1
|
Salas-Massó N, Fernández-Bravo A, Bertomeu E, Andree KB, Figueras MJ, Furones D. Depuration of Aliarcobacter butzleri and Malaciobacter molluscorum in Comparison with Escherichia coli in Mussels ( Mytilus galloprovincialis) and Oysters ( Crassostrea gigas). Pathogens 2024; 13:973. [PMID: 39599526 PMCID: PMC11597588 DOI: 10.3390/pathogens13110973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Arcobacter-related species are considered emerging food-borne and waterborne pathogens, with shellfish being a suggested reservoir. In a published study that investigated 204 shellfish samples and 476 isolates, the species Arcobacter butzleri (now known as Aliarcobacter butzleri) and Arcobacter molluscorum (now known as Malaciobacter molluscorum) have been isolated as the most dominant species. However, the efficiency of depuration for eliminating A. butzleri and M. molluscorum in comparison with Escherichia coli from mussels and oysters is unknown and is therefore the objective of this investigation. The shellfish depuration process was evaluated in the laboratory, in summer and winter, using mussels and oysters collected from the Ebro Delta harvesting areas after performing a natural contamination and an artificial contamination using the same conditions for both mollusk and seasons. The natural contamination was performed by exposing the shellfish to a freshwater channel that receives untreated sewage from the village of Poble Nou (PNC) and that had a salinity of 10.7-16.8‱. The artificial contamination exposed the shellfish to A. butzleri and E. coli (in one tank) and to M. molluscorum and E. coli in another tank under controlled conditions of salinity (34.5‱) and temperature (20 °C summer and 14 °C winter). When evaluating the reduction in the bacteria load (every 24 h) throughout 120 h, the naturally contaminated shellfish at the PNC showed a higher reduction than the shellfish contaminated at the laboratory, with the exception of M. molluscorum, that at 24 h could not be detected in summer, neither in mussels nor in oysters. This may be attributed to the fact that the bacteria from the PNC were less adapted to the conditions of high salinity (34.5‱) in which the depuration process was performed. Although temperature did not statistically make a difference in depuration, at 20 °C a higher elimination of all bacteria was recorded relative to 14 °C. In general, E. coli survived more in mussels than in oysters, and M. molluscorum suffered in both mollusks a higher reduction than A. butzleri. New studies are required to determine further the safety of bivalves regarding the presence of Arcobacter-related species.
Collapse
Affiliation(s)
- Nuria Salas-Massó
- Aquaculture, A Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de la Ràpita, 43540 la Ràpita, Catalonia, Spain; (N.S.-M.); (E.B.); (K.B.A.)
- Unidad de Microbiología, Departamento de Ciencias Médicas Básicas, IISPV, Facultad de Medicina y Ciencias de la Salud, Universidad Rovira i Virgili, 43201 Reus, Tarragona, Spain;
| | - Ana Fernández-Bravo
- Unidad de Microbiología, Departamento de Ciencias Médicas Básicas, IISPV, Facultad de Medicina y Ciencias de la Salud, Universidad Rovira i Virgili, 43201 Reus, Tarragona, Spain;
| | - Edgar Bertomeu
- Aquaculture, A Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de la Ràpita, 43540 la Ràpita, Catalonia, Spain; (N.S.-M.); (E.B.); (K.B.A.)
| | - Karl B. Andree
- Aquaculture, A Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de la Ràpita, 43540 la Ràpita, Catalonia, Spain; (N.S.-M.); (E.B.); (K.B.A.)
| | - Maria José Figueras
- Unidad de Microbiología, Departamento de Ciencias Médicas Básicas, IISPV, Facultad de Medicina y Ciencias de la Salud, Universidad Rovira i Virgili, 43201 Reus, Tarragona, Spain;
| | - Dolors Furones
- Aquaculture, A Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de la Ràpita, 43540 la Ràpita, Catalonia, Spain; (N.S.-M.); (E.B.); (K.B.A.)
