1
|
Jahan K, Supty MSA, Lee JS, Choi KH. Transcriptomic Analysis Provides New Insights into the Tolerance Mechanisms of Green Macroalgae Ulva prolifera to High Temperature and Light Stress. BIOLOGY 2024; 13:725. [PMID: 39336152 PMCID: PMC11428574 DOI: 10.3390/biology13090725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
Our research focused on understanding the genetic mechanisms that contribute to the tolerance of Ulva prolifera (Chlorophyta), a marine macroalgae, to the combined stress of high temperature and high light intensity. At the mRNA level, the up-regulated DEGs showed enrichment in pathways related to ribosomes, proteasomes, and peroxisomes. The spliceosome pathway genes were found to be vital for U. prolifera's ability to adapt to various challenging situations in all the comparison groups. In response to elevated temperature and light intensity stress, there was a significant increase in genes and pathways related to ribosomes, proteasomes, and peroxisomes, whereas autophagy showed an increase in response to stress after 24 h, but not after 48 h. These findings provide novel insights into how U. prolifera adapts to elevated temperature and light stress.
Collapse
Affiliation(s)
| | | | | | - Keun-Hyung Choi
- Department of Earth, Environmental and Space Sciences, Chungnam National University, 99 Daehak-ro, Yusung-gu, Daejeon 34134, Republic of Korea; (K.J.)
| |
Collapse
|
2
|
Wang W, Ge Q, Wen J, Zhang H, Guo Y, Li Z, Xu Y, Ji D, Chen C, Guo L, Xu M, Shi C, Fan G, Xie C. Horizontal gene transfer and symbiotic microorganisms regulate the adaptive evolution of intertidal algae, Porphyra sense lato. Commun Biol 2024; 7:976. [PMID: 39128935 PMCID: PMC11317521 DOI: 10.1038/s42003-024-06663-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024] Open
Abstract
Intertidal algae may adapt to environmental challenges by acquiring genes from other organisms and relying on symbiotic microorganisms. Here, we obtained a symbiont-free and chromosome-level genome of Pyropia haitanensis (47.2 Mb), a type of intertidal algae, by using multiple symbiont screening methods. We identified 286 horizontal gene transfer (HGT) genes, 251 of which harbored transposable elements (TEs), reflecting the importance of TEs for facilitating the transfer of genes into P. haitanensis. Notably, the bulked segregant analysis revealed that two HGT genes, sirohydrochlorin ferrochelatase and peptide-methionine (R)-S-oxide reductase, play a significant role in the adaptation of P. haitanensis to heat stress. Besides, we found Pseudomonas, Actinobacteria, and Bacteroidetes are the major taxa among the symbiotic bacteria of P. haitanensis (nearly 50% of the HGT gene donors). Among of them, a heat-tolerant actinobacterial strain (Saccharothrix sp.) was isolated and revealed to be associated with the heat tolerance of P. haitanensis through its regulatory effects on the genes involved in proline synthesis (proC), redox homeostasis (ggt), and protein folding (HSP20). These findings contribute to our understanding of the adaptive evolution of intertidal algae, expanding our knowledge of the HGT genes and symbiotic microorganisms to enhance their resilience and survival in challenging intertidal environments.
Collapse
Affiliation(s)
- Wenlei Wang
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China
| | - Qijin Ge
- BGI Research, Qingdao, 266555, China
| | - Jian Wen
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China
| | - Han Zhang
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China
| | - Yanling Guo
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China
| | - Zongtang Li
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China
| | - Yan Xu
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China
| | - Dehua Ji
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China
| | - Changsheng Chen
- Fisheries College, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China
| | | | | | - Chengcheng Shi
- BGI Research, Qingdao, 266555, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China
| | - Guangyi Fan
- BGI Research, Qingdao, 266555, China.
- Qingdao Key Laboratory of Marine Genomics, BGI Research, Qingdao, 266555, China.
- BGI Research, Shenzhen, 518083, China.
| | - Chaotian Xie
- Fisheries College, Jimei University, Xiamen, 361021, China.
