1
|
Kaur J, Kaur J. Comparative genomics of seven genomes of genus Idiomarina reveals important halo adaptations and genes for stress response. 3 Biotech 2024; 14:40. [PMID: 38261836 PMCID: PMC10794682 DOI: 10.1007/s13205-023-03887-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/11/2023] [Indexed: 01/25/2024] Open
Abstract
The genus Idiomarina consists of halophilic and/or haloalkaliphilic organisms. We compared the complete genomes of seven strains of the genus Idiomarina to investigate its adaptation to saline environment. A total of 1,313 core genes related to salinity tolerance, stress response, antibiotic resistance genes, virulence factors, and drug targets were found. Comparative genomics revealed various genes involved in halo adaptations of these organisms, including transporters and influx or efflux systems for elements such as Fe, Cu, Zn, Pb, and Cd. In agreement with their isolation sources (such as hydrothermal vents and marine sediments) and environments abundant in heavy metals, various resistance proteins and transporters associated with metal tolerance were also identified. These included copper resistance proteins, zinc uptake transcriptional repressor Zur, MerC domain-containing protein, Cd(II)/Pb(II)-responsive transcriptional regulator, Co/Zn/Cd efflux system protein, and mercuric transporter. Interestingly, we observed that the carbohydrate metabolism pathways were incomplete in all the strains and transporters used for absorption of small sugars were also not found in them. Also, the presence of higher proportion of genes involved in protein metabolism than carbohydrate metabolism indicates that proteinaceous substrates act as the major food substrates for these bacterial strains than carbohydrates. Genomic islands were detected in some species, highlighting the role of horizontal gene transfer for acquisition in novel genes. Genomic rearrangements in terms of partially palindromic regions were detected in all strains. To our knowledge, this is the first comprehensive comparative genomics study among the genus Idiomarina revealing unique genomic features within bacterial species inhabiting different ecological niches. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03887-3.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Maitreyi College, University of Delhi, New Delhi, 110 021 India
| | - Jasvinder Kaur
- Gargi College, University of Delhi, Siri Fort Road, New Delhi, 110 049 India
| |
Collapse
|
2
|
Li J, Wu S, Zhang K, Sun X, Lin W, Wang C, Lin S. Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR-Associated Protein and Its Utility All at Sea: Status, Challenges, and Prospects. Microorganisms 2024; 12:118. [PMID: 38257946 PMCID: PMC10820777 DOI: 10.3390/microorganisms12010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Initially discovered over 35 years ago in the bacterium Escherichia coli as a defense system against invasion of viral (or other exogenous) DNA into the genome, CRISPR/Cas has ushered in a new era of functional genetics and served as a versatile genetic tool in all branches of life science. CRISPR/Cas has revolutionized the methodology of gene knockout with simplicity and rapidity, but it is also powerful for gene knock-in and gene modification. In the field of marine biology and ecology, this tool has been instrumental in the functional characterization of 'dark' genes and the documentation of the functional differentiation of gene paralogs. Powerful as it is, challenges exist that have hindered the advances in functional genetics in some important lineages. This review examines the status of applications of CRISPR/Cas in marine research and assesses the prospect of quickly expanding the deployment of this powerful tool to address the myriad fundamental marine biology and biological oceanography questions.
Collapse
Affiliation(s)
- Jiashun Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Shuaishuai Wu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Marine Biology and Fisheries, Hainan University, Haikou 570203, China
| | - Xueqiong Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Wenwen Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Cong Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
| |
Collapse
|
3
|
Rodriguez Jimenez A, Guiglielmoni N, Goetghebuer L, Dechamps E, George IF, Flot JF. Comparative genome analysis of Vagococcus fluvialis reveals abundance of mobile genetic elements in sponge-isolated strains. BMC Genomics 2022; 23:618. [PMID: 36008774 PMCID: PMC9413892 DOI: 10.1186/s12864-022-08842-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vagococcus fluvialis is a species of lactic acid bacteria found both free-living in river and seawater and associated to hosts, such as marine sponges. This species has been greatly understudied, with no complete genome assembly available to date, which is essential for the characterisation of the mobilome. RESULTS We sequenced and assembled de novo the complete genome sequences of five V. fluvialis isolates recovered from marine sponges. Pangenome analysis of the V. fluvialis species (total of 17 genomes) showed a high intraspecific diversity, with 45.5% of orthologous genes found to be strain specific. Despite this diversity, analyses of gene functions clustered all V. fluvialis species together and separated them from other sequenced Vagococcus species. V. fluvialis strains from different habitats were highly similar in terms of functional diversity but the sponge-isolated strains were enriched in several functions related to the marine environment. Furthermore, sponge-isolated strains carried a significantly higher number of mobile genetic elements (MGEs) compared to previously sequenced V. fluvialis strains from other environments. Sponge-isolated strains carried up to 4 circular plasmids each, including a 48-kb conjugative plasmid. Three of the five strains carried an additional circular extrachromosomal sequence, assumed to be an excised prophage as it contained mainly viral genes and lacked plasmid replication genes. Insertion sequences (ISs) were up to five times more abundant in the genomes of sponge-isolated strains compared to the others, including several IS families found exclusively in these genomes. CONCLUSIONS Our findings highlight the dynamics and plasticity of the V. fluvialis genome. The abundance of mobile genetic elements in the genomes of sponge-isolated V. fluvialis strains suggests that the mobilome might be key to understanding the genomic signatures of symbiosis in bacteria.