| |
Collapse
|
2
|
Guan B, Hong H, Kim M, Lu J, Moore MD. Evaluating the Potential of Ozone Microbubbles for Inactivation of Tulane Virus, a Human Norovirus Surrogate. ACS OMEGA 2024; 9:23184-23192. [PMID: 38854534 PMCID: PMC11154720 DOI: 10.1021/acsomega.3c08396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
This study investigated the efficacy of low-dose ozone microbubble solution and conventional aqueous ozone as inactivation agents against Tulane virus samples in water over a short period of time. Noroviruses are the primary cause of foodborne illnesses in the US, and the development of effective inactivation agents is crucial. Ozone has a high oxidizing ability and naturally decomposes to oxygen, but it has limitations due to its low dissolution rate, solubility, and stability. Ozone microbubbles have been promising in enhancing inactivation, but little research has been done on their efficacy against noroviruses. The study examined the influence of the dissolved ozone concentration, inactivation duration, and presence of organic matter during inactivation. The results showed that ozone microbubbles had a longer half-life (14 ± 0.81 min) than aqueous ozone (3 ± 0.35 min). After 2, 10, and 20 min postgeneration, the ozone concentration of microbubbles naturally decreased from 4 ppm to 3.2 ± 0.2, 2.26 ± 0.19, and 1.49 ± 0.23 ppm and resulted in 1.43 ± 0.44, 0.88 ± 0.5, and 0.68 ± 0.53 log10 viral reductions, respectively, while the ozone concentration of aqueous ozone decreased from 4 ppm to 2.52 ± 0.07, 0.43 ± 0.05, and 0.09 ± 0.01 ppm and produced 0.8 ± 0.28, 0.29 ± 0.41, and 0.16 ± 0.21 log10 reductions against Tulane virus, respectively (p = 0.0526), suggesting that structuring of ozone in the bubbles over the applied treatment conditions did not have a significant effect, though future study with continuous generation of ozone microbubbles is needed.
Collapse
Affiliation(s)
- Bozhong Guan
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Haknyeong Hong
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Minji Kim
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jiakai Lu
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Matthew D. Moore
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
3
|
McMenemy P, Kleczkowski A, Taylor NGH. Modelling norovirus dynamics within oysters emphasises potential food safety issues associated with current testing & depuration protocols. Food Microbiol 2023; 116:104363. [PMID: 37689418 DOI: 10.1016/j.fm.2023.104363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 09/11/2023]
Abstract
Norovirus is a significant global cause of viral gastroenteritis, with raw oyster consumption often linked to such outbreaks due to their filter-feeding in harvest waters. National water quality and depuration/relaying times are often classified using Escherichia coli, a poor proxy for norovirus levels in shellfish. The current norovirus assay is limited to only the digestive tracts of oysters, meaning the total norovirus load of an oyster may differ from reported results. These limitations motivated this work, building upon previous modelling by the authors, and considers the sequestration of norovirus into observed and cryptic (unobservable) compartments within each oyster. Results show that total norovirus levels in shellfish batches exhibit distinct peaks during the early depuration stages, with each peak's magnitude dependent on the proportion of cryptic norovirus. These results are supported by depuration trial data and other studies, where viral levels often exhibit multiphase decays. This work's significant result is that any future norovirus legislation needs to consider not only the harvest site's water classification but also the total viral load present in oysters entering the market. We show that 62 h of depuration should be undertaken before any norovirus testing is conducted on oyster samples, being the time required for cryptic viral loads to have transited into the digestive tracts where they can be detected by current assay, or have exited the oyster.
