1
|
Broc B, Varini K, Sonnette R, Pecqueux B, Benoist F, Masse M, Mechioukhi Y, Ferracci G, Temsamani J, Khrestchatisky M, Jacquot G, Lécorché P. LDLR-Mediated Targeting and Productive Uptake of siRNA-Peptide Ligand Conjugates In Vitro and In Vivo. Pharmaceutics 2024; 16:548. [PMID: 38675209 PMCID: PMC11054735 DOI: 10.3390/pharmaceutics16040548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Small RNA molecules such as microRNA and small interfering RNA (siRNA) have become promising therapeutic agents because of their specificity and their potential to modulate gene expression. Any gene of interest can be potentially up- or down-regulated, making RNA-based technology the healthcare breakthrough of our era. However, the functional and specific delivery of siRNAs into tissues of interest and into the cytosol of target cells remains highly challenging, mainly due to the lack of efficient and selective delivery systems. Among the variety of carriers for siRNA delivery, peptides have become essential candidates because of their high selectivity, stability, and conjugation versatility. Here, we describe the development of molecules encompassing siRNAs against SOD1, conjugated to peptides that target the low-density lipoprotein receptor (LDLR), and their biological evaluation both in vitro and in vivo.
Collapse
Affiliation(s)
- Baptiste Broc
- Vect-Horus S.A.S, Faculté des Sciences Médicales et Paramédicales Secteur Timone, 13385 Marseille, France
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
| | - Karine Varini
- Vect-Horus S.A.S, Faculté des Sciences Médicales et Paramédicales Secteur Timone, 13385 Marseille, France
| | - Rose Sonnette
- Vect-Horus S.A.S, Faculté des Sciences Médicales et Paramédicales Secteur Timone, 13385 Marseille, France
| | - Belinda Pecqueux
- Vect-Horus S.A.S, Faculté des Sciences Médicales et Paramédicales Secteur Timone, 13385 Marseille, France
| | - Florian Benoist
- Vect-Horus S.A.S, Faculté des Sciences Médicales et Paramédicales Secteur Timone, 13385 Marseille, France
| | - Maxime Masse
- Vect-Horus S.A.S, Faculté des Sciences Médicales et Paramédicales Secteur Timone, 13385 Marseille, France
| | - Yasmine Mechioukhi
- Vect-Horus S.A.S, Faculté des Sciences Médicales et Paramédicales Secteur Timone, 13385 Marseille, France
| | - Géraldine Ferracci
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
| | - Jamal Temsamani
- Vect-Horus S.A.S, Faculté des Sciences Médicales et Paramédicales Secteur Timone, 13385 Marseille, France
| | | | - Guillaume Jacquot
- Vect-Horus S.A.S, Faculté des Sciences Médicales et Paramédicales Secteur Timone, 13385 Marseille, France
| | - Pascaline Lécorché
- Vect-Horus S.A.S, Faculté des Sciences Médicales et Paramédicales Secteur Timone, 13385 Marseille, France
| |
Collapse
|
2
|
Yang X, Varini K, Godard M, Gassiot F, Sonnette R, Ferracci G, Pecqueux B, Monnier V, Charles L, Maria S, Hardy M, Ouari O, Khrestchatisky M, Lécorché P, Jacquot G, Bardelang D. Preparation and In Vitro Validation of a Cucurbit[7]uril-Peptide Conjugate Targeting the LDL Receptor. J Med Chem 2023. [PMID: 37339060 DOI: 10.1021/acs.jmedchem.3c00423] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Here we report the coupling of a cyclic peptide (VH4127) targeting the low density lipoprotein (LDL) receptor (LDLR) noncompetitively to cucurbit[7]uril (CB[7]) to develop a new kind of drug delivery system (DDS), namely, CB[7]-VH4127, with maintained binding affinity to the LDLR. To evaluate the uptake potential of this bismacrocyclic compound, another conjugate was prepared comprising a high-affinity group for CB[7] (adamantyl(Ada)-amine) coupled to the fluorescent tracker Alexa680 (A680). The resulting A680-Ada·CB[7]-VH4127 supramolecular complex demonstrated conserved LDLR-binding potential and improved LDLR-mediated endocytosis and intracellular accumulation potential in LDLR-expressing cells. The combination of two technologies, namely, monofunctionalized CB[7] and the VH4127 LDLR-targeting peptide, opens new avenues in terms of targeting and intracellular delivery to LDLR-expressing tissues or tumors. The versatile transport capacity of CB[7], known to bind a large spectrum of bioactive or functional compounds, makes this new DDS suitable for a wide range of therapeutic or imaging applications.