Collapse
Affiliation(s)
- Ana Rodriguez Jimenez
- Ecology of Aquatic Systems, Université libre de Bruxelles (ULB), Brussels, Belgium. .,Evolutionary Biology and Ecology, Université libre de Bruxelles (ULB), Brussels, Belgium.
| | - Nadège Guiglielmoni
- Evolutionary Biology and Ecology, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Lise Goetghebuer
- Ecology of Aquatic Systems, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Etienne Dechamps
- Ecology of Aquatic Systems, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Isabelle F George
- Ecology of Aquatic Systems, Université libre de Bruxelles (ULB), Brussels, Belgium.,Marine Biology, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Jean-François Flot
- Evolutionary Biology and Ecology, Université libre de Bruxelles (ULB), Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels - (IB)², Brussels, Belgium
| |
Collapse
|
4
|
Merlin TS, Umar M, Puthiyedathu ST. Genomic insights into symbiosis and host adaptation of an ascidian-associated bacterium Bacillus aryabhattai MCCB 387. Symbiosis 2022. [DOI: 10.1007/s13199-022-00860-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
5
|
Liu Z, Jiang P, Niu G, Wang W, Li J. Lysobacter antarcticus sp. nov., an SUF-system-containing bacterium from Antarctic coastal sediment. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A Gram-stain-negative, heterotrophic, aerobic, non-motile, rod-shaped bacterial strain (GW1-59T) belonging to the genus
Lysobacter
was isolated from coastal sediment collected from the Chinese Great Wall Station, Antarctica. The strain was identified using a polyphasic taxonomic approach. The strain grew well on Reasoner's 2A media and could grow in the presence of 0–4 % (w/v) NaCl (optimum, 1 %), at pH 9.0–11.0 and at 15–37 °C (optimum, 30 °C). Strain GW1-59T possessed ubiquinone-8 as the sole respiratory quinone. The major phospholipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The major fatty acids were summed feature 9 (10-methyl C16 : 0 and/or iso-C17 : 1
ω9c), iso-C15 : 0, iso-C16 : 0, iso-C17 : 0, C16 : 0 and iso-C11 : 0 3-OH. DNA–DNA relatedness with
Lysobacter concretionis
Ko07T, the nearest phylogenetic relative (98.5 % 16S rRNA gene sequence similarity) was 23.4 % (21.1–25.9 %). The average nucleotide identity value between strain GW1-59T and
L. concretionis
Ko07T was 80.1 %. The physiological and biochemical results and low level of DNA–DNA relatedness suggested the phenotypic and genotypic differentiation of strain GW1-59T from other
Lysobacter
species. On the basis of phenotypic, phylogenetic and genotypic data, a novel species, Lysobacter antarcticus sp. nov., is proposed. The type strain is GW1-59T (=CCTCC AB 2019390T=KCTC 72831T).
Collapse
Affiliation(s)
- Zuoyang Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, 266003, PR China
| | - Peiqiang Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, 266003, PR China
| | - Guojiang Niu
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, 266003, PR China
| | - Wenjing Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, 266003, PR China
| | | |
Collapse
|
6
|
Shoham S, Weinberger A, Kaplan A, Avisar D, Ilan M. Arsenate reducing bacteria isolated from the marine sponge Theonella swinhoei: Bioremediation potential. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112522. [PMID: 34304132 DOI: 10.1016/j.ecoenv.2021.112522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) contamination of freshwater resources constitutes a major environmental issue affecting over 200 million people worldwide. Although the use of microorganisms for the bioremediation of As has been well studied, only very few candidates have been identified to date. Here, we investigated bacteria associated with the Red Sea sponge Theonella swinhoei and their potential to reduce As in a low-salinity liquid medium. This Indo-Pacific common sponge has been shown to hyper-accumulate As, at an average concentration of 8600 mg/g-1 in an environment uncontaminated by arsenic or barium. Four isolated strains of bacteria exhibited arsenic reduction potential by transforming inorganic As in the form of arsenate (iAsV) to arsenite (iAsIII). Two of these isolates were identified as Alteromonas macleodii and Pseudovibrio ascidisceicola, and the other two isolates, both belonging to the same species, were identified as Pseudovibrio denitrificans. The four isolates were then cultured in a low-salinity iAsV-rich medium (5 mM) and As concentration was measured over time using a specifically designed high-performance liquid chromatograph coupled to a mass spectrometer (HPLC-MS). Out of the four isolates, A. macleodii and P. ascidisceicola grew successfully in a low-salinity liquid medium and reduced AsV to AsIII at an average rate of 0.094 and 0.083 mM/h, respectively, thereby demonstrating great potential for the bioremediation of As-contaminated groundwater.
Collapse
Affiliation(s)
- Shani Shoham
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Adi Weinberger
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Aviv Kaplan
- Water Research Center, Porter School for Environment and Earth Science, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Dror Avisar
- Water Research Center, Porter School for Environment and Earth Science, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Micha Ilan
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
7
|
Fang SY, Chen SY, Chen YY, Kuo TJ, Wen ZH, Chen YH, Hwang TL, Sung PJ. Natural Indoles From the Bacterium Pseudovibrio denitrificans P81 Isolated From a Marine Sponge, Aaptos Species. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211033735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A new natural indole, vibrindole B (1), together with known analogs, vibrindole A (2), trisindoline (3), norharmane (4), and 3-(hydroxyacetyl)indole (5), produced by the bacterium Pseudovibrio denitrificans P81, were isolated from a sponge, Aaptos species. The structures of indoles 1 to 5 were established by spectroscopic methods. The proposed biosynthetic pathway of 1 to 5 is also discussed, starting from tryptophan. Moreover, indoles 1 to 3 were found to exhibit cytotoxicity toward T24 tumor cells with IC50 values of 1.71 ± 0.11, 4.53 ± 0.14, and 2.26 ± 0.26 µM, respectively.
