1
|
Subramanian C, Hohenberger KK, Zuo A, Cousineau E, Blagg B, Cohen M. C-Terminal Hsp90 Inhibitors Overcome MEK and BRAF Inhibitor Resistance in Melanoma. J Cell Mol Med 2025; 29:e70489. [PMID: 40135438 PMCID: PMC11937850 DOI: 10.1111/jcmm.70489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Targeted therapies for melanoma MEK and BRAF inhibitors fail due to the development of chemoresistance. As Hsp90 inhibitors target client proteins of resistant pathways, we hypothesised that C-terminal Hsp90 inhibitors will target BRAF/MEK inhibitor resistant melanoma cells by overcoming the resistant pathways. Two melanoma cell lines, A375 and A375 MEK/BRAF inhibitor resistant (A375MEKi) were utilised. The inhibitory concentrations (IC50) of two C-terminal Hsp90 inhibitors, KU757 and KU758, were determined by CellTiter Glo. RNA sequencing was performed after treatment with KU757. Pathways targeted by differentially expressed genes were evaluated by David, IPA, GSEA, and by evaluating the cell cycle, apoptosis and oxidative phosphorylation. Expression levels of hub genes were evaluated using Xena and validated by RT-PCR. The survival analysis was performed using UALCAN. A375MEKi was not resistant to the C-terminal Hsp90 inhibitor with a KU757 IC50 of 0.59 μM versus 0.64 μM and a KU758 IC50 of 0.89 μM versus 0.93 μM in A375 versus A375MEKi, respectively. RNA sequencing analysis revealed KU757 upregulates cell cycle checkpoint regulation and apoptosis and downregulates genes involved in the peroxisome, AKT/PI3K/MTOR, EIF2, fatty acid metabolism and oxidative phosphorylation. These pathways were further validated through survival analysis that demonstrated potential survival benefit in patients with dysregulated NDUFA7, CDC20, CDC25C, CDK1, VDAC2, HEATR5a, COL4A4, FLT3LG, BMP2, PRKCH and ADMST9. Melanomas often develop concurrent resistance to BRAF and MEK inhibitors. C-terminal Hsp90 inhibition with KU757 appears to overcome these chemo-resistance pathways in vitro, downregulating metabolic pathways including oxidative phosphorylation and the cell cycle, warranting further in vivo translation. The novel C-terminal HSP90 inhibitor KU757 effectively targets primary and BRAF and MEK inhibitor-resistant melanoma cells equally by affecting oxidative phosphorylation and the cell cycle.
Collapse
Affiliation(s)
- Chitra Subramanian
- Department of Surgery, and Biomedical and Translational SciencesCarle Illinois College of Medicine at the University of Illinois Urbana ChampaignUrbanaIllinoisUSA
| | | | - Ang Zuo
- Department of PharmacologyUniversity of Notre DameNotre DameIndianaUSA
| | - Eric Cousineau
- Department of Surgery, and Biomedical and Translational SciencesCarle Illinois College of Medicine at the University of Illinois Urbana ChampaignUrbanaIllinoisUSA
| | - Brian Blagg
- Department of PharmacologyUniversity of Notre DameNotre DameIndianaUSA
| | - Mark Cohen
- Department of Surgery, and Biomedical and Translational SciencesCarle Illinois College of Medicine at the University of Illinois Urbana ChampaignUrbanaIllinoisUSA
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
2
|
Lara-Vega I, Correa-Lara MVM, Vega-López A. Effectiveness of radiotherapy and targeted radionuclide therapy for melanoma in preclinical mouse models: A combination treatments overview. Bull Cancer 2023; 110:912-936. [PMID: 37277266 DOI: 10.1016/j.bulcan.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/29/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023]
Abstract
Cutaneous melanoma is an aggressive and highly metastatic skin cancer. In recent years, immunotherapy and targeted small-molecule inhibitors have improved the overall survival of patients. Unfortunately, most patients in advanced stages of disease exhibit either intrinsically resistant or rapidly acquire resistance to these approved treatments. However, combination treatments have emerged to overcome resistance, and novel treatments based on radiotherapy (RT) and targeted radionuclide therapy (TRT) have been developed to treat melanoma in the preclinical mouse model, raising the question of whether synergy in combination therapies may motivate and increase their use as primary treatments for melanoma. To help clarify this question, we reviewed the studies in preclinical mouse models where they evaluated RT and TRT in combination with other approved and unapproved therapies from 2016 onwards, focusing on the type of melanoma model used (primary tumor and or metastatic model). PubMed® was the database in which the search was performed using mesh search algorithms resulting in 41 studies that comply with the inclusion rules of screening. Studies reviewed showed that synergy with RT or TRT had strong antitumor effects, such as tumor growth inhibition and fewer metastases, also exhibiting systemic protection. In addition, most studies were carried out on antitumor response for the implanted primary tumor, demonstrating that more studies are needed to evaluate these combined treatments in metastatic models on long-term protocols.