Collapse
Affiliation(s)
- Xue Yang
- Aix Marseille Univ, CNRS, ICR, 13013 Marseille, France
| | | | | | | | | | - Géraldine Ferracci
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
| | | | - Valérie Monnier
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, Spectropole, 13013 Marseille, France
| | | | | | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, 13013 Marseille, France
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, 13013 Marseille, France
| | | | | | | | | |
Collapse
|
3
|
Parrasia S, Szabò I, Zoratti M, Biasutto L. Peptides as Pharmacological Carriers to the Brain: Promises, Shortcomings and Challenges. Mol Pharm 2022; 19:3700-3729. [PMID: 36174227 DOI: 10.1021/acs.molpharmaceut.2c00523] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Central nervous system (CNS) diseases are among the most difficult to treat, mainly because the vast majority of the drugs fail to cross the blood-brain barrier (BBB) or to reach the brain at concentrations adequate to exert a pharmacological activity. The obstacle posed by the BBB has led to the in-depth study of strategies allowing the brain delivery of CNS-active drugs. Among the most promising strategies is the use of peptides addressed to the BBB. Peptides are versatile molecules that can be used to decorate nanoparticles or can be conjugated to drugs, with either a stable link or as pro-drugs. They have been used to deliver to the brain both small molecules and proteins, with applications in diverse therapeutic areas such as brain cancers, neurodegenerative diseases and imaging. Peptides can be generally classified as receptor-targeted, recognizing membrane proteins expressed by the BBB microvessels (e.g., Angiopep2, CDX, and iRGD), "cell-penetrating peptides" (CPPs; e.g. TAT47-57, SynB1/3, and Penetratin), undergoing transcytosis through unspecific mechanisms, or those exploiting a mixed approach. The advantages of peptides have been extensively pointed out, but so far few studies have focused on the potential negative aspects. Indeed, despite having a generally good safety profile, some peptide conjugates may display toxicological characteristics distinct from those of the peptide itself, causing for instance antigenicity, cardiovascular alterations or hemolysis. Other shortcomings are the often brief lifetime in vivo, caused by the presence of peptidases, the vulnerability to endosomal/lysosomal degradation, and the frequently still insufficient attainable increase of brain drug levels, which remain below the therapeutically useful concentrations. The aim of this review is to analyze not only the successful and promising aspects of the use of peptides in brain targeting but also the problems posed by this strategy for drug delivery.
Collapse
Affiliation(s)
- Sofia Parrasia
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35131 Padova, Italy.,Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35131 Padova, Italy.,Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| |
Collapse
|
4
|
Jiang X, Han W, Liu J, Mao J, Lee MJ, Rodriguez M, Li Y, Luo T, Xu Z, Yang K, Bissonnette M, Weichselbaum RR, Lin W. Tumor-Activatable Nanoparticles Target Low-Density Lipoprotein Receptor to Enhance Drug Delivery and Antitumor Efficacy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201614. [PMID: 35748191 PMCID: PMC9404402 DOI: 10.1002/advs.202201614] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/31/2022] [Indexed: 05/28/2023]
Abstract
The binding of plasma proteins to nanomedicines is widely considered detrimental to their delivery to tumors. Here, the design of OxPt/SN38 nanoparticle containing a hydrophilic oxaliplatin (OxPt) prodrug in a coordination polymer core and a hydrophobic cholesterol-conjugated SN38 prodrug on the lipid shell for active tumor targeting is reported. OxPt/SN38 hitchhikes on low-density lipoprotein (LDL) particles, concentrates in tumors via LDL receptor-mediated endocytosis, and selectively releases SN38 and OxPt in acidic, esterase-rich, and reducing tumor microenvironments, leading to 6.0- and 4.9-times higher accumulations in tumors over free drugs. By simultaneously crosslinking DNA and inhibiting topoisomerase I, OxPt/SN38 achieved 92-98% tumor growth inhibition in five colorectal cancer tumor models and prolonged mouse survival by 58-80 days compared to free drug controls in three human colorectal cancer tumor models without causing serious side effects. The study has uncovered a novel nanomedicine strategy to co-deliver combination chemotherapies to tumors via active targeting of the LDL receptor.
