1
|
Al Hikmani H, van Oosterhout C, Birley T, Labisko J, Jackson HA, Spalton A, Tollington S, Groombridge JJ. Can genetic rescue help save Arabia's last big cat? Evol Appl 2024; 17:e13701. [PMID: 38784837 PMCID: PMC11113348 DOI: 10.1111/eva.13701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Genetic diversity underpins evolutionary potential that is essential for the long-term viability of wildlife populations. Captive populations harbor genetic diversity potentially lost in the wild, which could be valuable for release programs and genetic rescue. The Critically Endangered Arabian leopard (Panthera pardus nimr) has disappeared from most of its former range across the Arabian Peninsula, with fewer than 120 individuals left in the wild, and an additional 64 leopards in captivity. We (i) examine genetic diversity in the wild and captive populations to identify global patterns of genetic diversity and structure; (ii) estimate the size of the remaining leopard population across the Dhofar mountains of Oman using spatially explicit capture-recapture models on DNA and camera trap data, and (iii) explore the impact of genetic rescue using three complementary computer modeling approaches. We estimated a population size of 51 (95% CI 32-79) in the Dhofar mountains and found that 8 out of 25 microsatellite alleles present in eight loci in captive leopards were undetected in the wild. This includes two alleles present only in captive founders known to have been wild-sourced from Yemen, which suggests that this captive population represents an important source for genetic rescue. We then assessed the benefits of reintroducing novel genetic diversity into the wild population as well as the risks of elevating the genetic load through the release of captive-bred individuals. Simulations indicate that genetic rescue can improve the long-term viability of the wild population by reducing its genetic load and realized load. The model also suggests that the genetic load has been partly purged in the captive population, potentially making it a valuable source population for genetic rescue. However, the greater loss of its genetic diversity could exacerbate genomic erosion of the wild population during a rescue program, and these risks and benefits should be carefully evaluated. An important next step in the recovery of the Arabian leopard is to empirically validate these conclusions, implement and monitor a genomics-informed management plan, and optimize a strategy for genetic rescue as a tool to recover Arabia's last big cat.
Collapse
Affiliation(s)
- Hadi Al Hikmani
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, Division of Human and Social SciencesUniversity of KentCanterburyKentUK
- Office for Conservation of the EnvironmentDiwan of Royal CourtMuscatOman
- The Royal Commission for AlUlaAlUlaSaudi Arabia
| | - Cock van Oosterhout
- School of Environmental SciencesUniversity of East Anglia, Norwich Research ParkNorwichUK
| | - Thomas Birley
- School of Environmental SciencesUniversity of East Anglia, Norwich Research ParkNorwichUK
| | - Jim Labisko
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, Division of Human and Social SciencesUniversity of KentCanterburyKentUK
- Centre for Biodiversity and Environment Research, Research Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
- Island Biodiversity and Conservation CentreUniversity of SeychellesVictoriaSeychelles
- Department of Life SciencesThe Natural History MuseumLondonUK
| | - Hazel A. Jackson
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, Division of Human and Social SciencesUniversity of KentCanterburyKentUK
| | | | - Simon Tollington
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, Division of Human and Social SciencesUniversity of KentCanterburyKentUK
- School of Animal Rural and Environmental SciencesNottingham Trent UniversityNottinghamUK
| | - Jim J. Groombridge
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, Division of Human and Social SciencesUniversity of KentCanterburyKentUK
| |
Collapse
|
2
|
Bhatt TR, Castley JG, Sims‐Castley R, Baral HS, Chauvenet ALM. Connecting tiger ( Panthera tigris) populations in Nepal: Identification of corridors among tiger-bearing protected areas. Ecol Evol 2023; 13:e10140. [PMID: 37261321 PMCID: PMC10227491 DOI: 10.1002/ece3.10140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/05/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023] Open
Abstract
Habitat fragmentation and isolation threaten the survival of several wide-ranging species, such as tigers, through increased risk from diseases, disasters, climate change, and genetic depression. Identification of the habitat most likely to achieve connectivity among protected areas is vital for the long-term persistence of tigers. We aimed to improve the mapping of potential transfrontier protected area corridors for tigers by connecting sites within the Terai Arc Landscape in Nepal and to those in India, highlighting targeted conservation actions needed along these corridors to maintain long-term connectivity. We used least-cost corridor modeling and circuit theory to identify potential corridors and bottlenecks in the study area. The landscape's resistance to tigers' movement was gathered from expert opinions to inform corridor modeling. We identified nine potential tiger corridors in the Terai Arc Landscape-Nepal that aligned strongly with the remaining intact habitats of the Siwalik landscape, which could facilitate tiger movement. Banke-Bardia and Chitwan-Parsa-Valimiki complexes and Lagga-Bhagga and Khata corridors were identified as high-priority conservation cores and corridors. While our model exhibited congruence with most established corridors in the landscape, it has identified the need to enhance existing corridors to improve landscape connectivity. Several pinch points posing an increased risk to connectivity were identified. Most of these were located near the protected area boundaries and along the Nepal-India border. The Siwalik landscape holds the key to long-term connectivity in the study area; however, immediate conservation attention is needed, particularly at pinch points, to secure this connectivity for tigers. Validation of identified corridors through empirical research and their conservation is a priority.