Collapse
Affiliation(s)
- Israel Lara-Vega
- National School of Biological Sciences, National Polytechnic Institute, Environmental Toxicology Laboratory, Avenida Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Mexico City CP 07738, Mexico
| | - Maximiliano V M Correa-Lara
- National School of Biological Sciences, National Polytechnic Institute, Environmental Toxicology Laboratory, Avenida Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Mexico City CP 07738, Mexico
| | - Armando Vega-López
- National School of Biological Sciences, National Polytechnic Institute, Environmental Toxicology Laboratory, Avenida Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Mexico City CP 07738, Mexico.
| |
Collapse
|
3
|
Moon S, Kim HJ, Lee Y, Lee YJ, Jung S, Lee JS, Hahn SH, Kim K, Roh JY, Nam S. Oncogenic signaling pathways and hallmarks of cancer in Korean patients with acral melanoma. Comput Biol Med 2023; 154:106602. [PMID: 36716688 DOI: 10.1016/j.compbiomed.2023.106602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/23/2022] [Accepted: 01/22/2023] [Indexed: 01/25/2023]
Abstract
Acral melanoma (AM), a rare subtype of cutaneous melanoma, shows higher incidence in Asians, including Koreans, than in Caucasians. However, the genetic modification associated with AM in Koreans is not well known and has not been comprehensively investigated in terms of oncogenic signaling, and hallmarks of cancer. We performed whole-exome and RNA sequencing for Korean patients with AM and acquired the genetic alterations and gene expression profiles. KIT alterations (previously known to be recurrent alterations in AM) and CDK4/CCND1 copy number amplifications were identified in the patients. Genetic and transcriptomic alterations in patients with AM were functionally converge to the hallmarks of cancer and oncogenic pathways, including 'proliferative signal persistence', 'apoptotic resistance', and 'activation of invasion and metastasis', despite the heterogeneous somatic mutation profiles of Korean patients with AM. This study may provide a molecular understanding for therapeutic strategy for AM.
Collapse
Affiliation(s)
- SeongRyeol Moon
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon, 21999, South Korea
| | - Hee Joo Kim
- Department of Dermatology, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, South Korea
| | - Yeeun Lee
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon, 21999, South Korea
| | - Yu Joo Lee
- Department of Genome Medicine and Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, South Korea
| | - Sungwon Jung
- Department of Genome Medicine and Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, South Korea
| | - Jin Sook Lee
- Department of Genome Medicine and Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, South Korea; Department of Pediatrics, Seoul National University Hospital Child Cancer and Rare Disease Administration, Seoul National University Children's Hospital, Seoul, 03080, South Korea
| | - Si Houn Hahn
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle Children's Hospital, Seattle, WA, 98105, USA
| | | | - Joo Young Roh
- Department of Dermatology, Ewha Womans University College of Medicine, Seoul Hospital, Seoul, 07804, South Korea.
| | - Seungyoon Nam
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon, 21999, South Korea; Department of Genome Medicine and Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, South Korea; AI Convergence Center for Medical Science, Gachon University College of Medicine, Incheon, 21565, South Korea.
| |
Collapse
|
4
|
Ren X, Li T, Zhang W, Yang X. Targeting Heat-Shock Protein 90 in Cancer: An Update on Combination Therapy. Cells 2022; 11:cells11162556. [PMID: 36010632 PMCID: PMC9406578 DOI: 10.3390/cells11162556] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Heat-shock protein 90 (HSP90) is an important molecule chaperone associated with tumorigenesis and malignancy. HSP90 is involved in the folding and maturation of a wide range of oncogenic clients, including diverse kinases, transcription factors and oncogenic fusion proteins. Therefore, it could be argued that HSP90 facilitates the malignant behaviors of cancer cells, such as uncontrolled proliferation, chemo/radiotherapy resistance and immune evasion. The extensive associations between HSP90 and tumorigenesis indicate substantial therapeutic potential, and many HSP90 inhibitors have been developed. However, due to HSP90 inhibitor toxicity and limited efficiency, none have been approved for clinical use as single agents. Recent results suggest that combining HSP90 inhibitors with other anticancer therapies might be a more advisable strategy. This review illustrates the role of HSP90 in cancer biology and discusses the therapeutic value of Hsp90 inhibitors as complements to current anticancer therapies.