Collapse
Affiliation(s)
- Paul McMenemy
- University of Strathclyde, 16 Richmond Street, Glasgow, G1 1XQ, United Kingdom; University of Stirling, Airthrey Road, Stirling, FK9 4LA, United Kingdom.
| | - Adam Kleczkowski
- University of Strathclyde, 16 Richmond Street, Glasgow, G1 1XQ, United Kingdom; University of Stirling, Airthrey Road, Stirling, FK9 4LA, United Kingdom.
| | - Nick G H Taylor
- Cefas, The Nothe, Barrack Road, Weymouth, DT4 8UB, United Kingdom; Office for National Statistics, 2 Marsham Street, London, SW1P 4DF, United Kingdom
| |
Collapse
|
4
|
Rowan NJ. Current decontamination challenges and potentially complementary solutions to safeguard the vulnerable seafood industry from recalcitrant human norovirus in live shellfish: Quo Vadis? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162380. [PMID: 36841407 DOI: 10.1016/j.scitotenv.2023.162380] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Safeguarding the seafood industry is important given its contribution to supporting our growing global population. However, shellfish are filter feeders that bioaccumulate microbial contaminants in their tissue from wastewater discharged into the same coastal growing environments leading to significant human disease outbreaks unless appropriately mitigated. Removal or inactivation of enteric viruses is very challenging particularly as human norovirus (hNoV) binds to specific histo-blood ligands in live oyster tissue that are consumed raw or lightly cooked. The regulatory framework that sets out use of clean seawater and UV disinfection is appropriate for bacterial decontamination at the post-harvest land-based depuration (cleaning) stage. However, additional non-thermal technologies are required to eliminate hNoV in live shellfish (particularly oysters) where published genomic studies report that low-pressure UV has limited effectiveness in inactivating hNoV. The use of the standard genomic detection method (ISO 15, 216-1:2017) is not appropriate for assessing the loss of infectious hNoV in treated live shellfish. The use of surrogate viral infectivity methods appear to offer some insight into the loss of hNoV infectiousness in live shellfish during decontamination. This paper reviews the use of existing and potentially other combinational treatment approaches to enhance the removal or inactivation of enteric viruses in live shellfish. The use of alternative and complementary novel diagnostic approaches to discern viable hNoV are discussed. The effectiveness and virological safety of new affordable hNoV intervention(s) require testing and validating at commercial shellfish production in conjunction with laboratory-based research. Appropriate risk management planning should encompass key stakeholders including local government and the wastewater industry. Gaining a mechanistic understanding of the relationship between hNoV response at molecular and structural levels in individually treated oysters as a unit will inform predictive modeling and appropriate treatment technologies. Global warming of coastal growing environments may introduce additional contaminant challenges (such as invasive species); thus, underscoring need to develop real-time ecosystem monitoring of growing environments to alert shellfish producers to appropriately mitigate these threats.
Collapse
Affiliation(s)
- Neil J Rowan
- Centre for Sustainable Disinfection and Sterilization, Bioscience Research Institute, Technological University of the Shannon Midlands Midwest, Athlone Campus, Ireland.
| |
Collapse
|
5
|
Wang D, Cao J, Tian Z, Fang B, Qi X, Lei Z, Liu L, Zhu J, Ma L. Development of a new concentration method for Hepatitis A virus detection (ISO 15216–2:2019) in Manila clams (Ruditapes philippinarum). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Campbell VM, Chouljenko A, Hall SG. Depuration of live oysters to reduce Vibrio parahaemolyticus and Vibrio vulnificus: A review of ecology and processing parameters. Compr Rev Food Sci Food Saf 2022; 21:3480-3506. [PMID: 35638353 DOI: 10.1111/1541-4337.12969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/01/2022]
Abstract
Consumption of raw oysters, whether wild-caught or aquacultured, may increase health risks for humans. Vibrio vulnificus and Vibrio parahaemolyticus are two potentially pathogenic bacteria that can be concentrated in oysters during filter feeding. As Vibrio abundance increases in coastal waters worldwide, ingesting raw oysters contaminated with V. vulnificus and V. parahaemolyticus can possibly result in human illness and death in susceptible individuals. Depuration is a postharvest processing method that maintains oyster viability while they filter clean salt water that either continuously flows through a holding tank or is recirculated and replenished periodically. This process can reduce endogenous bacteria, including coliforms, thus providing a safer, live oyster product for human consumption; however, depuration of Vibrios has presented challenges. When considering the difficulty of removing endogenous Vibrios in oysters, a more standardized framework of effective depuration parameters is needed. Understanding Vibrio ecology and its relation to certain depuration parameters could help optimize the process for the reduction of Vibrio. In the past, researchers have manipulated key depuration parameters like depuration processing time, water salinity, water temperature, and water flow rate and explored the use of processing additives to enhance disinfection in oysters. In summation, depuration processing from 4 to 6 days, low temperature, high salinity, and flowing water effectively reduced V. vulnificus and V. parahaemolyticus in live oysters. This review aims to emphasize trends among the results of these past works and provide suggestions for future oyster depuration studies.