Collapse
Affiliation(s)
- Tek Raj Bhatt
- Centre for Planetary Health and Food SecurityGriffith UniversitySouthportQueenslandAustralia
- School of Environment and ScienceGriffith UniversitySouthportQueenslandAustralia
| | - J. Guy Castley
- Centre for Planetary Health and Food SecurityGriffith UniversitySouthportQueenslandAustralia
- School of Environment and ScienceGriffith UniversitySouthportQueenslandAustralia
| | | | | | - Alienor L. M. Chauvenet
- Centre for Planetary Health and Food SecurityGriffith UniversitySouthportQueenslandAustralia
- School of Environment and ScienceGriffith UniversitySouthportQueenslandAustralia
| |
Collapse
|
3
|
Kim YR, Kim HR, Kim JY, Myeong HH, Kang JH, Kim BJ, Lee HJ. Spatio-temporal genetic structure of the striped field mouse (Apodemus agrarius) populations inhabiting national parks in South Korea: Implications for conservation and management of protected areas. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1038058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Population or habitat connectivity is a key component in maintaining species and community-level regional biodiversity as well as intraspecific genetic diversity. Ongoing human activities cause habitat destruction and fragmentation, which exacerbate the connectivity due to restricted animal movements across local habitats, eventually resulting in the loss of biodiversity. The Baekdudaegan Mountain Range (BMR) on the Korean Peninsula represents “biodiversity hotspots” and eight of the 22 Korean national parks are located within the BMR. Given the striped field mouse (Apodemus agrarius) is the most common and ecologically important small mammals in these protected areas, the population genetic assessment of this species will allow for identifying “genetic diversity hotspots” and also “genetic barriers” that may hinder gene flow, and will therefore inform on effective conservation and management efforts for the national park habitats. We collected samples from hair, tail, or buccal swabs for 252 A. agrarius individuals in 2015 and 2019. By using mitochondrial DNA cytochrome b (cyt b) sequences and nine microsatellite loci, we determined levels of genetic diversity, genetic differentiation, and gene flow among eight national park populations of A. agrarius along the BMR. We found high levels of genetic diversity but the occurrences of inbreeding for all the nine samples analyzed. Our results also indicated that there was detectable temporal genetic variation between the 2015 and 2019 populations in the Jirisan National Park, which is probably due to a short-term decline in genetic diversity caused by reduced population sizes. We also found a well-admixed shared gene pool among the national park populations. However, a significant positive correlation between geographic and genetic distances was detected only in mtDNA but not microsatellites, which might be attributed to different dispersal patterns between sexes. There was a genetic barrier to animal movements around the Woraksan National Park areas. The poor habitat connectivity surrounding these areas can be improved by establishing an ecological corridor. Our findings of the presence of genetic barriers in some protected areas provide insights into the conservation and management efforts to improve the population or habitat connectivity among the national parks.