Collapse
Affiliation(s)
- Xiude Ren
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
| | - Tao Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052, China
| | - Wei Zhang
- Departments of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
- Correspondence: (W.Z.); (X.Y.)
| | - Xuejun Yang
- Department of Neurosurgery, Tsinghua University Beijing Tsinghua Changgung Hospital, Beijing 102218, China
- Correspondence: (W.Z.); (X.Y.)
| |
Collapse
|
5
|
Wang F, Qiu T, Wang H, Yang Q. State-of-the-Art Review on Myelofibrosis Therapies. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:e350-e362. [PMID: 34903489 DOI: 10.1016/j.clml.2021.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Myelofibrosis (MF) is a BCR-ABL1-negative myeloproliferative neoplasm characterized by anemia, extramedullary hematopoiesis, bone marrow fibrosis, splenomegaly, constitutional symptoms and acute myeloid leukemia progression. Currently, allogeneic haematopoietic stem cell transplantation (AHSCT) therapy is the only curative option for MF patients. However, AHSCT is strictly limited due to the high rates of morbidity and mortality. Janus kinase 2 (JAK2) inhibitor Ruxolitinib is the first-line treatment for intermediate-II or high-risk MF patients with splenomegaly and constitutional symptoms, but most MF patients develop resistance or intolerance to Ruxolitinib. Therefore, MF treatment is a challenge for the medical community. This review summarizes 3 investigated directions for MF therapy: monotherapies of JAK inhibitors, monotherapies of non-JAK targeted agents, combination therapies of Ruxolitinib and other agents. We emphasize combination of Ruxolitinib and other agents is a promising strategy.
Collapse
Affiliation(s)
- Fuping Wang
- Beijing Key Laboratory of Resistant Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Tian Qiu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Wang
- Department of Hematology, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qiong Yang
- Beijing Key Laboratory of Resistant Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China.
| |
Collapse
|
6
|
de Keijzer MJ, de Klerk DJ, de Haan LR, van Kooten RT, Franchi LP, Dias LM, Kleijn TG, van Doorn DJ, Heger M. Inhibition of the HIF-1 Survival Pathway as a Strategy to Augment Photodynamic Therapy Efficacy. Methods Mol Biol 2022; 2451:285-403. [PMID: 35505024 DOI: 10.1007/978-1-0716-2099-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) is a non-to-minimally invasive treatment modality that utilizes photoactivatable drugs called photosensitizers to disrupt tumors with locally photoproduced reactive oxygen species (ROS). Photosensitizer activation by light results in hyperoxidative stress and subsequent tumor cell death, vascular shutdown and hypoxia, and an antitumor immune response. However, sublethally afflicted tumor cells initiate several survival mechanisms that account for decreased PDT efficacy. The hypoxia inducible factor 1 (HIF-1) pathway is one of the most effective cell survival pathways that contributes to cell recovery from PDT-induced damage. Several hundred target genes of the HIF-1 heterodimeric complex collectively mediate processes that are involved in tumor cell survival directly and indirectly (e.g., vascularization, glucose metabolism, proliferation, and metastasis). The broad spectrum of biological ramifications culminating from the activation of HIF-1 target genes reflects the importance of HIF-1 in the context of therapeutic recalcitrance. This chapter elaborates on the involvement of HIF-1 in cancer biology, the hypoxic response mechanisms, and the role of HIF-1 in PDT. An overview of inhibitors that either directly or indirectly impede HIF-1-mediated survival signaling is provided. The inhibitors may be used as pharmacological adjuvants in combination with PDT to augment therapeutic efficacy.
Collapse
Affiliation(s)
- Mark J de Keijzer
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Lianne R de Haan
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Robert T van Kooten
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Leonardo P Franchi
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
- Faculty of Philosophy, Sciences, and Letters of Ribeirão Preto, epartment of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group,University of São Paulo, São Paulo, Brazil
| | - Lionel M Dias
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Tony G Kleijn
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Diederick J van Doorn
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China.