Collapse
Affiliation(s)
- Xiaomin Jiang
- Department of ChemistryThe University of ChicagoChicagoIL60637USA
| | - Wenbo Han
- Department of ChemistryThe University of ChicagoChicagoIL60637USA
| | - Jianqiao Liu
- Department of ChemistryThe University of ChicagoChicagoIL60637USA
| | - Jianming Mao
- Department of ChemistryThe University of ChicagoChicagoIL60637USA
| | - Morten J. Lee
- Department of ChemistryThe University of ChicagoChicagoIL60637USA
| | - Megan Rodriguez
- Department of ChemistryThe University of ChicagoChicagoIL60637USA
| | - Youyou Li
- Department of ChemistryThe University of ChicagoChicagoIL60637USA
| | - Taokun Luo
- Department of ChemistryThe University of ChicagoChicagoIL60637USA
| | - Ziwan Xu
- Department of ChemistryThe University of ChicagoChicagoIL60637USA
| | - Kaiting Yang
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis ResearchThe University of Chicago5758S Maryland AveChicagoIL60637USA
| | - Marc Bissonnette
- Department of MedicineDivision of Biological SciencesThe University of ChicagoChicagoIL60637USA
| | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis ResearchThe University of Chicago5758S Maryland AveChicagoIL60637USA
| | - Wenbin Lin
- Department of ChemistryThe University of ChicagoChicagoIL60637USA
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis ResearchThe University of Chicago5758S Maryland AveChicagoIL60637USA
| |
Collapse
|
5
|
Acier A, Godard M, Gassiot F, Finetti P, Rubis M, Nowak J, Bertucci F, Iovanna JL, Tomasini R, Lécorché P, Jacquot G, Khrestchatisky M, Temsamani J, Malicet C, Vasseur S, Guillaumond F. LDL receptor-peptide conjugate as in vivo tool for specific targeting of pancreatic ductal adenocarcinoma. Commun Biol 2021; 4:987. [PMID: 34413441 PMCID: PMC8377056 DOI: 10.1038/s42003-021-02508-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022] Open
Abstract
Despite clinical advances in diagnosis and treatment, pancreatic ductal adenocarcinoma (PDAC) remains the third leading cause of cancer death, and is still associated with poor prognosis and dismal survival rates. Identifying novel PDAC-targeted tools to tackle these unmet clinical needs is thus an urgent requirement. Here we use a peptide conjugate that specifically targets PDAC through low-density lipoprotein receptor (LDLR). We demonstrate by using near-infrared fluorescence imaging the potential of this conjugate to specifically detect and discriminate primary PDAC from healthy organs including pancreas and from benign mass-forming chronic pancreatitis, as well as detect metastatic pancreatic cancer cells in healthy liver. This work paves the way towards clinical applications in which safe LDLR-targeting peptide conjugate promotes tumor-specific delivery of imaging and/or therapeutic agents, thereby leading to substantial improvements of the PDAC patient’s outcome. Acier et al. investigated a peptide cargo system, the Fc(A680)-VH4127, that targets PDAC through the LDLR cell-surface receptor. The Fc(A680)-VH4127 was found to specifically target spontaneous pancreatic tumors in KICmice, as well as metastatic pancreatic tumors in liver.
