1
|
Arikan BE, Voudouris D, Straube B, Fiehler K. Distinct role of central predictive mechanisms in tactile suppression. iScience 2024; 27:110582. [PMID: 39188983 PMCID: PMC11345528 DOI: 10.1016/j.isci.2024.110582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/14/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
Tactile sensitivity on a limb is reduced during movement. This tactile suppression results presumably from central predictive mechanisms that downregulate sensations caused during voluntary action. Suppression also occurs during passive movements, indicating a role for peripheral mechanisms, questioning the predictive nature of suppression. Yet, predictions existing beyond the motor domain (non-motor predictions) can also modulate tactile suppression. This study aimed to disentangle central motor predictive and peripheral feedback mechanisms while accounting for non-motor predictions. Participants detected tactile stimuli on their limb shortly before it moved in an active or passive manner. Passive movements were either fully (100%) or partially (50%) predictable. We found tactile suppression during both active and passive movements irrespective of whether the passive movements were predictable. Importantly, tactile suppression was stronger in active than passive movements highlighting the specific role of central predictive mechanisms.
Collapse
Affiliation(s)
- Belkis Ezgi Arikan
- Department of Experimental Psychology, Justus Liebig University Giessen, Otto-Behaghel Strasse 10F, Philosophikum I, 35394 Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB) of the University of Marburg, Justus Liebig University Giessen and University of Darmstadt, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany
| | - Dimitris Voudouris
- Department of Experimental Psychology, Justus Liebig University Giessen, Otto-Behaghel Strasse 10F, Philosophikum I, 35394 Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB) of the University of Marburg, Justus Liebig University Giessen and University of Darmstadt, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany
| | - Benjamin Straube
- Center for Mind, Brain and Behavior (CMBB) of the University of Marburg, Justus Liebig University Giessen and University of Darmstadt, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany
- Department of Psychiatry and Psychotherapy, University of Marburg; Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany
| | - Katja Fiehler
- Department of Experimental Psychology, Justus Liebig University Giessen, Otto-Behaghel Strasse 10F, Philosophikum I, 35394 Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB) of the University of Marburg, Justus Liebig University Giessen and University of Darmstadt, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany
| |
Collapse
|
2
|
McManus M, Schütz I, Voudouris D, Fiehler K. How visuomotor predictability and task demands affect tactile sensitivity on a moving limb during object interaction in a virtual environment. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231259. [PMID: 38094265 PMCID: PMC10716662 DOI: 10.1098/rsos.231259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/16/2023] [Indexed: 01/11/2024]
Abstract
Tactile sensitivity is decreased on a moving limb compared to the same static limb. This tactile suppression likely reflects an interplay between sensorimotor predictions and sensory feedback. Here, we examined how visuomotor predictability influences tactile suppression. Participants were instructed to hit an approaching virtual object, with the object either never rotating, or always rotating, or rotating unpredictably, prompting related movement adjustments. We probed tactile suppression by delivering a vibrotactile stimulus of varying intensities to the moving hand briefly after the object's rotation and asked participants to indicate if they had felt a vibration. We hypothesized that Unpredictable Rotations would require upweighting of somatosensory feedback from the hand and therefore decrease suppression. Instead, we found stronger suppression with unpredictable than Predictable Rotations. This finding persisted even when visual input from the moving hand was removed and participants had to rely solely on somatosensory feedback of their hand. Importantly, we found a correlation between task demand and tactile suppression in both experiments, indicating that task load can amplify tactile suppression, possibly by downweighting task-irrelevant somatosensory feedback signals to allow for successful task performance when visuomotor task demands are high.
Collapse
Affiliation(s)
- Meaghan McManus
- Experimental Psychology, Justus Liebig University, Otto-Behaghel-Str. 10F, 35394, Giessen, Hessen, Germany
| | - Immo Schütz
- Experimental Psychology, Justus Liebig University, Otto-Behaghel-Str. 10F, 35394, Giessen, Hessen, Germany
| | - Dimitris Voudouris
- Experimental Psychology, Justus Liebig University, Otto-Behaghel-Str. 10F, 35394, Giessen, Hessen, Germany
| | - Katja Fiehler
- Experimental Psychology, Justus Liebig University, Otto-Behaghel-Str. 10F, 35394, Giessen, Hessen, Germany
- Center for Mind, Brain and Behavior, University of Marburg and Justus Liebig University, Giessen, Hessen, Germany
| |
Collapse
|
3
|
Beyvers MC, Voudouris D, Fiehler K. Sensorimotor memories influence movement kinematics but not associated tactile processing. Sci Rep 2023; 13:17920. [PMID: 37863998 PMCID: PMC10589242 DOI: 10.1038/s41598-023-45138-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
When interacting with objects, we often rely on visual information. However, vision is not always the most reliable sense for determining relevant object properties. For example, when the mass distribution of an object cannot be inferred visually, humans may rely on predictions about the object's dynamics. Such predictions may not only influence motor behavior but also associated processing of movement-related afferent information, leading to reduced tactile sensitivity during movement. We examined whether predictions based on sensorimotor memories influence grasping kinematics and associated tactile processing. Participants lifted an object of unknown mass distribution and reported whether they detected a tactile stimulus on their grasping hand during the lift. In Experiment 1, the mass distribution could change from trial to trial, whereas in Experiment 2, we intermingled longer with shorter parts of constant and variable mass distributions, while also providing implicit or explicit information about the trial structure. In both experiments, participants grasped the object by predictively choosing contact points that would compensate the mass distribution experienced in the previous trial. Tactile suppression during movement, however, was invariant across conditions. These results suggest that predictions based on sensorimotor memories can influence movement kinematics but not associated tactile perception.