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Mathien S, Tesnière C, Meloche S. Regulation of Mitogen-Activated Protein Kinase Signaling Pathways by the Ubiquitin-Proteasome System and Its Pharmacological Potential. Pharmacol Rev 2021; 73:263-296. [PMID: 34732541 DOI: 10.1124/pharmrev.120.000170] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are evolutionarily conserved signaling pathways that play essential roles in transducing extracellular environmental signals into diverse cellular responses to maintain homeostasis. These pathways are classically organized into an architecture of three sequentially acting protein kinases: a MAPK kinase kinase that phosphorylates and activates a MAPK kinase, which in turn phosphorylates and activates the effector MAPK. The activity of MAPKs is tightly regulated by phosphorylation of their activation loop, which can be modulated by positive and negative feedback mechanisms to control the amplitude and duration of the signal. The signaling outcomes of MAPK pathways are further regulated by interactions of MAPKs with scaffolding and regulatory proteins. Accumulating evidence indicates that, in addition to these mechanisms, MAPK signaling is commonly regulated by ubiquitin-proteasome system (UPS)-mediated control of the stability and abundance of MAPK pathway components. Notably, the biologic activity of some MAPKs appears to be regulated mainly at the level of protein turnover. Recent studies have started to explore the potential of targeted protein degradation as a powerful strategy to investigate the biologic functions of individual MAPK pathway components and as a new therapeutic approach to overcome resistance to current small-molecule kinase inhibitors. Here, we comprehensively review the mechanisms, physiologic importance, and pharmacological potential of UPS-mediated protein degradation in the control of MAPK signaling. SIGNIFICANCE STATEMENT: Accumulating evidence highlights the importance of targeted protein degradation by the ubiquitin-proteasome system in regulating and fine-tuning the signaling output of mitogen-activated protein kinase (MAPK) pathways. Manipulating protein levels of MAPK cascade components may provide a novel approach for the development of selective pharmacological tools and therapeutics.
Collapse
Affiliation(s)
- Simon Mathien
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| | - Chloé Tesnière
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Tang W, Wu Y, Qi X, Yu R, Lu Z, Chen A, Fan X, Li J. PGK1-coupled HSP90 stabilizes GSK3β expression to regulate the stemness of breast cancer stem cells. Cancer Biol Med 2021; 19:j.issn.2095-3941.2020.0362. [PMID: 34403222 PMCID: PMC9088184 DOI: 10.20892/j.issn.2095-3941.2020.0362] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 03/02/2021] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Glycogen synthase kinase-3β (GSK3β) has been recognized as a suppressor of Wnt/β-catenin signaling, which is critical for the stemness maintenance of breast cancer stem cells. However, the regulatory mechanisms of GSK3β protein expression remain elusive. METHODS Co-immunoprecipitation and mass spectral assays were performed to identify molecules binding to GSK3β, and to characterize the interactions of GSK3β, heat shock protein 90 (Hsp90), and co-chaperones. The role of PGK1 in Hsp90 chaperoning GSK3β was evaluated by constructing 293T cells stably expressing different domains/mutants of Hsp90α, and by performing a series of binding assays with bacterially purified proteins and clinical specimens. The influences of Hsp90 inhibitors on breast cancer stem cell stemness were investigated by Western blot and mammosphere formation assays. RESULTS We showed that GSK3β was a client protein of Hsp90. Hsp90, which did not directly bind to GSK3β, interacted with phosphoglycerate kinase 1 via its C-terminal domain, thereby facilitating the binding of GSK3β to Hsp90. GSK3β-bound PGK1 interacted with Hsp90 in the "closed" conformation and stabilized GSK3β expression in an Hsp90 activity-dependent manner. The Hsp90 inhibitor, 17-AAG, rather than HDN-1, disrupted the interaction between Hsp90 and PGK1, and reduced GSK3β expression, resulting in significantly reduced inhibition of β-catenin expression, to maintain the stemness of breast cancer stem cells. CONCLUSIONS Our findings identified a novel regulatory mechanism of GSK3β expression involving metabolic enzyme PGK1-coupled Hsp90, and highlighted the potential for more effective cancer treatment by selecting Hsp90 inhibitors that do not affect PGK1-regulated GSK3β expression.
