Department of Colorectal Surgery, Royal Marsden Hospital, London, UK.,Department of Surgery and Cancer, Imperial College, London, UK
| | - Paris Tekkis
- Department of Colorectal Surgery, Chelsea & Westminster Hospital, London, UK.,Department of Colorectal Surgery, Royal Marsden Hospital, London, UK.,Department of Surgery and Cancer, Imperial College, London, UK
| | - Christos Kontovounisios
- Department of Colorectal Surgery, Chelsea & Westminster Hospital, London, UK.,Department of Colorectal Surgery, Royal Marsden Hospital, London, UK.,Department of Surgery and Cancer, Imperial College, London, UK
| |
Collapse
|
15
|
Kumar A, Kinneer K, Masterson L, Ezeadi E, Howard P, Wu H, Gao C, Dimasi N. Synthesis of a heterotrifunctional linker for the site-specific preparation of antibody-drug conjugates with two distinct warheads. Bioorg Med Chem Lett 2018; 28:3617-3621. [DOI: 10.1016/j.bmcl.2018.10.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 01/08/2023]
|
16
|
Leal AD, Krishnamurthy A, Head L, Messersmith WA. Antibody drug conjugates under investigation in phase I and phase II clinical trials for gastrointestinal cancer. Expert Opin Investig Drugs 2018; 27:901-916. [PMID: 30359534 DOI: 10.1080/13543784.2018.1541085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Antibody drug conjugates (ADCs) represent a developing class of anticancer therapeutics which are designed to selectively deliver a cytotoxic payload to tumors, while limiting systemic toxicity to healthy tissues. There are several ADCs which are currently in various stages of clinical development for the treatment of gastrointestinal malignancies. AREAS COVERED We discuss the biologic rationale and review the clinical experience with ADCs in the treatment of gastrointestinal malignancies, summarizing the pre-clinical and phase I/II clinical trial data that have been completed or are ongoing. EXPERT OPINION While there have been significant advances in the development of ADCs since they were first introduced, several challenges remain. These challenges include (i) the selection of an ideal antigen target which is tumor specific and internalized upon binding, (ii) selection of an antibody which has high affinity for its antigen target and low immunogenicity, (iii) selection of a potent payload which is cytotoxic at sub-nanomolar concentrations, and (iv) optimal design of a linker to confer ADC stability with limited off-site toxicity. Efforts are ongoing to address these issues and innovate the ADC technology to improve the safety and efficacy of these agents.
Collapse
Affiliation(s)
- Alexis D Leal
- a Division of Medical Oncology , University of Colorado , Aurora , CO , USA
| | | | - Lia Head
- b Department of Internal Medicine , University of Colorado , Aurora , CO , USA
| | | |
Collapse
|
17
|
Sugimoto H, Ghosh D, Chen S, Smith MD, Abu-Yousif AO, Qian MG. Immunocapture-LC/MS-Based Target Engagement Measurement in Tumor Plasma Membrane. Anal Chem 2018; 90:13564-13571. [DOI: 10.1021/acs.analchem.8b03726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Schreiber AR, Nguyen A, Bagby SM, Arcaroli JJ, Yacob BW, Quackenbush K, Guy JL, Crowell T, Stringer B, Danaee H, Kalebic T, Messersmith WA, Pitts TM. Evaluation of TAK-264, an Antibody-Drug Conjugate in Pancreatic Cancer Cell Lines and Patient-Derived Xenograft Models. CLINICAL CANCER DRUGS 2018; 5:42-49. [PMID: 30631747 PMCID: PMC6324574 DOI: 10.2174/2212697x05666180516120907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Antibody-drug conjugates (ADCs) are an emerging technology consisting of an antibody, linker, and toxic agent, which have the potential to offer a targeted therapeutic approach. A novel target recently explored for the treatment of pancreatic cancer is guanylyl cyclase C (GCC). The objective of this study was to determine the anti-tumorigenic activity of TAK-264, an investigational ADC consisting of an antibody targeting GCC linked to a monomethyl auristatin E payload via a peptide linker. METHODS The antiproliferative effects of TAK-264 assessed in a panel of eleven pancreatic cancer cell lines. Additionally, ten unique pancreatic ductal adenocarcinoma cancer patient-derived xenograft models were treated with TAK-264 and the efficacy was determined. Baseline levels of GCC were analyzed on PDX models and cell lines. Immunoblotting was performed to evaluate the effects of TAK-264 on downstream effectors. RESULTS GCC protein expression was analyzed by immunoblotting in both normal and tumor tissue; marked increase in GCC expression was observed in tumor tissue. The in vitro experiments demonstrated a range of responses to TAK-264. Eight of the ten PDAC PDX models treated with TAK-264 demonstrated a statistically significant tumor growth inhibition. Immunoblotting demonstrated an increase in phosphorylated-HistoneH3 in both responsive and less responsive cell lines and PDAC PDX models treated with TAK-264. There was no correlation between baseline levels of GCC and response in either PDX or cell line models. CONCLUSION TAK-264 has shown suppression activity in pancreatic cancer cell lines and in pancreatic PDX models. These findings support further investigation of ADC targeting GCC.
Collapse
Affiliation(s)
- Anna R. Schreiber
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, CO, USA
| | - Anna Nguyen
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, CO, USA
| | - Stacey M. Bagby
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, CO, USA
| | - John J. Arcaroli
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, CO, USA
- University of Colorado Cancer Center, Aurora, CO, USA
| | - Betelehem W. Yacob
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, CO, USA
| | - Kevin Quackenbush
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, CO, USA
| | - Joe L. Guy
- Univeristy of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
| | | | | | | | | | - Wells A. Messersmith
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, CO, USA
- University of Colorado Cancer Center, Aurora, CO, USA
| | - Todd M. Pitts
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, CO, USA
- University of Colorado Cancer Center, Aurora, CO, USA
| |
Collapse
|