Collapse
Affiliation(s)
- Vashti M Campbell
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Alexander Chouljenko
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Steven G Hall
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
7
|
Surveillance of Adenovirus and Norovirus Contaminants in the Water and Shellfish of Major Oyster Breeding Farms and Fishing Ports in Taiwan. Pathogens 2022; 11:pathogens11030316. [PMID: 35335640 PMCID: PMC8954279 DOI: 10.3390/pathogens11030316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
The enteric viruses, including adenovirus (AdVs) and norovirus (NoVs), in shellfish is a significant food safety risk. This study investigated the prevalence, seasonal occurrence, genetic diversity, and quantification of AdVs and NoVs in the water and cultured shellfish samples at the four major coastal oyster breeding farms (COBF), five major fishing ports (FP), and their markets in Taiwan. The AdVs/NoVs in the water and shellfish samples were isolated by the membrane filtration and direct elution methods. The RNA of NoVs was reverse-transcribed into complementary DNA through reverse transcription reaction. Further NoVs and AdVs were detected using nested PCR. A higher detection rate was recorded in the low-temperature period than high-temperature. Detection difference was noted between nested PCR and qPCR outcomes for AdVs. The total detection rate of AdVs was higher in the water samples (COBF-40.6%, FP 20%) than the shellfish samples (COBF-11.7% and FP 6.3%). The AdVs load in the water and shellfish samples ranged from 1.23 × 103 to 1.00 × 106 copies/L and 3.57 × 103 to 4.27 × 104 copies/100g, respectively. The total detection of NoVs was highest in the water samples of the FP and their market shellfish samples (11.1% and 3.2%, respectively). Genotyping and phylogenetic analysis were identified as the prevalent AdVs and NoVs genotypes in the water and shellfish samples: A species HAdVs serotype 12; F species HAdVs serotype 41; and C species PAdVs serotype 5 (NoVs GI.2, GI.3 and GII.2). No significant differences were observed between the presence of AdVs, and all of the water quality parameters evaluated (heterotrophic plate count, water temperature, turbidity, pH, salinity, and dissolved oxygen). The virus contamination occurs mainly due to the direct discharge of domestic sewage, livestock farm, and fishing market wastewater into the coastal environment. Thus, this study suggested framing better estuarine management to prevent AdVs/NoVs transmission in water and cultured/distributed shellfish.