Collapse
|
4
|
Canine Distemper Virus in Tigers (Panthera tigris) and Leopards (P. pardus) in Nepal. Pathogens 2023; 12:pathogens12020203. [PMID: 36839475 PMCID: PMC9962338 DOI: 10.3390/pathogens12020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
From wild dogs (Lycaon pictus) in the Serengeti to tigers (Panthera tigris altaica) in the Russian Far East, canine distemper virus (CDV) has been repeatedly identified as a threat to wild carnivores. Between 2020 and 2022, six Indian leopards (P. pardus fusca) presented to Nepali authorities with fatal neurological disease, consistent with CDV. Here, we report the findings of a serosurvey of wild felids from Nepal. A total of 48 serum samples were tested, comprising 28 Bengal tigers (P. t. tigris) and 20 Indian leopards. Neutralizing antibodies were identified in three tigers and six leopards, equating to seroprevalences of 11% (CI: 2.8-29.3%, n = 28) and 30% (CI: 12.8-54.3%, n = 20), respectively. More than one-third of seropositive animals were symptomatic, and three died within a week of being sampled. The predation of domestic dogs (Canis lupus familiaris) has been posited as a potential route of infection. A comparison of existing diet studies revealed that while leopards in Nepal frequently predate on dogs, tigers do not, potentially supporting this hypothesis. However, further work, including molecular analyses, would be needed to confirm this.
Collapse
|
5
|
A systematic scoping review of tiger conservation in the Terai Arc Landscape and Himalayas. ORYX 2022. [DOI: 10.1017/s0030605322001156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abstract
In the last decade the tiger Panthera tigris population in the Terai Arc Landscape and Himalayas has increased, while populations in other countries have remained below their conservation targets. Although there has been some research on tiger conservation in the Terai Arc Landscape and the Himalayas, scientists and managers have not catalogued and characterized tiger research in the region, with empirical findings scattered among disparate document types, journals and countries. Without a review of the tiger research in the Terai Arc Landscape and Himalayan region, it is difficult to analyse or change conservation policies, develop adaptation strategies, prioritize research, allocate resources or develop conservation strategies potentially employable elsewhere. We therefore conducted a systematic scoping review to identify focal research areas, the spatial and temporal distribution of study sites, general publication trends, the extent of empirical studies, and gaps in tiger conservation research in this region (which spans Bhutan, India and Nepal). Since 2000, 216 studies have been published on issues associated with tiger conservation in the Terai Arc Landscape and Himalayas, with an increasing number over time. Most empirical studies have focused on tiger habitat, ecology and conflicts in protected areas in the region's foothills. There are research gaps in high-altitude landscapes, social science investigations, conservation economics, and policy and institutional analyses.
Collapse
|
6
|
Lim QL, Yong CSY, Ng WL, Ismail A, Rovie-Ryan JJ, Rosli N, Inoue-Murayama M, Annavi G. Population genetic structure of wild Malayan tapirs (Tapirus indicus) in Peninsular Malaysia revealed by nine cross-species microsatellite markers. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
7
|
Assessing tiger corridor functionality with landscape genetics and modelling across Terai-Arc landscape, India. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01460-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Pereira KS, Gibson L, Biggs D, Samarasinghe D, Braczkowski AR. Individual Identification of Large Felids in Field Studies: Common Methods, Challenges, and Implications for Conservation Science. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.866403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Large felids represent some of the most threatened large mammals on Earth, critical for both tourism economies and ecosystem function. Most populations are in a state of decline, and their monitoring and enumeration is therefore critical for conservation. This typically rests on the accurate identification of individuals within their populations. We review the most common and current survey methods used in individual identification studies of large felid ecology (body mass > 25 kg). Remote camera trap photography is the most extensively used method to identify leopards, snow leopards, jaguars, tigers, and cheetahs which feature conspicuous and easily identifiable coat patterning. Direct photographic surveys and genetic sampling are commonly used for species that do not feature easily identifiable coat patterning such as lions. We also discuss the accompanying challenges encountered in several field studies, best practices that can help increase the precision and accuracy of identification and provide generalised ratings for the common survey methods used for individual identification.