Collapse
Affiliation(s)
- Wei Tang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yu Wu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xin Qi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhimin Lu
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease of the First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Ao Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xinglong Fan
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266003, China
| | - Jing Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
9
|
Schiferle EB, Cheon SY, Ham S, Son HG, Messerschmidt JL, Lawrence DP, Cohen JV, Flaherty KT, Moon JJ, Lian CG, Sullivan RJ, Demehri S. Rejection of benign melanocytic nevi by nevus-resident CD4 + T cells. SCIENCE ADVANCES 2021; 7:7/26/eabg4498. [PMID: 34162549 PMCID: PMC8221625 DOI: 10.1126/sciadv.abg4498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/10/2021] [Indexed: 05/05/2023]
Abstract
Melanoma and melanocytic nevi harbor shared lineage-specific antigens and oncogenic mutations. Yet, the relationship between the immune system and melanocytic nevi is unclear. Using a patient-derived xenograft (PDX) model, we found that 81.8% of the transplanted nevi underwent spontaneous regression, while peripheral skin remained intact. Nevus-resident CD4+ T helper 1 cells, which exhibited a massive clonal expansion to melanocyte-specific antigens, were responsible for nevus rejection. Boosting regulatory T cell suppressive function with low-dose exogenous human interleukin-2 injection or treatment with a human leukocyte antigen (HLA) class II-blocking antibody prevented nevus rejection. Notably, mice with rejected nevus PDXs were protected from melanoma tumor growth. We detected a parallel CD4+ T cell-dominant immunity in clinically regressing melanocytic nevi. These findings reveal a mechanistic explanation for spontaneous nevus regression in humans and posit the activation of nevus-resident CD4+ effector T cells as a novel strategy for melanoma immunoprevention and treatment.
Collapse
Affiliation(s)
- Erik B Schiferle
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology, Center for Cancer Research, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Se Yun Cheon
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology, Center for Cancer Research, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Seokjin Ham
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong Gu, Daejeon, South Korea
| | - Heehwa G Son
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology, Center for Cancer Research, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jonathan L Messerschmidt
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology, Center for Cancer Research, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Donald P Lawrence
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Justine V Cohen
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Keith T Flaherty
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - James J Moon
- Center for Immunology and Inflammatory Diseases and Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Christine G Lian
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ryan J Sullivan
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology, Center for Cancer Research, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
10
|
Sanchez JN, Subramanian C, Chanda M, Gary S, Zhang N, Wang T, Timmermann BN, Blagg BS, Cohen MS. A novel C-terminal Hsp90 inhibitor KU758 synergizes efficacy in combination with BRAF or MEK inhibitors and targets drug-resistant pathways in BRAF-mutant melanomas. Melanoma Res 2021; 31:197-207. [PMID: 33904516 PMCID: PMC10565508 DOI: 10.1097/cmr.0000000000000734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Melanoma remains the most aggressive and fatal form of skin cancer, despite several FDA-approved targeted chemotherapies and immunotherapies for use in advanced disease. Of the 100 350 new patients diagnosed with melanoma in 2020 in the US, more than half will develop metastatic disease leading to a 5-year survival rate <30%, with a majority of these developing drug-resistance within the first year of treatment. These statistics underscore the critical need in the field to develop more durable therapeutics as well as those that can overcome chemotherapy-induced drug resistance from currently approved agents. Fortunately, several of the drug-resistance pathways in melanoma, including the proteins in those pathways, rely in part on Hsp90 chaperone function. This presents a unique and novel opportunity to simultaneously target multiple proteins and drug-resistant pathways in this disease via molecular chaperone inhibition. Taken together, we hypothesize that our novel C-terminal Hsp90 inhibitor, KU758, in combination with the current standard of care targeted therapies (e.g. vemurafenib and cobimetinib) can both synergize melanoma treatment efficacy in BRAF-mutant tumors, as well as target and overcome several major resistance pathways in this disease. Using in vitro proliferation and protein-based Western Blot analyses, our novel inhibitor, KU758, potently inhibited melanoma cell proliferation (without induction of the heat shock response) in vitro and synergized with both BRAF and MEK inhibitors in inhibition of cell migration and protein expression from resistance pathways. Overall, our work provides early support for further translation of C-terminal Hsp90 inhibitor and mitogen-activated protein kinase pathway inhibitor combinations as a novel therapeutic strategy for BRAF-mutant melanomas.