Collapse
|
8
|
Rupnik A, Doré W, Devilly L, Fahy J, Fitzpatrick A, Schmidt W, Hunt K, Butler F, Keaveney S. Evaluation of Norovirus Reduction in Environmentally Contaminated Pacific Oysters During Laboratory Controlled and Commercial Depuration. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:229-240. [PMID: 33649884 PMCID: PMC8116253 DOI: 10.1007/s12560-021-09464-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Norovirus contamination of oysters is the lead cause of non-bacterial gastroenteritis and a significant food safety concern for the oyster industry. Here, norovirus reduction from Pacific oysters (Crassostrea gigas), contaminated in the marine environment, was studied in laboratory depuration trials and in two commercial settings. Norovirus concentrations were measured in oyster digestive tissue before, during and post-depuration using the ISO 15216-1 quantitative real-time RT-PCR method. Results of the laboratory-based studies demonstrate that statistically significant reductions of up to 74% of the initial norovirus GII concentration was achieved after 3 days at 17-21 °C and after 4 days at 11-15 °C, compared to 44% reduction at 7-9 °C. In many trials norovirus GII concentrations were reduced to levels below 100 genome copies per gram (gcg-1; limit of quantitation; LOQ). Virus reduction was also assessed in commercial depuration systems, routinely used by two Irish oyster producers. Up to 68% reduction was recorded for norovirus GI and up to 90% for norovirus GII reducing the geometric mean virus concentration close to or below the LOQ. In both commercial settings there was a significant difference between the levels of reduction of norovirus GI compared to GII (p < 0.05). Additionally, the ability to reduce the norovirus concentration in oysters to < LOQ differed when contaminated with concentrations below and above 1000 gcg-1. These results indicate that depuration, carried out at elevated (> 11 °C) water temperatures for at least 3 days, can reduce the concentration of norovirus in oysters and therefore consumer exposure providing a practical risk management tool for the shellfish industry.
Collapse
Affiliation(s)
| | | | | | - James Fahy
- Marine Institute, Rinville, Oranmore, Ireland
| | | | | | - Kevin Hunt
- Centre for Food Safety, University College Dublin, Dublin, Ireland
| | - Francis Butler
- Centre for Food Safety, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
9
|
Bio S, Nunes B. Twists and turns of an oyster's life: effects of different depuration periods on physiological biochemical functions of oysters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29601-29614. [PMID: 33559825 DOI: 10.1007/s11356-021-12683-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Aquaculture activities are often established in the vicinity of highly populated, potentially contaminated areas. Animals cultured at such locations, namely bivalves, are frequently used as test organisms in ecotoxicological testing. In this case, a period of depuration is required to allow the normalization of physiological processes, which are likely to be altered after exposure to a multiplicity of waterborne contaminants occurring in the wild. One of the most important species in modern marine aquaculture is the oyster species Crassostrea gigas. The aim of this study was to assess if the current depuration time frame of 24 h (adopted by most aquaculture facilities), is long enough to permit oysters to revert potential toxic effects exerted by environmental contaminants, allowing their use in laboratory-based ecotoxicological studies. The selected approach involved the monitoring of biochemical (antioxidant defence, oxidative damage, phase II metabolism, and neurological homeostasis) and physiological (condition index) parameters, along a period of 42 days. The obtained results showed that a period of 24 h does not revert any of the potential toxic effects caused by environmental contaminants to which animals may have been previously subjected; even a period of 42 days was not long enough for the oysters to completely normalize the levels of their antioxidant defences, namely total GPx activity, which increased over time. Lipid peroxidation was also increased during the depuration period, and the activity of the metabolic isoenzymes GSTs was significantly decreased. Furthermore, AChE activity measured in the adductor muscle of oysters was increased over time. These assumptions suggest that a period of depuration longer than 24 h is mandatory to obtain adequate test organisms of this oyster species, to be used for ecotoxicological testing purposes.