Collapse
|
9
|
Ghimire P, Dahal N, Karna AK, Karki S, Lamichhaney S. Exploring potentialities of avian genomic research in Nepalese Himalayas. AVIAN RESEARCH 2021; 12:57. [PMID: 34745641 PMCID: PMC8556808 DOI: 10.1186/s40657-021-00290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Nepal, a small landlocked country in South Asia, holds about 800 km of Himalayan Mountain range including the Earth's highest mountain. Within such a mountain range in the north and plain lowlands in the south, Nepal provides a habitat for about 9% of global avian fauna. However, this diversity is underrated because of the lack of enough studies, especially using molecular tools to quantify and understand the distribution patterns of diversity. In this study, we reviewed the studies in the last two decades (2000‒2019) that used molecular methods to study the biodiversity in Nepal to examine the ongoing research trend and focus. Although Nepalese Himalaya has many opportunities for cutting-edge molecular research, our results indicated that the rate of genetic/genomic studies is much slower compared to the regional trends. We found that genetic research in Nepal heavily relies on resources from international institutes and that too is mostly limited to research on species monitoring, distribution, and taxonomic validations. Local infrastructures to carry out cutting-edge genomic research in Nepal are still in their infancy and there is a strong need for support from national/international scientists, universities, and governmental agencies to expand such genomic infrastructures in Nepal. We particularly highlight avian fauna as a potential future study system in this region that can be an excellent resource to explore key biological questions such as understanding eco-physiology and molecular basis of organismal persistence to changing environment, evolutionary processes underlying divergence and speciation, or mechanisms of endemism and restrictive distribution of species. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s40657-021-00290-5.
Collapse
Affiliation(s)
- Prashant Ghimire
- Department of Biological Sciences, Kent State University, Kent, OH USA
| | - Nishma Dahal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP India
| | - Ajit K. Karna
- Center for Health and Disease Studies-Nepal, Kathmandu, Nepal
- Institute of Agriculture and Animal Sciences, Tribhuvan University, Kathmandu, Nepal
| | - Surendra Karki
- Emergency Centre for Transboundary Animal Diseases, Food & Agricultural Organization of the UN, Kathmandu, Nepal
| | - Sangeet Lamichhaney
- Department of Biological Sciences, Kent State University, Kent, OH USA
- School of Biomedical Sciences, Kent State University, Kent, OH USA
| |
Collapse
|
10
|
Trends in Wildlife Connectivity Science from the Biodiverse and Human-Dominated South Asia. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-021-00240-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Acharya KP, Phuyal S, Chand R, Kaphle K. Current scenario of and future perspective for scientific research in Nepal. Heliyon 2021; 7:e05751. [PMID: 33458438 PMCID: PMC7797519 DOI: 10.1016/j.heliyon.2020.e05751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 08/16/2020] [Accepted: 12/14/2020] [Indexed: 11/19/2022] Open
Abstract
Scientific research can act as the 'bedrock for development' which can provide a solid foundation for the overall socioeconomic transformation in a country through invention and innovation. The inclusion of seven groups of Nepalese monuments in the United Nations Educational, Scientific and Cultural Organization (UNESCO)'s world heritage sites provides evidence of the richness in architecture and civil engineering in the country, which also show how Nepal was influenced by arts and religious philosophy. The government of Nepal (GoN) has established different scientific departments, universities, and research institutions, and has tried to emphasize the application of science and research for the development of the nation. These institutions, however, have inadequate resources, exist in a poor academic and research environment and are subject to overt political influence. Despite these various problems, a variety of pioneer research and development activities have been conducted, which show positive rays of hope. This review presents history, current situation, progress and future perspective for scientific research and development in Nepal.
