1
|
Veryaskina YA, Titov SE, Ivanov MK, Ruzankin PS, Tarasenko AS, Shevchenko SP, Kovynev IB, Stupak EV, Pospelova TI, Zhimulev IF. Selection of reference genes for quantitative analysis of microRNA expression in three different types of cancer. PLoS One 2022; 17:e0254304. [PMID: 35176014 PMCID: PMC8853544 DOI: 10.1371/journal.pone.0254304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 01/30/2022] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNAs) are promising biomarkers in cancer research. Quantitative PCR (qPCR), also known as real-time PCR, is the most frequently used technique for measuring miRNA expression levels. The use of this technique, however, requires that expression data be normalized against reference genes. The problem is that a universal internal control for quantitative analysis of miRNA expression by qPCR has yet to be known. The aim of this work was to find the miRNAs with stable expression in the thyroid gland, brain and bone marrow according to NanoString nCounter miRNA quantification data. As a results, the most stably expressed miRNAs were as follows: miR-361-3p, -151a-3p and -29b-3p in the thyroid gland; miR-15a-5p, -194-5p and -532-5p in the brain; miR-140-5p, -148b-3p and -362-5p in bone marrow; and miR-423-5p, -28-5p and -532-5p, no matter what tissue type. These miRNAs represent promising reference genes for miRNA quantification by qPCR.
Collapse
Affiliation(s)
- Yuliya A. Veryaskina
- Laboratory of Gene Engineering, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Department of the Structure and Function of Chromosomes, Laboratory of Molecular Genetics Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- * E-mail:
| | - Sergei E. Titov
- Department of the Structure and Function of Chromosomes, Laboratory of Molecular Genetics Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- AO Vector-Best, Novosibirsk, Russia
| | | | - Pavel S. Ruzankin
- Sobolev Institute of Mathematics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Department of Mathematics and Mechanics, Novosibirsk State University, Novosibirsk, Russia
| | - Anton S. Tarasenko
- Sobolev Institute of Mathematics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Department of Mathematics and Mechanics, Novosibirsk State University, Novosibirsk, Russia
| | | | - Igor B. Kovynev
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, Novosibirsk, Russia
| | - Evgenij V. Stupak
- Department of Neurosurgery, Ya.L. Tsivyan Novosibirsk Research Institute of Traumatology and Orthopedics, Novosibirsk, Russia
| | - Tatiana I. Pospelova
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, Novosibirsk, Russia
| | - Igor F. Zhimulev
- Department of the Structure and Function of Chromosomes, Laboratory of Molecular Genetics Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
2
|
Veryaskina YA, Titov SE, Zhimulev IF. Reference Genes for qPCR-Based miRNA Expression Profiling in 14 Human Tissues. Med Princ Pract 2022; 31:322-332. [PMID: 35354155 PMCID: PMC9485981 DOI: 10.1159/000524283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) are promising biomarkers for the diagnosis and prognosis of various diseases. Quantitative PCR is the most frequently used method of measuring expression levels of miRNA. However, the lack of validated reference genes represents the main source of potential bias in results. It is normal practice to use small nuclear RNAs as reference genes; however, they often have variable expression. Researchers tend to prefer the most stable reference genes in each experiment. The review includes reference genes for the following tissue types: gliomas, lung cancer, melanoma, gastric cancer, liver cancer, prostate cancer, breast cancer, thyroid cancer, ovarian cancer, cervical cancer, endometrial cancer, rectal cancer, blood tumors, and placental tissues.