Collapse
Affiliation(s)
- Marie C Beyvers
- Department of Experimental Psychology, Justus Liebig University Giessen, Otto-Behaghel-Strasse 10F, 35394, Giessen, Germany
| | - Dimitris Voudouris
- Department of Experimental Psychology, Justus Liebig University Giessen, Otto-Behaghel-Strasse 10F, 35394, Giessen, Germany
| | - Katja Fiehler
- Department of Experimental Psychology, Justus Liebig University Giessen, Otto-Behaghel-Strasse 10F, 35394, Giessen, Germany.
- Center for Mind, Brain and Behavior (CMMB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
4
|
Voudouris D, Fiehler K. The role of grasping demands on tactile suppression. Hum Mov Sci 2022; 83:102957. [DOI: 10.1016/j.humov.2022.102957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/27/2022] [Accepted: 04/30/2022] [Indexed: 11/15/2022]
|
5
|
Li Y, Wang P, Li R, Tao M, Liu Z, Qiao H. A Survey of Multifingered Robotic Manipulation: Biological Results, Structural Evolvements, and Learning Methods. Front Neurorobot 2022; 16:843267. [PMID: 35574228 PMCID: PMC9097019 DOI: 10.3389/fnbot.2022.843267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Multifingered robotic hands (usually referred to as dexterous hands) are designed to achieve human-level or human-like manipulations for robots or as prostheses for the disabled. The research dates back 30 years ago, yet, there remain great challenges to effectively design and control them due to their high dimensionality of configuration, frequently switched interaction modes, and various task generalization requirements. This article aims to give a brief overview of multifingered robotic manipulation from three aspects: a) the biological results, b) the structural evolvements, and c) the learning methods, and discuss potential future directions. First, we investigate the structure and principle of hand-centered visual sensing, tactile sensing, and motor control and related behavioral results. Then, we review several typical multifingered dexterous hands from task scenarios, actuation mechanisms, and in-hand sensors points. Third, we report the recent progress of various learning-based multifingered manipulation methods, including but not limited to reinforcement learning, imitation learning, and other sub-class methods. The article concludes with open issues and our thoughts on future directions.
Collapse
Affiliation(s)
- Yinlin Li
- State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Peng Wang
- State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- Centre for Artificial Intelligence and Robotics, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong, China
| | - Rui Li
- School of Automation, Chongqing University, Chongqing, China
| | - Mo Tao
- Science and Technology on Thermal Energy and Power Laboratory, Wuhan Second Ship Design and Research Institute, Wuhan, China
- School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
| | - Zhiyong Liu
- State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Hong Qiao
- State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Beyvers MC, Fraser LE, Fiehler K. Linking Signal Relevancy and Intensity in Predictive Tactile Suppression. Front Hum Neurosci 2022; 16:795886. [PMID: 35280202 PMCID: PMC8908965 DOI: 10.3389/fnhum.2022.795886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/31/2022] [Indexed: 11/30/2022] Open
Abstract
Predictable somatosensory feedback leads to a reduction in tactile sensitivity. This phenomenon, called tactile suppression, relies on a mechanism that uses an efference copy of motor commands to help select relevant aspects of incoming sensory signals. We investigated whether tactile suppression is modulated by (a) the task-relevancy of the predicted consequences of movement and (b) the intensity of related somatosensory feedback signals. Participants reached to a target region in the air in front of a screen; visual or tactile feedback indicated the reach was successful. Furthermore, tactile feedback intensity (strong vs. weak) varied across two groups of participants. We measured tactile suppression by comparing detection thresholds for a probing vibration applied to the finger either early or late during reach and at rest. As expected, we found an overall decrease in late-reach suppression, as no touch was involved at the end of the reach. We observed an increase in the degree of tactile suppression when strong tactile feedback was given at the end of the reach, compared to when weak tactile feedback or visual feedback was given. Our results suggest that the extent of tactile suppression can be adapted to different demands of somatosensory processing. Downregulation of this mechanism is invoked only when the consequences of missing a weak movement sequence are severe for the task. The decisive factor for the presence of tactile suppression seems not to be the predicted action effect as such, but the need to detect and process anticipated feedback signals occurring during movement.