Collapse
Affiliation(s)
- Angélina Acier
- CRCM, Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes (IPC), Marseille, France.,Vect-Horus, Marseille, France
| | | | | | - Pascal Finetti
- CRCM, Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes (IPC), Marseille, France
| | - Marion Rubis
- CRCM, Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes (IPC), Marseille, France
| | | | - François Bertucci
- CRCM, Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes (IPC), Marseille, France
| | - Juan L Iovanna
- CRCM, Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes (IPC), Marseille, France
| | - Richard Tomasini
- CRCM, Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes (IPC), Marseille, France
| | | | | | | | | | | | - Sophie Vasseur
- CRCM, Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes (IPC), Marseille, France
| | - Fabienne Guillaumond
- CRCM, Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes (IPC), Marseille, France. .,CRCM U1068 - Pancreatic Cancer Team, 163 avenue de Luminy, Parc Scientifique de Luminy, Marseille, France.
| |
Collapse
|
6
|
Strategies for delivering therapeutics across the blood-brain barrier. Nat Rev Drug Discov 2021; 20:362-383. [PMID: 33649582 DOI: 10.1038/s41573-021-00139-y] [Citation(s) in RCA: 424] [Impact Index Per Article: 141.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
Achieving sufficient delivery across the blood-brain barrier is a key challenge in the development of drugs to treat central nervous system (CNS) disorders. This is particularly the case for biopharmaceuticals such as monoclonal antibodies and enzyme replacement therapies, which are largely excluded from the brain following systemic administration. In recent years, increasing research efforts by pharmaceutical and biotechnology companies, academic institutions and public-private consortia have resulted in the evaluation of various technologies developed to deliver therapeutics to the CNS, some of which have entered clinical testing. Here we review recent developments and challenges related to selected blood-brain barrier-crossing strategies - with a focus on non-invasive approaches such as receptor-mediated transcytosis and the use of neurotropic viruses, nanoparticles and exosomes - and analyse their potential in the treatment of CNS disorders.
Collapse
|
7
|
Varini K, Lécorché P, Sonnette R, Gassiot F, Broc B, Godard M, David M, Faucon A, Abouzid K, Ferracci G, Temsamani J, Khrestchatisky M, Jacquot G. Target engagement and intracellular delivery of mono- and bivalent LDL receptor-binding peptide-cargo conjugates: Implications for the rational design of new targeted drug therapies. J Control Release 2019; 314:141-161. [PMID: 31644939 DOI: 10.1016/j.jconrel.2019.10.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Abstract
Targeted delivery to specific tissues and subcellular compartments is of paramount importance to optimize therapeutic or diagnostic interventions while minimizing side-effects. Using recently identified LDL receptor (LDLR) -targeting small synthetic peptide-vectors conjugated to model cargos of different nature and size, we investigated in LDLR-expressing cells the impact of vector-cargo molecular engineering and coupling valency, as well as the cellular exposure duration on their target engagement and intracellular trafficking and delivery profiles. All vector-cargo conjugates evaluated were found to be delivered to late compartments together with the natural ligand LDL, although to varying extents and with different kinetics. Partial recycling together with the LDLR was also consistently observed. Under continuous cellular exposure, the extent of intracellular vector-cargo delivery primarily relies on their endosomal unloading potential. In this condition, the highest intracellular delivery potential was observed with a monovalent conjugate displaying a rather high LDLR dissociation rate. On the contrary, under transient cellular exposure followed by chase, low dissociation-rate bivalent conjugates revealed a higher intracellular delivery potential than the monovalent conjugate. This was shown to rely on their ability to undergo multiple endocytosis-recycling rounds, with limited release in the ligand-free medium. The absence of reciprocal competition with the natural ligand LDL on their respective intracellular trafficking was also demonstrated, which is essential in terms of potential safety liabilities. These results demonstrate that not only molecular engineering of new therapeutic conjugates of interest, but also the cellular exposure mode used during in vitro evaluations are critical to anticipate and optimize their delivery potential.
Collapse
Affiliation(s)
- K Varini
- VECT-HORUS SAS, Marseille, France; Aix-Marseille Univ., CNRS, INP, Inst. Neurophysiopathol., Marseille, France
| | | | | | | | - B Broc
- VECT-HORUS SAS, Marseille, France
| | - M Godard
- VECT-HORUS SAS, Marseille, France
| | - M David
- VECT-HORUS SAS, Marseille, France
| | - A Faucon
- VECT-HORUS SAS, Marseille, France
| | | | - G Ferracci
- Aix-Marseille Univ., CNRS, INP, Inst. Neurophysiopathol., Marseille, France
| | | | - M Khrestchatisky
- Aix-Marseille Univ., CNRS, INP, Inst. Neurophysiopathol., Marseille, France
| | | |
Collapse
|