Collapse
Affiliation(s)
- Sofia Bio
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
10
|
Leduc A, Leclerc M, Challant J, Loutreul J, Robin M, Maul A, Majou D, Boudaud N, Gantzer C. F-Specific RNA Bacteriophages Model the Behavior of Human Noroviruses during Purification of Oysters: the Main Mechanism Is Probably Inactivation Rather than Release. Appl Environ Microbiol 2020; 86:e00526-20. [PMID: 32303551 PMCID: PMC7267196 DOI: 10.1128/aem.00526-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/08/2020] [Indexed: 01/06/2023] Open
Abstract
Noroviruses (NoV) are responsible for many shellfish outbreaks. Purification processes may be applied to oysters before marketing to decrease potential fecal pollution. This step is rapidly highly effective in reducing Escherichia coli; nevertheless, the elimination of virus genomes has been described to be much slower. It is therefore important to identify (i) the purification conditions that optimize virus removal and (ii) the mechanism involved. To this end, the effects of oyster stress, nutrients, and the presence of a potential competitor to NoV adhesion during purification were investigated using naturally contaminated oysters. Concentrations of NoV (genomes) and of the viral indicator F-specific RNA bacteriophage (FRNAPH; genomes and infectious particles) were regularly monitored. No significant differences were observed under the test conditions. The decrease kinetics of both virus genomes were similar, again showing the potential of FRNAPH as an indicator of NoV behavior during purification. The T90 (time to reduce 90% of the initial titer) values were 47.8 days for the genogroup I NoV genome, 26.7 days for the genogroup II NoV genome, and 43.9 days for the FRNAPH-II genome. Conversely, monitoring of the viral genomes could not be used to determine the behavior of infectious viruses because the T90 values were more than two times lower for infectious FRNAPH (20.6 days) compared to their genomes (43.9 days). Finally, this study highlighted that viruses are primarily inactivated in oysters rather than released in the water during purification processes.IMPORTANCE This study provides new data about the behavior of viruses in oysters under purification processes and about their elimination mechanism. First, a high correlation has been observed between F-specific RNA bacteriophages of subgroup II (FRNAPH-II) and norovirus (NoV) in oysters impacted by fecal contamination when both are detected using molecular approaches. Second, when using reverse transcription-quantitative PCR and culture to detect FRNAPH-II genomes and infectious FRNAPH in oysters, respectively, it appears that genome detection provides limited information about the presence of infectious particles. The comparison of both genomes and infectious particles highlights that the main mechanism of virus elimination in oysters is inactivation. Finally, this study shows that none of the conditions tested modify virus removal.
Collapse
Affiliation(s)
- Alice Leduc
- Université de Lorraine, CNRS, LCPME, Nancy, France
- ACTALIA, Food Safety Department, Saint-Lô, France
| | | | | | | | - Maëlle Robin
- ACTALIA, Food Safety Department, Saint-Lô, France
| | - Armand Maul
- Université de Lorraine, CNRS, LIEC, Metz, France
| | | | | | | |
Collapse
|
11
|
Zhang L, Xue L, Gao J, Cai W, Jiang Y, Zuo Y, Liao Y, Qin Z, Wu H, Cheng T, Luo X, Wu Q, Wu K, Zhang J. Development of a high-efficient concentrated pretreatment method for noroviruses detection in independent oysters:An extension of the ISO/TS 15216-2:2013 standard method. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
12
|
Gyawali P, Fletcher GC, McCoubrey DJ, Hewitt J. Norovirus in shellfish: An overview of post-harvest treatments and their challenges. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.12.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Abstract
PURPOSE OF REVIEW The purpose of the review is to provide an update on control measures for norovirus (NoV), which is the most commonly implicated pathogen in acute gastroenteritis and outbreaks, causing major disruption in nurseries, schools, hospitals and care homes. RECENT FINDINGS Important developments include the discovery that virus particles, previously considered to be the infectious unit, also occur in clusters, which appear to be more virulent than individual virus particles; a working culture system using human stem-cell derived enteroids; promising results from early phase clinical trials of candidate NoV vaccines, which appear to be safe and immunogenic; chronic NoV affects patients with primary and secondary immune deficiencies. Although several treatments have been used none are supported by well designed clinical trials; infection control procedures are effective if properly implemented. SUMMARY NoV remains an important cause of morbidity and mortality. Although there are exciting developments on the vaccine front, the mainstay of control remains good hand hygiene, adherence to infection control procedures and limiting contamination of food, water and the wider environment. Once vaccines are available there will be important decisions to be made about how best to implement them.
Collapse
|