Collapse
Affiliation(s)
- Jackee N. Sanchez
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | | | - Monica Chanda
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
| | - Shanguan Gary
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Nina Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Ton Wang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | | | - Brian S.J. Blagg
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana
| | - Mark S. Cohen
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
11
|
Abstract
HSP90 (heat shock protein 90) is an ATP-dependent molecular chaperone involved in a proper folding and maturation of hundreds of proteins. HSP90 is abundantly expressed in cancer, including melanoma. HSP90 client proteins are the key oncoproteins of several signaling pathways controlling melanoma development, progression and response to therapy. A number of natural and synthetic compounds of different chemical structures and binding sites within HSP90 have been identified as selective HSP90 inhibitors. The majority of HSP90-targeting agents affect N-terminal ATPase activity of HSP90. In contrast to N-terminal inhibitors, agents interacting with the middle and C-terminal domains of HSP90 do not induce HSP70-dependent cytoprotective response. Several inhibitors of HSP90 were tested against melanoma in pre-clinical studies and clinical trials, providing evidence that these agents can be considered either as single or complementary therapeutic strategy. This review summarizes current knowledge on the role of HSP90 protein in cancer with focus on melanoma, and provides an overview of structurally different HSP90 inhibitors that are considered as potential therapeutics for melanoma treatment.
Collapse
Affiliation(s)
| | - Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| |
Collapse
|
12
|
How to overcome the side effects of tumor immunotherapy. Biomed Pharmacother 2020; 130:110639. [PMID: 33658124 DOI: 10.1016/j.biopha.2020.110639] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 12/17/2022] Open
Abstract
The incidence of cancer is increasing year by year. Cancer has become one of the health threats of modern people. Simply relying on the surgery, chemotherapy or radiotherapy, not only the survival rate is not high, but also the quality of life of patients is not much better. Fortunately, the emergence and rapid development of cancer immunotherapy have brought more and more exciting results. However, when scientists think it is possible to overcome cancer, they find that not all cancer patients can benefit from immunotherapy, that is to say, the overall efficiency of immunotherapy is not high. Drug resistance and side effects of immunotherapy cannot be ignored. In order to overcome these difficulties, scientists continue to improve the strategy of immunotherapy and find that combination therapy can effectively reduce the incidence of drug resistance. They also found that by reprogramming tumor blood vessels, activating ferroptosis, utilizing thioredoxin, FATP2 and other substances, the therapeutic effect can be improved and side effects can be alleviated. This article reviews the principles of immunotherapy, new strategies to overcome drug resistance of cancer immunotherapy, and how to improve the efficacy of immunotherapy and reduce side effects.
Collapse
|
13
|
Kubra KT, Uddin MA, Akhter MS, Barabutis N. Hsp90 inhibitors induce the unfolded protein response in bovine and mice lung cells. Cell Signal 2019; 67:109500. [PMID: 31837463 DOI: 10.1016/j.cellsig.2019.109500] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
Abstract
The unfolded protein response element protects against endoplasmic reticulum stress and delivers protection towards potentially harmful challenges. The components of this multi-branch molecular machinery, namely the protein kinase RNA-like ER kinase, the activating transcription factor 6, and the inositol-requiring enzyme-1α; expand the endoplasmic reticulum capacity to support cellular function under stress conditions. In the present study, we employed bovine pulmonary aortic endothelial cells and mice to investigate the possibility that the Hsp90 inhibitors Tanespimycin (17-AAG) and Luminespib (AUY-922) exert the capacity to trigger the unfolded protein response. The induction of the unfolded protein response regulators immunoglobulin heavy-chain-binding protein, endoplasmic reticulum oxidoreductin-1alpha; and protein disulfide isomerase was also examined. It appears that both inhibitors capacitate the induction of the unfolded protein response element in vitro, since lung cells exposed to 1, 2 and 10 μM of 17-AAG or AUY-922 for 4, 6, 8, 16 and 48 h demonstrated increased levels of those proteins. Similar events occurred in the lungs of mice treated with AUY-922. Thus, our study demonstrates that Hsp90 inhibition triggers the activities of the unfolded protein response, and suggests that this molecular machinery contributes in the protective action of Hsp90 inhibitors in the lung microvasculature.
Collapse
Affiliation(s)
- Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| |
Collapse
|