Collapse
Affiliation(s)
- Shu-Yen Fang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Sheng-Yuan Chen
- Department of Internal Medicine, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - You-Ying Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Tsu-Jen Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Hsin Chen
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Anaesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Ping-Jyun Sung
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
- Ph.D. Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei, Taiwan
| |
Collapse
|
8
|
Ióca LP, Dai Y, Kunakom S, Diaz‐Espinosa J, Krunic A, Crnkovic CM, Orjala J, Sanchez LM, Ferreira AG, Berlinck RGS, Eustáquio AS. A Family of Nonribosomal Peptides Modulate Collective Behavior in
Pseudovibrio
Bacteria Isolated from Marine Sponges**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Laura P. Ióca
- Department of Pharmaceutical Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
- Instituto de Química de São Carlos Universidade de São Paulo São Carlos SP 13560-970 Brazil
| | - Yitao Dai
- Department of Pharmaceutical Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
| | - Sylvia Kunakom
- Department of Pharmaceutical Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
| | - Jennifer Diaz‐Espinosa
- Department of Pharmaceutical Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
| | - Aleksej Krunic
- Department of Pharmaceutical Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
| | - Camila M. Crnkovic
- Department of Pharmaceutical Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
| | - Jimmy Orjala
- Department of Pharmaceutical Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
| | - Laura M. Sanchez
- Department of Pharmaceutical Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
| | - Antonio G. Ferreira
- Departamento de Química Universidade Federal de São Carlos São Carlos SP 13565-905 Brazil
| | - Roberto G. S. Berlinck
- Instituto de Química de São Carlos Universidade de São Paulo São Carlos SP 13560-970 Brazil
| | - Alessandra S. Eustáquio
- Department of Pharmaceutical Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
| |
Collapse
|
9
|
Ióca LP, Dai Y, Kunakom S, Diaz-Espinosa J, Krunic A, Crnkovic CM, Orjala J, Sanchez LM, Ferreira AG, Berlinck RGS, Eustáquio AS. A Family of Nonribosomal Peptides Modulate Collective Behavior in Pseudovibrio Bacteria Isolated from Marine Sponges*. Angew Chem Int Ed Engl 2021; 60:15891-15898. [PMID: 33961724 PMCID: PMC8269750 DOI: 10.1002/anie.202017320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/01/2021] [Indexed: 11/08/2022]
Abstract
Although swarming motility and biofilms are opposed collective behaviors, both contribute to bacterial survival and host colonization. Pseudovibrio bacteria have attracted attention because they are part of the microbiome of healthy marine sponges. Two-thirds of Pseudovibrio genomes contain a member of a nonribosomal peptide synthetase-polyketide synthase gene cluster family, which is also found sporadically in Pseudomonas pathogens of insects and plants. After developing reverse genetics for Pseudovibrio, we isolated heptapeptides with an ureido linkage and related nonadepsipeptides we termed pseudovibriamides A and B, respectively. A combination of genetics and imaging mass spectrometry experiments showed heptapetides were excreted, promoting motility and reducing biofilm formation. In contrast to lipopeptides widely known to affect motility/biofilms, pseudovibriamides are not surfactants. Our results expand current knowledge on metabolites mediating bacterial collective behavior.
Collapse
Affiliation(s)
- Laura P. Ióca
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP 13560-970, Brazil
| | - Yitao Dai
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Sylvia Kunakom
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jennifer Diaz-Espinosa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Aleksej Krunic
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Camila M. Crnkovic
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jimmy Orjala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Laura M. Sanchez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Antonio G. Ferreira
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP 13565-905, Brazil
| | - Roberto G. S. Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP 13560-970, Brazil
| | - Alessandra S. Eustáquio
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
10
|
Matos A, Antunes A. Symbiotic Associations in Ascidians: Relevance for Functional Innovation and Bioactive Potential. Mar Drugs 2021; 19:370. [PMID: 34206769 PMCID: PMC8303170 DOI: 10.3390/md19070370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
Associations between different organisms have been extensively described in terrestrial and marine environments. These associations are involved in roles as diverse as nutrient exchanges, shelter or adaptation to adverse conditions. Ascidians are widely dispersed marine invertebrates associated to invasive behaviours. Studying their microbiomes has interested the scientific community, mainly due to its potential for bioactive compounds production-e.g., ET-73 (trabectedin, Yondelis), an anticancer drug. However, these symbiotic interactions embrace several environmental and biological functions with high ecological relevance, inspiring diverse biotechnological applications. We thoroughly reviewed microbiome studies (microscopic to metagenomic approaches) of around 171 hosts, worldwide dispersed, occurring at different domains of life (Archaea, Bacteria, Eukarya), to illuminate the functions and bioactive potential of associated organisms in ascidians. Associations with Bacteria are the most prevalent, namely with Cyanobacteria, Proteobacteria, Bacteroidetes, Actinobacteria and Planctomycetes phyla. The microbiomes of ascidians belonging to Aplousobranchia order have been the most studied. The integration of worldwide studies characterizing ascidians' microbiome composition revealed several functions including UV protection, bioaccumulation of heavy metals and defense against fouling or predators through production of natural products, chemical signals or competition. The critical assessment and characterization of these communities is extremely valuable to comprehend their biological/ecological role and biotechnological potential.
