1
|
Gibbons M, Pasquini E, Kowalewska A, Read E, Gibson S, Crump A, Solvi C, Versace E, Chittka L. Noxious stimulation induces self-protective behavior in bumblebees. iScience 2024; 27:110440. [PMID: 39104408 PMCID: PMC11298632 DOI: 10.1016/j.isci.2024.110440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
It has been widely stated that insects do not show self-protective behavior toward noxiously-stimulated body parts, but this claim has never been empirically tested. Here, we tested whether an insect species displays a type of self-protective behavior: self-grooming a noxiously-stimulated site. We touched bumblebees (Bombus terrestris) on an antenna with a noxiously heated (65°C) probe and found that, in the first 2 min after this stimulus, bees groomed their touched antenna more than their untouched antenna, and more than bees that were touched with an unheated probe or not touched at all did. Our results present evidence that bumblebees display self-protective behavior. We discuss the potential neural mechanisms of this behavior and the implications for whether insects feel pain.
Collapse
Affiliation(s)
- Matilda Gibbons
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
- School of Biological and Behavioral Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Elisa Pasquini
- Center for Mind/Brain Sciences, University of Trento, Rovereto 38068, Italy
| | - Amelia Kowalewska
- School of Biological and Behavioral Sciences, Queen Mary University of London, London E1 4NS, UK
- Academic Training Team, The Francis Crick Institute, London NW1 1AT, UK
| | - Eva Read
- Department of Philosophy, Logic and Scientific Method, London School of Economics, London WC2A 2AE, UK
| | - Sam Gibson
- Department of Philosophy, Logic and Scientific Method, London School of Economics, London WC2A 2AE, UK
| | - Andrew Crump
- Department of Philosophy, Logic and Scientific Method, London School of Economics, London WC2A 2AE, UK
- Department of Pathobiology & Population Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Cwyn Solvi
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou City, Guangdong Province 510515, China
| | - Elisabetta Versace
- School of Biological and Behavioral Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Lars Chittka
- School of Biological and Behavioral Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
2
|
Maliszewska J, Jankowska M, Rogalska J. Octopamine is involved in TRP-induced thermopreference responses in American cockroach. JOURNAL OF INSECT PHYSIOLOGY 2024; 152:104597. [PMID: 38072185 DOI: 10.1016/j.jinsphys.2023.104597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Insects' thermoregulatory processes depend on thermosensation and further processing of thermal information in the nervous system. It is commonly known that thermosensation involves thermoreceptors, including members of the TRP receptor family, but the involvement of neurotransmitters in thermoregulatory pathways remains unstudied. We conducted test to determine whether octopamine, a biogenic amine that acts as a neurotransmitter and neurohormone in insects, is involved in TRP-induced thermoregulatory responses in Periplaneta americana. We used capsaicin, an activator of the heat-sensitive TRP channel, Painless, to induce thermoregulatory response in cockroaches. Then, we evaluated the behavioural (thermal preferences and grooming), physiological (heart rate) and biochemical responses of insects to capsaicin, octopamine and phentolamine - octopaminergic receptor blocker. Capsaicin, similar to octopamine, increased cockroaches' grooming activity and heart rate. Moreover, octopamine level and protein kinase A (PKA) activity significantly increased after capsaicin treatment. Blocking octopaminergic receptors with phentolamine diminished cockroaches' response to capsaicin - thermoregulatory behaviour, grooming and heart rate were abolished. The results indicate that octopamine is a neurotransmitter secreted in insects after the activation of heat receptors.
Collapse
Affiliation(s)
- Justyna Maliszewska
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Poland.
| | - Milena Jankowska
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Poland
| | - Justyna Rogalska
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Poland
| |
Collapse
|
3
|
Emanuel S, Libersat F. Nociceptive Pathway in the Cockroach Periplaneta americana. Front Physiol 2019; 10:1100. [PMID: 31496959 PMCID: PMC6712093 DOI: 10.3389/fphys.2019.01100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/08/2019] [Indexed: 12/31/2022] Open
Abstract
Detecting and avoiding environmental threats such as those with a potential for injury is of crucial importance for an animal’s survival. In this work, we examine the nociceptive pathway in an insect, the cockroach Periplaneta americana, from detection of noxious stimuli to nocifensive behavior. We show that noxious stimuli applied to the cuticle of cockroaches evoke responses in sensory axons that are distinct from tactile sensory axons in the sensory afferent nerve. We also reveal differences in the evoked response of post-synaptic projection interneurons in the nerve cord to tactile versus noxious stimuli. Noxious stimuli are encoded in the cockroach nerve cord by fibers of diameter different from that of tactile and wind sensitive fibers with a slower conduction velocity of 2–3 m/s. Furthermore, recording from the neck-connectives show that the nociceptive information reaches the head ganglia. Removing the head ganglia results in a drastic decrease in the nocifensive response indicating that the head ganglia and the nerve cord are both involved in processing noxious stimuli.