Collapse
Affiliation(s)
- Marie C. Beyvers
- Department of Psychology, Justus Liebig University Giessen, Giessen, Germany
| | - Lindsey E. Fraser
- Center for Vision Research, York University, Toronto, ON, Canada
- Department of Psychology, York University, Toronto, ON, Canada
| | - Katja Fiehler
- Department of Psychology, Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior, University of Marburg and Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
7
|
Dynamic temporal modulation of somatosensory processing during reaching. Sci Rep 2021; 11:1928. [PMID: 33479355 PMCID: PMC7820441 DOI: 10.1038/s41598-021-81156-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/04/2021] [Indexed: 11/20/2022] Open
Abstract
Sensorimotor control of human action integrates feedforward policies that predict future body states with online sensory feedback. These predictions lead to a suppression of the associated feedback signals. Here, we examine whether somatosensory processing throughout a goal-directed movement is constantly suppressed or dynamically tuned so that online feedback processing is enhanced at critical moments of the movement. Participants reached towards their other hand in the absence of visual input and detected a probing tactile stimulus on their moving or static hand. Somatosensory processing on the moving hand was dynamically tuned over the time course of reaching, being hampered in early and late stages of the movement, but, interestingly, recovering around the time of maximal speed. This novel finding of temporal somatosensory tuning was further corroborated in a second experiment, in which larger movement amplitudes shifted the absolute time of maximal speed later in the movement. We further show that the release from suppression on the moving limb was temporally coupled with enhanced somatosensory processing on the target hand. We discuss these results in the context of optimal feedforward control and suggest that somatosensory processing is dynamically tuned during the time course of reaching by enhancing sensory processing at critical moments of the movement.
Collapse
|
8
|
The influence of afferent input on somatosensory suppression during grasping. Sci Rep 2020; 10:18692. [PMID: 33122705 PMCID: PMC7596517 DOI: 10.1038/s41598-020-75610-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/07/2020] [Indexed: 12/04/2022] Open
Abstract
The processing of somatosensory information is hampered on a moving limb. This suppression has been widely attributed to sensorimotor predictions that suppress the associated feedback, though postdictive mechanisms are also involved. Here, we investigated the extent to which suppression on a limb is influenced by backward somatosensory signals, such as afferents associated with forces that this limb applies. Participants grasped and lifted objects of symmetric and asymmetric mass distributions using a precision grip. We probed somatosensory processing at the moment of the grasp by presenting a vibrotactile stimulus either on the thumb or index finger and asked participants to report if they felt this stimulus. Participants applied greater forces with the thumb and index finger for objects loaded to the thumb’s or index finger’s endpoint, respectively. However, suppression was not influenced by the different applied forces. Suppression on the digits remained constant both when grasping heavier objects, and thus applying even greater forces, and when probing suppression on the skin over the muscle that controlled force application. These results support the idea that somatosensory suppression is predictive in nature while backward masking may only play a minor role in somatosensory processing on the moving hand, at least in this context.
Collapse
|
9
|
Klever L, Voudouris D, Fiehler K, Billino J. Age effects on sensorimotor predictions: What drives increased tactile suppression during reaching? J Vis 2020; 19:9. [PMID: 31426084 DOI: 10.1167/19.9.9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Tactile suppression refers to the phenomenon that tactile signals are attenuated during movement planning and execution when presented on a moving limb compared to rest. It is usually explained in the context of the forward model of movement control that predicts the sensory consequences of an action. Recent research suggests that aging increases reliance on sensorimotor predictions resulting in stronger somatosensory suppression. However, the mechanisms contributing to this age effect remain to be clarified. We measured age-related differences in tactile suppression during reaching and investigated the modulation by cognitive processes. A total of 23 younger (18-27 years) and 26 older (59-78 years) adults participated in our study. We found robust suppression of tactile signals when executing reaching movements. Age group differences corroborated stronger suppression in old age. Cognitive task demands during reaching, although overall boosting suppression effects, did not modulate the age effect. Across age groups, stronger suppression was associated with lower individual executive capacities. There was no evidence that baseline sensitivity had a prominent impact on the magnitude of suppression. We conclude that aging alters the weighting of sensory signals and sensorimotor predictions during movement control. Our findings suggest that individual differences in tactile suppression are critically driven by executive functions.
Collapse
Affiliation(s)
- Lena Klever
- Experimental Psychology, Justus Liebig University Giessen, Germany.,Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | | | - Katja Fiehler
- Experimental Psychology, Justus Liebig University Giessen, Germany.,Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Jutta Billino
- Experimental Psychology, Justus Liebig University Giessen, Germany.,Center for Mind, Brain, and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| |
Collapse
|
10
|
Affiliation(s)
- Katja Fiehler
- Department of Psychology, Justus Liebig University, Giessen, Germany
- Center for Mind, Brain, and Behavior (CMBB), Universities of Marburg and Giessen, Germany
| | - Eli Brenner
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, The Netherlands
| | - Miriam Spering
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|