1
|
Guo W, Zhang B, Liu M, Zhang J, Feng Y. Based on Virtual Screening and Simulation Exploring the Mechanism of Plant-Derived Compounds with PINK1 to Postherpetic Neuralgia. Mol Neurobiol 2024; 61:9184-9203. [PMID: 38602654 DOI: 10.1007/s12035-024-04098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/04/2024] [Indexed: 04/12/2024]
Abstract
Accumulating evidence strongly supports that PINK1 mutation can mediate mitochondrial autophagy dysfunction in dopaminergic neurons. This study was conducted to determine the role of PINK1 in the pathogenesis of postherpetic neuralgia (PHN) and find new targets for its treatment. A rigorous literature review was conducted to identify 2801 compounds from more than 200 plants in Asia. Virtual screening was used to shortlist the compounds into 20 groups based on their binding energies. MM/PBSA was used to further screen the compound dataset, and vitexin, luteoloside, and 2'-deoxyadenosine-5'-monophosphate were found to have a score of - 59.439, - 52.421, and - 47.544 kcal/mol, respectively. Pain behavioral quantification, enzyme-linked immunosorbent assay, quantitative polymerase chain reaction, western blotting, and transmission electron microscopy were used to confirm the effective mechanism. Vitexin had the most significant therapeutic effect on rats with PHN followed by luteoloside; 2'-deoxyadenosine-5'-monophosphate had no significant effect. Our findings suggested that vitexin could alleviate PHN by regulating mitochondrial autophagy through PINK1.
Collapse
Affiliation(s)
- Wenjing Guo
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Cai Lun Road 1200, Shanghai, 201203, People's Republic of China
| | - Bo Zhang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Cai Lun Road 1200, Shanghai, 201203, People's Republic of China
| | - Minchen Liu
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Cai Lun Road 1200, Shanghai, 201203, People's Republic of China
| | - Jiquan Zhang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Cai Lun Road 1200, Shanghai, 201203, People's Republic of China.
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Cai Lun Road 1200, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
2
|
Trisciuzzi D, Siragusa L, Baroni M, Cruciani G, Nicolotti O. An Integrated Machine Learning Model To Spot Peptide Binding Pockets in 3D Protein Screening. J Chem Inf Model 2022; 62:6812-6824. [PMID: 36320100 DOI: 10.1021/acs.jcim.2c00583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The prediction of peptide-protein binding sites is of utmost importance to tackle the onset of severe neurodegenerative diseases and cancer. In this work, we detail a novel machine learning model based on Linear Discriminant Analysis (LDA) demonstrating to be highly predictive in detecting the putative protein binding regions of small peptides. Starting from 439 high-quality pockets derived from peptide-protein crystallographic complexes, three sets of well-established peptide-binding regions were first selected through a Partitioning Around Medoids (PAM) clustering algorithm based on morphological and energetic 3D GRID-MIF molecular descriptors. Next, the best combination between all the putative interacting peptide pockets and related GRID-MIF scores was automatically explored by using the LDA-based protocol implemented in BioGPS. This approach proved successful to recognize the actual interacting peptide regions (that is, AUC = 0.86 and partial ROC enrichment at 5% of 0.48) from all the other pockets of the protein. Validated on two external collections sets, including 445 and 347 crystallographic peptide-protein complexes, our LDA-based model could be effective to further run peptide-protein virtual screening campaigns.