Collapse
Affiliation(s)
- Ana Matos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
11
|
Dat TTH, Cuc NTK, Cuong PV, Smidt H, Sipkema D. Diversity and Antimicrobial Activity of Vietnamese Sponge-Associated Bacteria. Mar Drugs 2021; 19:md19070353. [PMID: 34206202 PMCID: PMC8307940 DOI: 10.3390/md19070353] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
This study aimed to assess the diversity and antimicrobial activity of cultivable bacteria associated with Vietnamese sponges. In total, 460 bacterial isolates were obtained from 18 marine sponges. Of these, 58.3% belonged to Proteobacteria, 16.5% to Actinobacteria, 18.0% to Firmicutes, and 7.2% to Bacteroidetes. At the genus level, isolated strains belonged to 55 genera, of which several genera, such as Bacillus, Pseudovibrio, Ruegeria, Vibrio, and Streptomyces, were the most predominant. Culture media influenced the cultivable bacterial composition, whereas, from different sponge species, similar cultivable bacteria were recovered. Interestingly, there was little overlap of bacterial composition associated with sponges when the taxa isolated were compared to cultivation-independent data. Subsequent antimicrobial assays showed that 90 isolated strains exhibited antimicrobial activity against at least one of seven indicator microorganisms. From the culture broth of the isolated strain with the strongest activity (Bacillus sp. M1_CRV_171), four secondary metabolites were isolated and identified, including cyclo(L-Pro-L-Tyr) (1), macrolactin A (2), macrolactin H (3), and 15,17-epoxy-16-hydroxy macrolactin A (4). Of these, compounds 2-4 exhibited antimicrobial activity against a broad spectrum of reference microorganisms.
Collapse
Affiliation(s)
- Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam; (N.T.K.C.); (P.V.C.)
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands;
- Correspondence: (T.T.H.D.); (D.S.); Tel.: +84-94-949-2778 (T.T.H.D.); +31-317-483-113 (D.S.)
| | - Nguyen Thi Kim Cuc
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam; (N.T.K.C.); (P.V.C.)
| | - Pham Viet Cuong
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam; (N.T.K.C.); (P.V.C.)
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands;
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands;
- Correspondence: (T.T.H.D.); (D.S.); Tel.: +84-94-949-2778 (T.T.H.D.); +31-317-483-113 (D.S.)
| |
Collapse
|
12
|
Genome Reduction and Secondary Metabolism of the Marine Sponge-Associated Cyanobacterium Leptothoe. Mar Drugs 2021; 19:md19060298. [PMID: 34073758 PMCID: PMC8225149 DOI: 10.3390/md19060298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Sponges form symbiotic relationships with diverse and abundant microbial communities. Cyanobacteria are among the most important members of the microbial communities that are associated with sponges. Here, we performed a genus-wide comparative genomic analysis of the newly described marine benthic cyanobacterial genus Leptothoe (Synechococcales). We obtained draft genomes from Le. kymatousa TAU-MAC 1615 and Le. spongobia TAU-MAC 1115, isolated from marine sponges. We identified five additional Leptothoe genomes, host-associated or free-living, using a phylogenomic approach, and the comparison of all genomes showed that the sponge-associated strains display features of a symbiotic lifestyle. Le. kymatousa and Le. spongobia have undergone genome reduction; they harbored considerably fewer genes encoding for (i) cofactors, vitamins, prosthetic groups, pigments, proteins, and amino acid biosynthesis; (ii) DNA repair; (iii) antioxidant enzymes; and (iv) biosynthesis of capsular and extracellular polysaccharides. They have also lost several genes related to chemotaxis and motility. Eukaryotic-like proteins, such as ankyrin repeats, playing important roles in sponge-symbiont interactions, were identified in sponge-associated Leptothoe genomes. The sponge-associated Leptothoe stains harbored biosynthetic gene clusters encoding novel natural products despite genome reduction. Comparisons of the biosynthetic capacities of Leptothoe with chemically rich cyanobacteria revealed that Leptothoe is another promising marine cyanobacterium for the biosynthesis of novel natural products.
Collapse
|
13
|
Genomic Insights into Adaptations of Trimethylamine-Utilizing Methanogens to Diverse Habitats, Including the Human Gut. mSystems 2021; 6:6/1/e00939-20. [PMID: 33563787 PMCID: PMC7883539 DOI: 10.1128/msystems.00939-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Archaea of the order Methanomassiliicoccales use methylated amines such as trimethylamine as the substrates for methanogenesis. They form two large phylogenetic clades and reside in diverse environments, from soil to the human gut. Two genera, one from each clade, inhabit the human gut: Methanomassiliicoccus, which has one cultured representative, and "Candidatus Methanomethylophilus," which has none. Questions remain regarding their distribution across biomes and human populations, their association with other taxa in the gut, and whether host genetics correlate with their abundance. To gain insight into the Methanomassiliicoccales clade, particularly its human-associated members, we performed a genomic comparison of 72 Methanomassiliicoccales genomes and assessed their presence in metagenomes derived from the human gut (n = 4,472, representing 22 populations), nonhuman animal gut (n = 145), and nonhost environments (n = 160). Our analyses showed that all taxa are generalists; they were detected in animal gut and environmental samples. We confirmed two large clades, one enriched in the gut and the other enriched in the environment, with notable exceptions. Genomic adaptations to the gut include genome reduction and genes involved in the shikimate pathway and bile resistance. Genomic adaptations differed by clade, not habitat preference, indicating convergent evolution between the clades. In the human gut, the relative abundance of Methanomassiliicoccales spp. correlated with trimethylamine-producing bacteria and was unrelated to host genotype. Our results shed light on the microbial ecology of this group and may help guide Methanomassiliicoccales-based strategies for trimethylamine mitigation in cardiovascular disease.IMPORTANCE Methanomassiliicoccales are less-known members of the human gut archaeome. Members of this order use methylated amines, including trimethylamine, in methane production. This group has only one cultured representative; how its members adapted to inhabit the mammalian gut and how they interact with other microbes is largely unknown. Using bioinformatics methods applied to DNA from a wide range of samples, we profiled the abundances of these Archaea spp. in environmental and host-associated microbial communities. We observed two groups of Methanomassiliicoccales, one largely host associated and one largely found in environmental samples, with some exceptions. When host associated, these Archaea have smaller genomes and possess genes related to bile resistance and aromatic amino acid precursors. We did not detect Methanomassiliicoccales in all human populations tested, but when present, they were correlated with bacteria known to produce trimethylamine. Due to their metabolism of trimethylamine, these intriguing Archaea may form the basis of novel therapies for cardiovascular disease.