Collapse
Affiliation(s)
- Krishna Prasad Acharya
- Animal Quarantine Office (AQO)-Kathmandu, Department of Livestock Services (DLS), Kathmandu, Nepal
| | - Sarita Phuyal
- Central Referral Veterinary Hospital, Department of Livestock Services (DLS), Kathmandu, Nepal
| | - Rakesh Chand
- Center for One Health Research & Promotion (COHRP), Kathmandu, Nepal
- Department of Veterinary Medicine, University of Cambridge, Madingley Road Cambridge, CB3 0ES, UK
| | - Krishna Kaphle
- Institute of Agriculture and Animal Science (IAAS), Tribhuvan University (TU), Rupandehi, Nepal
| |
Collapse
|
12
|
Valladares-Gómez A, Celis-Diez JL, Sepúlveda-Rodríguez C, Inostroza-Michael O, Hernández CE, Palma RE. Genetic Diversity, Population Structure, and Migration Scenarios of the Marsupial "Monito del Monte" in South-Central Chile. J Hered 2020; 110:651-661. [PMID: 31420661 DOI: 10.1093/jhered/esz049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/06/2019] [Indexed: 01/11/2023] Open
Abstract
In this study, we quantified the 3 pivotal genetic processes (i.e., genetic diversity, spatial genetic structuring, and migration) necessary for a better biological understanding and management of the singular "living-fossil" and near-threatened mouse opossum marsupial Dromiciops gliroides, the "Monito del Monte," in south-central Chile. We used 11 microsatellite loci to genotype 47 individuals distributed on the mainland and northern Chiloé Island. Allelic richness, observed and expected heterozygosity, inbreeding coefficient, and levels of genetic differentiation were estimated. The genetic structure was assessed based on Bayesian clustering methods. In addition, potential migration scenarios were evaluated based on a coalescent theory framework and Bayesian approach to parameter estimations. Microsatellites revealed moderate to high levels of genetic diversity across sampled localities. Moreover, such molecular markers suggested that at least 2 consistent genetic clusters could be identified along the D. gliroides distribution ("Northern" and "Southern" cluster). However, general levels of genetic differentiation observed among localities and between the 2 genetic clusters were relatively low. Migration analyses showed that the most likely routes of migration of D. gliroides occurred 1) from the Southern cluster to the Northern cluster and 2) from the Mainland to Chiloé Island. Our results could represent critical information for future conservation programs and for a recent proposal about the taxonomic status of this unique mouse opossum marsupial.
Collapse
Affiliation(s)
- Alejandro Valladares-Gómez
- Laboratorio de Biología Evolutiva, Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | - Juan L Celis-Diez
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Casilla 4-D, Quillota, Chile
| | - Constanza Sepúlveda-Rodríguez
- Laboratorio de Biología Evolutiva, Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | - Oscar Inostroza-Michael
- Laboratorio de Ecología Evolutiva y Filoinformática, Facultad de Ciencias Naturales y Ocenográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Cristián E Hernández
- Laboratorio de Ecología Evolutiva y Filoinformática, Facultad de Ciencias Naturales y Ocenográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - R Eduardo Palma
- Laboratorio de Biología Evolutiva, Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| |
Collapse
|
13
|
Genetic structure of tigers (Panthera tigris tigris) in India and its implications for conservation. Glob Ecol Conserv 2019. [DOI: 10.1016/j.gecco.2019.e00710] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
14
|
Karmacharya D, Manandhar P, Manandhar S, Sherchan AM, Sharma AN, Joshi J, Bista M, Bajracharya S, Awasthi NP, Sharma N, Llewellyn B, Waits LP, Thapa K, Kelly MJ, Vuyisich M, Starkenburg SR, Hero JM, Hughes J, Wultsch C, Bertola L, Fountain-Jones NM, Sinha AK. Gut microbiota and their putative metabolic functions in fragmented Bengal tiger population of Nepal. PLoS One 2019; 14:e0221868. [PMID: 31465520 PMCID: PMC6715213 DOI: 10.1371/journal.pone.0221868] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/17/2019] [Indexed: 02/01/2023] Open
Abstract