Collapse
Affiliation(s)
- Daniela Trisciuzzi
- Department of Pharmacy-Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", 70125Bari, Italy.,Molecular Discovery Ltd., Kinetic Business Centre, Theobald Street, Elstree, Borehamwood, HertfordshireWD6 4PJ, United Kingdom
| | - Lydia Siragusa
- Molecular Horizon s.r.l., Via Montelino, 30, 06084Bettona (PG), Italy.,Molecular Discovery Ltd., Kinetic Business Centre, Theobald Street, Elstree, Borehamwood, HertfordshireWD6 4PJ, United Kingdom
| | - Massimo Baroni
- Molecular Discovery Ltd., Kinetic Business Centre, Theobald Street, Elstree, Borehamwood, HertfordshireWD6 4PJ, United Kingdom
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, Università degli Studi di Perugia, via Elce di Sotto, 8, 06123Perugia (PG), Italy
| | - Orazio Nicolotti
- Department of Pharmacy-Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", 70125Bari, Italy
| |
Collapse
|
3
|
Kudisthalert W, Pasupa K, Morales A, Fierrez J. SELM: Siamese extreme learning machine with application to face biometrics. Neural Comput Appl 2022; 34:12143-12157. [PMID: 35310555 PMCID: PMC8921711 DOI: 10.1007/s00521-022-07100-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/14/2022] [Indexed: 11/26/2022]
Abstract
Extreme learning machine (ELM) is a powerful classification method and is very competitive among existing classification methods. It is speedy at training. Nevertheless, it cannot perform face verification tasks properly because face verification tasks require the comparison of facial images of two individuals simultaneously and decide whether the two faces identify the same person. The ELM structure was not designed to feed two input data streams simultaneously. Thus, in 2-input scenarios, ELM methods are typically applied using concatenated inputs. However, this setup consumes two times more computational resources, and it is not optimized for recognition tasks where learning a separable distance metric is critical. For these reasons, we propose and develop a Siamese extreme learning machine (SELM). SELM was designed to be fed with two data streams in parallel simultaneously. It utilizes a dual-stream Siamese condition in the extra Siamese layer to transform the data before passing it to the hidden layer. Moreover, we propose a Gender-Ethnicity-dependent triplet feature exclusively trained on various specific demographic groups. This feature enables learning and extracting useful facial features of each group. Experiments were conducted to evaluate and compare the performances of SELM, ELM, and deep convolutional neural network (DCNN). The experimental results showed that the proposed feature could perform correct classification at 97.87 % accuracy and 99.45 % area under the curve (AUC). They also showed that using SELM in conjunction with the proposed feature provided 98.31 % accuracy and 99.72 % AUC. SELM outperformed the robust performances over the well-known DCNN and ELM methods.
Collapse
Affiliation(s)
- Wasu Kudisthalert
- Faculty of Information Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, 10520 Thailand
| | - Kitsuchart Pasupa
- Faculty of Information Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, 10520 Thailand
| | - Aythami Morales
- Biometric and Data Pattern Analytics Lab, Universidad Autonoma de Madrid, Madrid, Spain
| | - Julian Fierrez
- Biometric and Data Pattern Analytics Lab, Universidad Autonoma de Madrid, Madrid, Spain
| |
Collapse
|
4
|
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res 2021; 49:D1388-D1395. [PMID: 33151290 DOI: 10.1093/nar/gkaa971(2020)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 05/28/2023] Open
Abstract
PubChem (https://pubchem.ncbi.nlm.nih.gov) is a popular chemical information resource that serves the scientific community as well as the general public, with millions of unique users per month. In the past two years, PubChem made substantial improvements. Data from more than 100 new data sources were added to PubChem, including chemical-literature links from Thieme Chemistry, chemical and physical property links from SpringerMaterials, and patent links from the World Intellectual Properties Organization (WIPO). PubChem's homepage and individual record pages were updated to help users find desired information faster. This update involved a data model change for the data objects used by these pages as well as by programmatic users. Several new services were introduced, including the PubChem Periodic Table and Element pages, Pathway pages, and Knowledge panels. Additionally, in response to the coronavirus disease 2019 (COVID-19) outbreak, PubChem created a special data collection that contains PubChem data related to COVID-19 and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Sunghwan Kim
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Jie Chen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Tiejun Cheng
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Asta Gindulyte
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Jia He
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Siqian He
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Qingliang Li
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Benjamin A Shoemaker
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Paul A Thiessen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Bo Yu
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Leonid Zaslavsky
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Jian Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Evan E Bolton
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| |
Collapse
|
5
|
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res 2021; 49:D1388-D1395. [PMID: 33151290 PMCID: PMC7778930 DOI: 10.1093/nar/gkaa971] [Citation(s) in RCA: 1949] [Impact Index Per Article: 487.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023] Open
Abstract
PubChem (https://pubchem.ncbi.nlm.nih.gov) is a popular chemical information resource that serves the scientific community as well as the general public, with millions of unique users per month. In the past two years, PubChem made substantial improvements. Data from more than 100 new data sources were added to PubChem, including chemical-literature links from Thieme Chemistry, chemical and physical property links from SpringerMaterials, and patent links from the World Intellectual Properties Organization (WIPO). PubChem's homepage and individual record pages were updated to help users find desired information faster. This update involved a data model change for the data objects used by these pages as well as by programmatic users. Several new services were introduced, including the PubChem Periodic Table and Element pages, Pathway pages, and Knowledge panels. Additionally, in response to the coronavirus disease 2019 (COVID-19) outbreak, PubChem created a special data collection that contains PubChem data related to COVID-19 and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Sunghwan Kim
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Jie Chen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Tiejun Cheng
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Asta Gindulyte
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Jia He
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Siqian He
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Qingliang Li
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Benjamin A Shoemaker
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Paul A Thiessen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Bo Yu
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Leonid Zaslavsky
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Jian Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| | - Evan E Bolton
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20894, USA
| |
Collapse
|