Collapse
|
14
|
Freitas-Silva J, de Oliveira BFR, Vigoder FDM, Muricy G, Dobson ADW, Laport MS. Peeling the Layers Away: The Genomic Characterization of Bacillus pumilus 64-1, an Isolate With Antimicrobial Activity From the Marine Sponge Plakina cyanorosea (Porifera, Homoscleromorpha). Front Microbiol 2021; 11:592735. [PMID: 33488540 PMCID: PMC7820076 DOI: 10.3389/fmicb.2020.592735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/09/2020] [Indexed: 11/30/2022] Open
Abstract
Bacillus pumilus 64-1, a bacterial strain isolated from the marine sponge Plakina cyanorosea, which exhibits antimicrobial activity against both pathogenic and drug-resistant Gram-positive and Gram-negative bacteria. This study aimed to conduct an in-depth genomic analysis of this bioactive sponge-derived strain. The nearly complete genome of strain 64-1 consists of 3.6 Mbp (41.5% GC), which includes 3,705 coding sequences (CDS). An open pangenome was observed when limiting to the type strains of the B. pumilus group and aquatic-derived B. pumilus representatives. The genome appears to encode for at least 12 potential biosynthetic gene clusters (BGCs), including both types I and III polyketide synthases (PKS), non-ribosomal peptide synthetases (NRPS), and one NRPS-T1PKS hybrid, among others. In particular, bacilysin and other bacteriocin-coding genes were found and may be associated with the detected antimicrobial activity. Strain 64-1 also appears to possess a broad repertoire of genes encoding for plant cell wall-degrading carbohydrate-active enzymes (CAZymes). A myriad of genes which may be involved in various process required by the strain in its marine habitat, such as those encoding for osmoprotectory transport systems and the biosynthesis of compatible solutes were also present. Several heavy metal tolerance genes are also present, together with various mobile elements including a region encoding for a type III-B Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) region, four prophage segments and transposase elements. This is the first report on the genomic characterization of a cultivable bacterial member of the Plakina cyanorosea holobiont.
Collapse
Affiliation(s)
- Jéssyca Freitas-Silva
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Francesco Rodrigues de Oliveira
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,School of Microbiology, University College Cork, Cork, Ireland
| | - Felipe de Mello Vigoder
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guilherme Muricy
- Department of Invertebrates, National Museum, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| | - Marinella Silva Laport
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Kim M, Cha IT, Lee KE, Lee EY, Park SJ. Genomics Reveals the Metabolic Potential and Functions in the Redistribution of Dissolved Organic Matter in Marine Environments of the Genus Thalassotalea. Microorganisms 2020; 8:microorganisms8091412. [PMID: 32937826 PMCID: PMC7564069 DOI: 10.3390/microorganisms8091412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022] Open
Abstract
Members of the bacterial genus Thalassotalea have been isolated recently from various marine environments, including marine invertebrates. A metagenomic study of the Deepwater Horizon oil plume has identified genes involved in aromatic hydrocarbon degradation in the Thalassotalea genome, shedding light on its potential role in the degradation of crude oils. However, the genomic traits of the genus are not well-characterized, despite the ability of the species to degrade complex natural compounds, such as agar, gelatin, chitin, or starch. Here, we obtained a complete genome of a new member of the genus, designated PS06, isolated from marine sediments containing dead marine benthic macroalgae. Unexpectedly, strain PS06 was unable to grow using most carbohydrates as sole carbon sources, which is consistent with the finding of few ABC transporters in the PS06 genome. A comparative analysis of 12 Thalassotalea genomes provided insights into their metabolic potential (e.g., microaerobic respiration and carbohydrate utilization) and evolutionary stability [including a low abundance of clustered regularly interspaced short palindromic repeats (CRISPR) loci and prophages]. The diversity and frequency of genes encoding extracellular enzymes for carbohydrate metabolism in the 12 genomes suggest that members of Thalassotalea contribute to nutrient cycling by the redistribution of dissolved organic matter in marine environments. Our study improves our understanding of the ecological and genomic properties of the genus Thalassotalea.
Collapse
Affiliation(s)
- Minji Kim
- Department of Biology, Jeju National University, 102 Jejudaehak-ro, Jeju 63243, Korea;
| | - In-Tae Cha
- Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Korea; (I.-T.C.); (K.-E.L.)
| | - Ki-Eun Lee
- Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Korea; (I.-T.C.); (K.-E.L.)