Collapse
Affiliation(s)
- Stav Emanuel
- Department of Life Sciences and Zlotowski Center for Neurosciences, Ben Gurion University, Beer Sheva, Israel
| | - Frederic Libersat
- Department of Life Sciences and Zlotowski Center for Neurosciences, Ben Gurion University, Beer Sheva, Israel
| |
Collapse
|
4
|
Maliszewska J, Wyszkowska J, Kletkiewicz H, Rogalska J. Capsaicin-induced dysregulation of acid-base status in the American cockroach. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:676-680. [PMID: 31230517 DOI: 10.1080/03601234.2019.1632642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Members of TRP receptor family are involved in response to acidification. Here, we determined the effect of capsaicin, one of the TRP receptor activators, on hemolymph acid-base status in the American cockroach. Periplaneta americana adult individuals were injected with lactic acid (5% or 10%) and exposed to 100 µM capsaicin solution. Hemolymph pH was measured 15 min, 1, 4, 8 and 24 h after lactic acid and capsaicin application with a glass microelectrode. The results demonstrated that cockroaches recover from acidosis within 4 h from acid injection. Capsaicin impaired the buffering capacity of insects' hemolymph, resulting in significant drop of hemolymph pH observed even 24 h after application. Joint action of capsaicin and acidosis reveals new insight into possible mechanism of capsaicin action on TRP receptors in insects.
Collapse
Affiliation(s)
- Justyna Maliszewska
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University , Toruń , Poland
| | - Joanna Wyszkowska
- Department of Biophysics, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University , Toruń , Poland
| | - Hanna Kletkiewicz
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University , Toruń , Poland
| | - Justyna Rogalska
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University , Toruń , Poland
| |
Collapse
|
5
|
Maliszewska J, Jankowska M, Kletkiewicz H, Stankiewicz M, Rogalska J. Effect of Capsaicin and Other Thermo-TRP Agonists on Thermoregulatory Processes in the American Cockroach. Molecules 2018; 23:E3360. [PMID: 30567399 PMCID: PMC6321544 DOI: 10.3390/molecules23123360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022] Open
Abstract
Capsaicin is known to activate heat receptor TRPV1 and induce changes in thermoregulatory processes of mammals. However, the mechanism by which capsaicin induces thermoregulatory responses in invertebrates is unknown. Insect thermoreceptors belong to the TRP receptors family, and are known to be activated not only by temperature, but also by other stimuli. In the following study, we evaluated the effects of different ligands that have been shown to activate (allyl isothiocyanate) or inhibit (camphor) heat receptors, as well as, activate (camphor) or inhibit (menthol and thymol) cold receptors in insects. Moreover, we decided to determine the effect of agonist (capsaicin) and antagonist (capsazepine) of mammalian heat receptor on the American cockroach's thermoregulatory processes. We observed that capsaicin induced the decrease of the head temperature of immobilized cockroaches. Moreover, the examined ligands induced preference for colder environments, when insects were allowed to choose the ambient temperature. Camphor exposure resulted in a preference for warm environments, but the changes in body temperature were not observed. The results suggest that capsaicin acts on the heat receptor in cockroaches and that TRP receptors are involved in cockroaches' thermosensation.
Collapse
Affiliation(s)
- Justyna Maliszewska
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, 87-100 Toruń, Poland.
| | - Milena Jankowska
- Department of Biophysics, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, 87-100 Toruń, Poland.
| | - Hanna Kletkiewicz
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, 87-100 Toruń, Poland.
| | - Maria Stankiewicz
- Department of Biophysics, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, 87-100 Toruń, Poland.
| | - Justyna Rogalska
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, 87-100 Toruń, Poland.
| |
Collapse
|