Collapse
Affiliation(s)
- Yulia Andreevna Veryaskina
- Laboratory of Gene Engineering, Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russian Federation
- Department of the Structure and Function of Chromosomes, Laboratory of Molecular Genetics Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russian Federation
- *Yulia Andreevna Veryaskina,
| | - Sergei Evgenievich Titov
- Department of the Structure and Function of Chromosomes, Laboratory of Molecular Genetics Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russian Federation
- AO Vector-Best, Novosibirsk, Russian Federation
| | - Igor Fyodorovich Zhimulev
- Department of the Structure and Function of Chromosomes, Laboratory of Molecular Genetics Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russian Federation
| |
Collapse
|
3
|
Chen Y, Wu N, Liu L, Dong H, Liu X. microRNA-128-3p overexpression inhibits breast cancer stem cell characteristics through suppression of Wnt signalling pathway by down-regulating NEK2. J Cell Mol Med 2020; 24:7353-7369. [PMID: 32558224 PMCID: PMC7339185 DOI: 10.1111/jcmm.15317] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/04/2019] [Accepted: 09/08/2019] [Indexed: 12/20/2022] Open
Abstract
Emerging evidence has reported that dysregulation of microRNAs (miRNAs) participated in the development of diverse types of cancers. Our initial microarray‐based analysis identified differentially expressed NEK2 related to breast cancer and predicted the regulatory microRNA‐128‐3p (miR‐128‐3p). Herein, this study aimed to characterize the tumour‐suppressive role of miR‐128‐3p in regulating the biological characteristics of breast cancer stem cells (BCSCs). CD44+CD24−/low cells were selected for subsequent experiments. After verification of the target relationship between miR‐128‐3p and NEK2, the relationship among miR‐128‐3p, NEK2 and BCSCs was further investigated with the involvement of the Wnt signalling pathway. The regulatory effects of miR‐128‐3p on proliferation, migration, invasion and self‐renewal in vitro as well as tumorigenicity in vivo of BCSCs were examined via gain‐ and loss‐of‐function approaches. Highly expressed NEK2 was found in breast cancer based on GSE61304 expression profile. Breast cancer stem cells and breast cancer cells showed a down‐regulation of miR‐128‐3p. Overexpression of miR‐128‐3p was found to inhibit proliferation, migration, invasion, self‐renewal in vitro and tumorigenicity in vivo of BCSCs, which was further validated to be achieved through inhibition of Wnt signalling pathway by down‐regulating NEK2. In summary, this study indicates that miR‐128‐3p inhibits the stem‐like cell features of BCSCs via inhibition of the Wnt signalling pathway by down‐regulating NEK2, which provides a new target for breast cancer treatment.
Collapse
Affiliation(s)
- Yuanwen Chen
- Department of General Surgery, Chongqing Renji Hospital, University of Chinese Academy of Science, Chongqing, China
| | - Nian Wu
- Department of General Surgery, Chongqing Renji Hospital, University of Chinese Academy of Science, Chongqing, China
| | - Lei Liu
- Department of General Surgery, Chongqing Renji Hospital, University of Chinese Academy of Science, Chongqing, China
| | - Huaying Dong
- Department of General Surgery, Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Xinao Liu
- Clinical laboratory, Chongqing Hospital, University of Chinese Academy of Science, Chongqing, China
| |
Collapse
|
4
|
Jian Y, Xu CH, Li YP, Tang B, Xie SH, Zeng EM. Down-regulated microRNA-30b-3p inhibits proliferation, invasion and migration of glioma cells via inactivation of the AKT signaling pathway by up-regulating RECK. Biosci Rep 2019; 39:BSR20182226. [PMID: 31270250 PMCID: PMC6692569 DOI: 10.1042/bsr20182226] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 12/23/2022] Open
Abstract
microRNAs (miRNAs) have been found to affect various cancers, and expression of numerous miRNAs is revealed in glioma. However, the role of microRNA-30b-3p (miR-30b-3p) in glioma remains elusive. Therefore, the present study aims to explore the specific mechanism by which miR-30b-3p influence the development of glioma in relation to the AKT signaling pathway. First, glioma cell lines were collected with miR-30b-3p and reversion-inducing cysteine-rich protein with kazal motifs (RECK) expression measured. The functional role of miR-30b-3p and RECK in glioma was determined via gain- and loss-of-function approaches. Subsequently, the expression of invasion- and migration-related factors (MMP-2 and MMP-9) and the AKT signaling pathway-related factors (AKT, p-AKT and PI3K-p85) was detected. Moreover, in vivo experiments were also conducted to investigate how miR-30b-3p influences in vivo tumorigenesis. The results showed that miR-30b-3p was up-regulated and RECK was down-regulated in glioma. RECK was a target gene of miR-30b-3p. Decreased miR-30b-3p and overexpressed RECK led to decreased expression of MMP-2, MMP-9 and p-AKT. Overexpressed RECK and LY294002 could decrease p-AKT and PI3K-p85 expression accompanied with unchanged expression of total protein of AKT. Additionally, proliferation, migration and invasion of glioma cells and tumor formation in nude mice were repressed owing to reduced expression of miR-30b-3p or elevated expression of RECK. In summary, miR-30b-3p inhibition suppresses metastasis of glioma cells by inactivating the AKT signaling pathway via RECK up-regulation, providing a new target for glioma treatment.