| | - Eun-Young Lee
- Exhibition & Education Division, National Institute of Biological Resources, Incheon 22689, Korea;
| | - Soo-Je Park
- Department of Biology, Jeju National University, 102 Jejudaehak-ro, Jeju 63243, Korea;
- Correspondence: ; Tel.: +82-64-753-3524; Fax: +82-64-756-3541
| |
Collapse
|
16
|
Guibert I, Bourdreux F, Bonnard I, Pochon X, Dubousquet V, Raharivelomanana P, Berteaux-Lecellier V, Lecellier G. Dimethylsulfoniopropionate concentration in coral reef invertebrates varies according to species assemblages. Sci Rep 2020; 10:9922. [PMID: 32555283 PMCID: PMC7303174 DOI: 10.1038/s41598-020-66290-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/18/2020] [Indexed: 11/28/2022] Open
Abstract
Dimethylsulfoniopropionate (DMSP) is a key compound in the marine sulfur cycle, and is produced in large quantities in coral reefs. In addition to Symbiodiniaceae, corals and associated bacteria have recently been shown to play a role in DMSP metabolism. Numerous ecological studies have focused on DMSP concentrations in corals, which led to the hypothesis that increases in DMSP levels might be a general response to stress. Here we used multiple species assemblages of three common Indo-Pacific holobionts, the scleractinian corals Pocillopora damicornis and Acropora cytherea, and the giant clam Tridacna maxima and examined the DMSP concentrations associated with each species within different assemblages and thermal conditions. Results showed that the concentration of DMSP in A. cytherea and T. maxima is modulated according to the complexity of species assemblages. To determine the potential importance of symbiotic dinoflagellates in DMSP production, we then explored the relative abundance of Symbiodiniaceae clades in relation to DMSP levels using metabarcoding, and found no significant correlation between these factors. Finally, this study also revealed the existence of homologs involved in DMSP production in giant clams, suggesting for the first time that, like corals, they may also contribute to DMSP production. Taken together, our results demonstrated that corals and giant clams play important roles in the sulfur cycle. Because DMSP production varies in response to specific species-environment interactions, this study offers new perspectives for future global sulfur cycling research.
Collapse
Affiliation(s)
- Isis Guibert
- Swire Institute of Marine Science, The University of Hong Kong, Hong Kong S.A.R, China.
- Sorbonne Université, UMR250/9220 ENTROPIE IRD-CNRS-UR-IFREMER-UNC, Promenade Roger-Laroque, Noumea cedex, New Caledonia, France.
- USR3278 PSL CRIOBE CNRS-EPHE-UPVD, LabEx CORAIL, Papetoai, Moorea, French Polynesia.
| | - Flavien Bourdreux
- Université de Paris-Saclay, UVSQ, 45 avenue des Etats-Unis, Versailles Cedex, France
- Institut Lavoisier de Versailles, UMR CNRS 8180, 45 avenue des Etats-Unis, Versailles Cedex, France
| | - Isabelle Bonnard
- USR3278 PSL CRIOBE CNRS-EPHE-UPVD, LabEx CORAIL, Université de Perpignan, 58 avenue Paul Alduy, 66860, Perpignan, France
| | - Xavier Pochon
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
- Institute of Marine Science, University of Auckland, Private Bag 349, Warkworth, 0941, New Zealand
| | - Vaimiti Dubousquet
- Délégation à la recherche, Government of French Polynesia BP 20981, 98713, Papeete, Tahiti, French Polynesia
| | - Phila Raharivelomanana
- UMR 241 EIO, Université de la Polynésie Française, BP 6570 Faaa, 98702, Faaa, Tahiti, French Polynesia
| | - Véronique Berteaux-Lecellier
- USR3278 PSL CRIOBE CNRS-EPHE-UPVD, LabEx CORAIL, Papetoai, Moorea, French Polynesia
- UMR250/9220 ENTROPIE IRD-CNRS-UR-IFREMER-UNC, Promenade Roger-Laroque, Noumea cedex, New Caledonia, France
| | - Gael Lecellier
- Université de Paris-Saclay, UVSQ, 45 avenue des Etats-Unis, Versailles Cedex, France
- UMR250/9220 ENTROPIE IRD-CNRS-UR-IFREMER-UNC, Promenade Roger-Laroque, Noumea cedex, New Caledonia, France
| |
Collapse
|
17
|
Gutleben J, Loureiro C, Ramírez Romero LA, Shetty S, Wijffels RH, Smidt H, Sipkema D. Cultivation of Bacteria From Aplysina aerophoba: Effects of Oxygen and Nutrient Gradients. Front Microbiol 2020; 11:175. [PMID: 32140143 PMCID: PMC7042410 DOI: 10.3389/fmicb.2020.00175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/24/2020] [Indexed: 12/22/2022] Open
Abstract
Sponge-associated bacteria possess biotechnologically interesting properties but as yet have largely evaded cultivation. Thus, "omics"-based information on the ecology and functional potential of sponge symbionts is awaiting its integration into the design of innovative cultivation approaches. To cultivate bacteria derived from the marine sponge Aplysina aerophoba, nine novel media formulations were created based on the predicted genomic potential of the prevalent sponge symbiont lineage Poribacteria. In addition, to maintain potential microbial metabolic interactions in vitro, a Liquid-Solid cultivation approach and a Winogradsky-column approach were applied. The vast majority of microorganisms in the inoculum appeared viable after cryopreservation of sponge specimen as determined by selective propidium monoazide DNA modification of membrane-compromised cells, however, only 2% of the initial prokaryotic diversity could be recovered through cultivation. In total, 256 OTUs encompassing seven prokaryotic phyla were cultivated. The diversity of the cultivated community was influenced by the addition of the antibiotic aeroplysinin-1 as well as by medium dilution, rather than carbon source. Furthermore, the Winogradsky-column approach reproducibly enriched distinct communities at different column depths, amongst which were numerous Clostridia and OTUs that could not be assigned to a known phylum. While some bacterial taxa such as Pseudovibrio and Ruegeria were recovered from nearly all applied cultivation conditions, others such as Bacteroidetes were specific to certain medium types. Predominant sponge-associated prokaryotic taxa remained uncultured, nonetheless, alternative cultivation approaches applied here enriched for previously uncultivated microbes.