Bengal tigers (Panthera tigris tigris) serve a pivotal role as an apex predator in forest ecosystems. To increase our knowledge on factors impacting the viability and health of this endangered species, we studied the gut microbiota in 32 individual Bengal tigers from three geographically separated areas (Chitwan National Park (CNP), Bardia National Park (BNP) and Suklaphanta Wildlife Reserve (SWR)) in Nepal, using noninvasive genetic sampling methods. Gut microbiota influence the immune system, impact various physiological functions, and modulates metabolic reactions, that ultimately impact the host health, behavior and development. Across the tiger populations in Nepal, we found significant differences in the composition of microbial communities based on their geographic locations. Specifically, we detected significant differences between CNP and the other two protected areas (CNP vs BNP: pseudo t = 1.944, P = 0.006; CNP vs SWR: pseudo t = 1.9942, P = 0.0071), but no differences between BNP and SWR. This mirrors what has been found for tiger gene flow in the same populations, suggesting gut microbiota composition and host gene flow may be linked. Furthermore, predictive metagenome functional content analysis (PICRUSt) revealed a higher functional enrichment and diversity for significant gut microbiota in the Chitwan tiger population and the lowest enrichment and diversity in Suklaphanta. The CNP tiger population contained higher proportions of microbiota that are associated with predicted functions relevant for metabolism of amino acid, lipid, xenobiotics biodegradation, terpenoides and polyketides than the SWR population. We conclude the tiger population structure, gut microbiota profile and associated functional metabolic categories are correlated, with geographically most separated CNP and SWR tiger population having the most distinct and different host genotype and microbiota profiles. Our work dramatically expands the understanding of tiger microbiota in wild populations and provides a valuable case study on how to investigate genetic diversity at different hierarchical levels, including hosts as well as their microbial communities.
Collapse
Affiliation(s)
- Dibesh Karmacharya
- Center for Molecular Dynamics Nepal, Kathmandu, Nepal
- School of Environment, Griffith University, Brisbane, Queensland, Australia
| | | | | | | | | | - Jyoti Joshi
- Center for Molecular Dynamics Nepal, Kathmandu, Nepal
| | - Manisha Bista
- Center for Molecular Dynamics Nepal, Kathmandu, Nepal
| | | | | | - Netra Sharma
- Environment Team, U.S. Agency for International Development, Kathmandu, Nepal
| | - Bronwyn Llewellyn
- Environment Team, U.S. Agency for International Development, Kathmandu, Nepal
| | - Lisette P. Waits
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Kanchan Thapa
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Marcella J. Kelly
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Momchilo Vuyisich
- Applied Genomics, Los Alamos National Lab, Los Alamos, New Mexico, United States of America
| | - Shawn R. Starkenburg
- Applied Genomics, Los Alamos National Lab, Los Alamos, New Mexico, United States of America
| | - Jean-Marc Hero
- School of Science & Education, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Jane Hughes
- School of Environment, Griffith University, Brisbane, Queensland, Australia
| | - Claudia Wultsch
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, United States of America
- Bioinformatics and Computational Genomics Laboratory, Hunter College, City University of New York, New York, United States of America
| | - Laura Bertola
- Department of Biology, City College of New York, New York, United States of America
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Nicholas M. Fountain-Jones
- Department of Veterinary Population Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Amit K. Sinha
- Center for Molecular Dynamics Nepal, Kathmandu, Nepal
| |
Collapse
|
15
|
Moore MK, Frazier K. Humans Are Animals, Too: Critical Commonalities and Differences Between Human and Wildlife Forensic Genetics. J Forensic Sci 2019; 64:1603-1621. [DOI: 10.1111/1556-4029.14066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/10/2019] [Accepted: 04/08/2019] [Indexed: 12/31/2022]
Affiliation(s)
- M. Katherine Moore
- Forensic Laboratory Conservation Biology Division Northwest Fisheries Science Center, National Marine Fisheries Service National Oceanic and Atmospheric Administration 219 Fort Johnson Road Charleston SC29412
| | - Kim Frazier
- Wyoming Game and Fish Wildlife Forensic and Fish Health Laboratory 1212 South Adams Street Laramie WY 82070
| |
Collapse
|
16
|