Collapse
Affiliation(s)
- Yan Jian
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R China
| | - Chun-Hua Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R China
| | - You-Ping Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R China
| | - Bin Tang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R China
| | - She-Hao Xie
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R China
| | - Er-Ming Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R China
| |
Collapse
|
5
|
Qin MM, Chai X, Huang HB, Feng G, Li XN, Zhang J, Zheng R, Liu XC, Pu C. let-7i inhibits proliferation and migration of bladder cancer cells by targeting HMGA1. BMC Urol 2019; 19:53. [PMID: 31196036 PMCID: PMC6567622 DOI: 10.1186/s12894-019-0485-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Background Let-7 is one of the earliest discovered microRNAs(miRNAs) and has been reported to be down-regulated in multiple malignant tumors. The effects and molecular mechanisms of let-7i in bladder cancer are still unclear. This study was to investigate the effects and potential mechanisms of let-7i on bladder cancer cells. Methods Total RNA was extracted from bladder cancer cell lines. The expression levels of let-7i and HMGA1 were examined by quantitative real-time PCR. Cell viability was detected using the CCK-8 and colony formation assays, while transwell and wound healing assays were used to evaluate migration ability. Luciferase reporter assay and western blot were used to confirm the target gene of let-7i. Results Compared with the SV-40 immortalized human uroepithelial cell line (SV-HUC-1), bladder cancer cell lines T24 and 5637 had low levels of let-7i expression, but high levels of high mobility group protein A1 (HMGA1) expression. Transfection of cell lines T24 and 5637 with let-7i mimic suppressed cell proliferation and migration. Luciferase reporter assay confirmed HMGA1 may be one of the target genes of let-7i-5p. Protein and mRNA expression of HMGA1 was significantly downregulated in let-7i mimic transfected cell lines T24 and 5637. Conclusions Up-regulation of let-7i suppressed proliferation and migration of the human bladder cancer cell lines T24 and 5637 by targeting HMGA1. These findings suggest that let-7i might be considered as a novel therapeutic target for bladder cancer.
Collapse
Affiliation(s)
- M-M Qin
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, No.2, West Zheshan Road, Wuhu, 241001, Anhui, China
| | - X Chai
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - H-B Huang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - G Feng
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, No.2, West Zheshan Road, Wuhu, 241001, Anhui, China
| | - X-N Li
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, No.2, West Zheshan Road, Wuhu, 241001, Anhui, China
| | - J Zhang
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, No.2, West Zheshan Road, Wuhu, 241001, Anhui, China
| | - R Zheng
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, No.2, West Zheshan Road, Wuhu, 241001, Anhui, China
| | - X-C Liu
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, No.2, West Zheshan Road, Wuhu, 241001, Anhui, China
| | - C Pu
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, No.2, West Zheshan Road, Wuhu, 241001, Anhui, China.
| |
Collapse
|
6
|
Chen S, Yang L, Pan A, Duan S, Li M, Li P, Huang J, Gao X, Huang X, Lin Y. Inhibitory Effect on the Hepatitis B Cells through the Regulation of miR-122-MAP3K2 signal pathway. AN ACAD BRAS CIENC 2019; 91:e20180941. [PMID: 31141015 DOI: 10.1590/0001-3765201920180941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/07/2019] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to investigate the inhibitory effect of regulation of miR-122-MAP3K2 signal pathway on the hepatitis B cells. We detected the content of MAP3K2 from patients with HBV blood serum samples and analyzed the correlation between content of MAP3K2 and copies of HBV-DNA. Wound healing and Transwell assays were used to detect the function of cells from control group (wild type) and observer group (overexpresses miR-122). Secretion levels of HBsAg and MAP3K2 in the supernatant and level of MAP3K2 in cells were detected by ELISA and western blot, respectively. The results showed that there was a positive correlation between the copies of HBV-DNA and MAP3K2 in serum. In the assays involving detection of the number of HBV-DNA copies, the supernatant levels of HBsAg and MAP3K2, and the level of MAP3K2 in the cells, the rate of increase of these indicators significantly slowed as culture time. In conclusion, overexpression of miR-122 could inhibit the migration of hepatoblastoma cells; however, following transfection with miR-122, DNA synthesis and the secretion of HBsAg were inhibited. Overexpression of miR-122 can also downregulate MAP3K2. Consequently, we concluded that regulating the miR-122-MAP3K2 signaling pathway exerts an inhibitory effect in hepatitis B cells.
Collapse
Affiliation(s)
- Songlin Chen
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, People's Republic of China
| | - Lei Yang
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, People's Republic of China
| | - Aiping Pan
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, People's Republic of China
| | - Siliang Duan
- Medical College of Guangxi University of Science and Technology, Liuzhou 545005, Guangxi, People's Republic of China
| | - Mingfen Li
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, People's Republic of China
| | - Ping Li
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, People's Republic of China
| | - Jingjing Huang
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, People's Republic of China
| | - Xingxin Gao
- First Affiliated Hospital of Guangxi Medical University, Nanning 530023, Guangxi, People's Republic of China
| | - Xiaoqi Huang
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, People's Republic of China
| | - Yinghui Lin
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, People's Republic of China
| |
Collapse
|