Collapse
Affiliation(s)
- Johanna Gutleben
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Catarina Loureiro
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | | | - Sudarshan Shetty
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - René H. Wijffels
- Bioprocess Engineering, AlgaePARC, Wageningen University, Wageningen, Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
18
|
Silveira CB, Coutinho FH, Cavalcanti GS, Benler S, Doane MP, Dinsdale EA, Edwards RA, Francini-Filho RB, Thompson CC, Luque A, Rohwer FL, Thompson F. Genomic and ecological attributes of marine bacteriophages encoding bacterial virulence genes. BMC Genomics 2020; 21:126. [PMID: 32024463 PMCID: PMC7003362 DOI: 10.1186/s12864-020-6523-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
Background Bacteriophages encode genes that modify bacterial functions during infection. The acquisition of phage-encoded virulence genes is a major mechanism for the rise of bacterial pathogens. In coral reefs, high bacterial density and lysogeny has been proposed to exacerbate reef decline through the transfer of phage-encoded virulence genes. However, the functions and distribution of these genes in phage virions on the reef remain unknown. Results Here, over 28,000 assembled viral genomes from the free viral community in Atlantic and Pacific Ocean coral reefs were queried against a curated database of virulence genes. The diversity of virulence genes encoded in the viral genomes was tested for relationships with host taxonomy and bacterial density in the environment. These analyses showed that bacterial density predicted the profile of virulence genes encoded by phages. The Shannon diversity of virulence-encoding phages was negatively related with bacterial density, leading to dominance of fewer genes at high bacterial abundances. A statistical learning analysis showed that reefs with high microbial density were enriched in viruses encoding genes enabling bacterial recognition and invasion of metazoan epithelium. Over 60% of phages could not have their hosts identified due to limitations of host prediction tools; for those which hosts were identified, host taxonomy was not an indicator of the presence of virulence genes. Conclusions This study described bacterial virulence factors encoded in the genomes of bacteriophages at the community level. The results showed that the increase in microbial densities that occurs during coral reef degradation is associated with a change in the genomic repertoire of bacteriophages, specifically in the diversity and distribution of bacterial virulence genes. This suggests that phages are implicated in the rise of pathogens in disturbed marine ecosystems.
Collapse
Affiliation(s)
- Cynthia B Silveira
- Department of Biology, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA. .,Viral Information Institute, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA. .,Department of Biology, University of Miami, 1301 Memorial Dr., Coral Gables, FL, 33146, USA.
| | - Felipe H Coutinho
- Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Apartado 18, 03550, San Juan de Alicante, Spain
| | - Giselle S Cavalcanti
- Department of Biology, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA.,Viral Information Institute, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA
| | - Sean Benler
- Department of Biology, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA.,Viral Information Institute, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA
| | - Michael P Doane
- Department of Biology, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA.,Viral Information Institute, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA.,Sydney Institute of Marine Science, 19 Chowder Bay Rd, Mosman, NSW, 2088, Australia
| | - Elizabeth A Dinsdale
- Department of Biology, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA.,Viral Information Institute, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA
| | - Robert A Edwards
- Department of Biology, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA.,Viral Information Institute, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA
| | - Ronaldo B Francini-Filho
- Centro de Biologia Marinha, Universidade de São Paulo, Rodovia Manoel Hypólito do Rego, Km 131,50, São Sebastião, SP, 11600-000, Brazil
| | - Cristiane C Thompson
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, RJ, 21941- 599, Brazil
| | - Antoni Luque
- Viral Information Institute, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA.,Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA.,Computational Science Research Center, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA
| | - Forest L Rohwer
- Department of Biology, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA.,Viral Information Institute, San Diego State University, 5500 Campanile Dr, San Diego, CA, 92182, USA
| | - Fabiano Thompson
- SAGE/COPPE, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, RJ, 21941- 599, Brazil
| |
Collapse
|
19
|
Phylogenomic Analyses of Members of the Widespread Marine Heterotrophic Genus Pseudovibrio Suggest Distinct Evolutionary Trajectories and a Novel Genus, Polycladidibacter gen. nov. Appl Environ Microbiol 2020; 86:AEM.02395-19. [PMID: 31811036 PMCID: PMC6997731 DOI: 10.1128/aem.02395-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
Bacteria belonging to the Pseudovibrio genus are widespread, metabolically versatile, and able to thrive as both free-living and host-associated organisms. Although more than 50 genomes are available, a comprehensive comparative genomics study to resolve taxonomic inconsistencies is currently missing. We analyzed all available genomes and used 552 core genes to perform a robust phylogenomic reconstruction. This in-depth analysis revealed the divergence of two monophyletic basal lineages of strains isolated from polyclad flatworm hosts, namely, Pseudovibrio hongkongensis and Pseudovibrio stylochi These strains have reduced genomes and lack sulfur-related metabolisms and major biosynthetic gene clusters, and their environmental distribution appears to be tightly associated with invertebrate hosts. We showed experimentally that the divergent strains are unable to utilize various sulfur compounds that, in contrast, can be utilized by the type strain Pseudovibrio denitrificans Our analyses suggest that the lineage leading to these two strains has been subject to relaxed purifying selection resulting in great gene loss. Overall genome relatedness indices (OGRI) indicate substantial differences between the divergent strains and the rest of the genus. While 16S rRNA gene analyses do not support the establishment of a different genus for the divergent strains, their substantial genomic, phylogenomic, and physiological differences strongly suggest a divergent evolutionary trajectory and the need for their reclassification. Therefore, we propose the novel genus Polycladidibacter gen. nov.IMPORTANCE The genus Pseudovibrio is commonly associated with marine invertebrates, which are essential for ocean health and marine nutrient cycling. Traditionally, the phylogeny of the genus has been based on 16S rRNA gene analysis. The use of the 16S rRNA gene or any other single marker gene for robust phylogenetic placement has recently been questioned. We used a large set of marker genes from all available Pseudovibrio genomes for in-depth phylogenomic analyses. We identified divergent monophyletic basal lineages within the Pseudovibrio genus, including two strains isolated from polyclad flatworms. These strains showed reduced sulfur metabolism and biosynthesis capacities. The phylogenomic analyses revealed distinct evolutionary trajectories and ecological adaptations that differentiate the divergent strains from the other Pseudovibrio members and suggest that they fall into a novel genus. Our data show the importance of widening the use of phylogenomics for better understanding bacterial physiology, phylogeny, and evolution.