Karmacharya D, Sherchan AM, Dulal S, Manandhar P, Manandhar S, Joshi J, Bhattarai S, Bhatta TR, Awasthi N, Sharma AN, Bista M, Silwal NR, Pokharel P, Lamichhane RR, Sharma N, Llewellyn B, Wultsch C, Kelly MJ, Gour D, Waits L, Hero JM, Hughes J. Species, sex and geo-location identification of seized tiger (Panthera tigris tigris) parts in Nepal-A molecular forensic approach. PLoS One 2018; 13:e0201639. [PMID: 30138352 PMCID: PMC6107122 DOI: 10.1371/journal.pone.0201639] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/19/2018] [Indexed: 11/19/2022] Open
Abstract
Tiger (Panthera tigris) populations are in danger across their entire range due to habitat loss, poaching and the demand for tiger parts. The Bengal tiger (Panthera tigris tigris) is an endangered apex predator with a population size estimated to be less than 200 in Nepal. In spite of strict wildlife protection laws, illegal trade of tiger parts is increasing; and Nepal has become one of the major sources and transit routes for poached wildlife parts. Identification of wildlife parts is often challenging for law enforcement officials due to inadequate training and lack of available tools. Here, we describe a molecular forensic approach to gain insight into illegally trafficked tiger parts seized across Nepal. We created Nepal's first comprehensive reference genetic database of wild tigers through the Nepal Tiger Genome Project (2011-2013). This database has nuclear DNA microsatellite genotype and sex profiles, including geo-spatial information, of over 60% (n = 120) of the wild tigers of Nepal. We analyzed 15 putative cases of confiscated poached tiger parts and all were confirmed to be of tiger. Ten samples were identified as male and five were female. We determined probable geo-source location for 9 of the 14 samples with 6-8 nuclear DNA microsatellite loci using inferences from four different statistical assignment methods. Six samples were assigned to Bardia National Park and one of these was an exact match to a female tiger previously profiled in our fecal DNA reference database. Two tiger samples were assigned to Shuklaphanta Wildlife Reserve and one to Chitwan National Park. We are unable to definitively assign five tiger samples which could be offspring dispersers or might have come from tiger population outside of Nepal. Our study revealed that the western region, particularly Bardia National Park, is a poaching hotspot for illegal tiger trade in Nepal. We present feasibility of using molecular forensic based evidence to incriminate criminals in a court of law in the fight against wildlife crime.
Collapse
Affiliation(s)
- Dibesh Karmacharya
- Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
- School of Environment, Griffith University, Gold Coast, Queensland, Australia
| | | | - Santosh Dulal
- Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
| | - Prajwol Manandhar
- Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
| | | | - Jyoti Joshi
- Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
| | - Susmita Bhattarai
- Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
| | - Tarka R. Bhatta
- Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
| | - Nagendra Awasthi
- Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
| | - Ajay N. Sharma
- Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
| | - Manisha Bista
- Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
| | - Nawa R. Silwal
- Central Investigation Bureau (CIB), Pillar 4, Nepal Police, Kathmandu, Nepal
| | - Pravin Pokharel
- Central Investigation Bureau (CIB), Pillar 4, Nepal Police, Kathmandu, Nepal
| | - Rom R. Lamichhane
- Bio-Diversity Section, Ministry of Forest and Soil Conservation, Kathmandu, Nepal
| | - Netra Sharma
- Environment Team, U.S. Agency for International Development (USAID), Kathmandu, Nepal
| | - Bronwyn Llewellyn
- Environment Team, U.S. Agency for International Development (USAID), Kathmandu, Nepal
| | - Claudia Wultsch
- Sackler Institute for Comparative Genomics, American Natural History Museum, New York, New York, United States of America
| | - Marcella J. Kelly
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Digpal Gour
- Laboratory for Ecological, Evolutionary and Conservation Genetics, University of Idaho, Moscow, Idaho, United States of America
| | - Lisette Waits
- Laboratory for Ecological, Evolutionary and Conservation Genetics, University of Idaho, Moscow, Idaho, United States of America
| | - Jean-Marc Hero
- School of Science and Engineering, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, United Kingdom
| | - Jane Hughes
- School of Environment, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|