Collapse
|
20
|
Alex A, Antunes A. Comparative Genomics Reveals Metabolic Specificity of Endozoicomonas Isolated from a Marine Sponge and the Genomic Repertoire for Host-Bacteria Symbioses. Microorganisms 2019; 7:microorganisms7120635. [PMID: 31801294 PMCID: PMC6955870 DOI: 10.3390/microorganisms7120635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/19/2019] [Accepted: 11/27/2019] [Indexed: 11/29/2022] Open
Abstract
The most recently described bacterial members of the genus Endozoicomonas have been found in association with a wide variety of marine invertebrates. Despite their ubiquity in the host holobiont, limited information is available on the molecular genomic signatures of the symbiotic association of Endozoicomonas with marine sponges. Here, we generated a draft genome of Endozoicomonas sp. OPT23 isolated from the intertidal marine sponge Ophlitaspongia papilla and performed comprehensive comparative genomics analyses. Genome-specific analysis and metabolic pathway comparison of the members of the genus Endozoicomonas revealed the presence of gene clusters encoding for unique metabolic features, such as the utilization of carbon sources through lactate, L-rhamnose metabolism, and a phenylacetic acid degradation pathway in Endozoicomonas sp. OPT23. Moreover, the genome harbors genes encoding for eukaryotic-like proteins, such as ankyrin repeats, tetratricopeptide repeats, and Sel1 repeats, which likely facilitate sponge-bacterium attachment. The genome also encodes major secretion systems and homologs of effector molecules that seem to enable the sponge-associated bacterium to interact with the sponge and deliver the virulence factors for successful colonization. In conclusion, the genome analysis of Endozoicomonas sp. OPT23 revealed the presence of adaptive genomic signatures that might favor their symbiotic lifestyle within the sponge host.
Collapse
Affiliation(s)
- Anoop Alex
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
- Correspondence: (A.Al.); (A.An.); Tel.: +351-22-340-1813 (A.Al.); +351-22-340-1813 (A.An.)
| | - Agostino Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
- Correspondence: (A.Al.); (A.An.); Tel.: +351-22-340-1813 (A.Al.); +351-22-340-1813 (A.An.)
| |
Collapse
|
21
|
Alex A, Antunes A. Whole-Genome Comparisons Among the Genus Shewanella Reveal the Enrichment of Genes Encoding Ankyrin-Repeats Containing Proteins in Sponge-Associated Bacteria. Front Microbiol 2019; 10:5. [PMID: 30787909 PMCID: PMC6372511 DOI: 10.3389/fmicb.2019.00005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 01/07/2019] [Indexed: 11/13/2022] Open
Abstract
The bacterial members of the genus Shewanella are widely distributed and inhabit both freshwater and marine environments. Some members of Shewanella have gained considerable attention due to its ability to survive in redox-stratified environments. However, a gap of knowledge exists on the key genomic features of the sponge-associated Shewanella sp. involving the successful host-bacteria interaction, as sponge-symbiotic Shewanella are largely underrepresented in the public repositories. With the aim of identifying the genomic signatures of sponge-Shewanella association, we generated a high-quality genome data of a sponge-associated, Shewanella sp. OPT22, isolated from the intertidal marine sponge Ophlitaspongia papilla and performed comprehensive comparative analyses of 68 genome strains of the genus Shewanella including two previously reported genomes of sponge-associated bacteria, Shewanella spongiae KCTC 22492 and Shewanella sp. Alg231_23. The 16S rRNA-based phylogenetic reconstruction showed the well-supported affiliation of OPT22 and KCTC 22492 with previously reported sponge-associated bacteria, affirming the “sponge-specific” nature of these two bacterial strains isolated from different marine sponge species from the Atlantic and Pacific (East Sea) Oceans, respectively. The genome comparison of the 68 strains of Shewanella inhabiting different habitats revealed the unusual/previously unreported abundance of genes encoding for ankyrin-repeat containing proteins (ANKs) in the genomes of the two sponge-associated strains, OPT22 (ANKs; n = 45) and KCTC 22492 (ANKs; n = 52), which might be involved in sponge-Shewanella interactions. Focused analyses detected the syntenic organization of the gene cluster encoding major secretion system (type III/IV/VI) components and the presence of effector homologs in OPT22 and KCTC 22492 that seem to play a role in the virulence of the sponge bacteria. The genomic island (GI) of Shewanella sp. OPT22 was identified to localize a gene cluster encoding T4SS components and ANK (n = 1), whereas S. spongiae KCTC 22492 harbored a total of seven ANKs within multiple GIs. GIs may play a pivotal role in the dissemination of symbioses-related genes (ANKs) through the horizontal gene transfer, contributing to the diversification and adaptation of sponge-associated Shewanella. Overall, the genome analyses of Shewanella isolates from marine sponges revealed genomic repertoires that might be involved in establishing successful symbiotic relationships with the sponge hosts.
Collapse
Affiliation(s)
- Anoop Alex
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|