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei university, Ningde, China.
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China.
| |
Collapse
|
3
|
Zhang H, Zeng G, Xie J, Zhang Y, Ji D, Xu Y, Xie C, Wang W. PhbZIP2 regulates photosynthesis-related genes in an intertidal macroalgae, Pyropia haitanensis, under stress. Front Mol Biosci 2024; 11:1345585. [PMID: 38686015 PMCID: PMC11056619 DOI: 10.3389/fmolb.2024.1345585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/11/2024] [Indexed: 05/02/2024] Open
Abstract
Intertidal macroalgae are important research subjects in stress biology. Basic region-leucine zipper transcription factors (bZIPs) play an important regulatory role in the expression of target genes under abiotic stress. We herein identified a bZIP2 gene PhbZIP2 to regulate abiotic stress tolerance in Pyropia haitanensis, a representative intertidal macroalgal species. Cloning and sequencing of the cDNA characterized a BRLZ structure and an α coiled-coil structure between amino acids and Expression of PhbZIP2 was detected to upregulate under both high temperature and salt stresses. A DAP-seq analysis revealed the PhbZIP2-binding motifs of (T/C)TCCA(C/G) and A (A/G)AAA (G/A), which differed from the conserved motifs in plants. Overexpression of PhbZIP2 was indicative of a high temperature and salt stress tolerances in transgenic Chlamydomonas reinhardtii. It was suggested that PhbZIP2 was probably involved in regulating expression of the photosynthetic-related genes and the response to the abiotic stresses in P. haitanensis, which provide new insights for elucidating efficient adaptation strategies of intertidal macroalgae.
Collapse
Affiliation(s)
- Han Zhang
- Fisheries College, Jimei University, Xiamen, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China
| | - Gaoxiong Zeng
- Fisheries College, Jimei University, Xiamen, China
- Freshwater Fisheries Research Institute of Fujian, Fuzhou, China
| | - Jiajia Xie
- Fisheries College, Jimei University, Xiamen, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China
| | - Yichi Zhang
- Fisheries College, Jimei University, Xiamen, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China
| | - Dehua Ji
- Fisheries College, Jimei University, Xiamen, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China
| | - Yan Xu
- Fisheries College, Jimei University, Xiamen, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China
| | - Chaotian Xie
- Fisheries College, Jimei University, Xiamen, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China
| | - Wenlei Wang
- Fisheries College, Jimei University, Xiamen, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, China
| |
Collapse
|
4
|
Sato N, Khoa HV, Mikami K. Heat stress memory differentially regulates the expression of nitrogen transporter genes in the filamentous red alga ' Bangia' sp. ESS1. FRONTIERS IN PLANT SCIENCE 2024; 15:1331496. [PMID: 38375079 PMCID: PMC10875135 DOI: 10.3389/fpls.2024.1331496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
Introduction To withstand high temperatures that would be lethal to a plant in the naïve state, land plants must establish heat stress memory. The acquisition of heat stress tolerance via heat stress memory in algae has only been observed in the red alga 'Bangia' sp. ESS1. Methods In this study, we further evaluated the intrinsic ability of this alga to establish heat stress memory by monitoring hydrogen peroxide (H2O2) production and examining the relationship between heat stress memory and the expression of genes encoding nitrogen transporters, since heat stress generally reduces nitrogen absorption. Next, genes encoding nitrogen transporters were selected from our unpublished transcriptome data of 'Bangia' sp. ESS1. Results We observed a reduction in H2O2 content when heat stress memory was established in the alga. In addition, six ammonium transporter genes, a single-copy nitrate transporter gene and two urea transporter genes were identified. Two of these nitrogen transporter genes were induced by heat stress but not by heat stress memory, two genes showed heat stress memory-dependent expression, and one gene was induced by both treatments. Heat stress memory therefore differentially regulated the expression of the nitrogen transporter genes by reducing heat stress-inducible gene expression and inducing heat stress memory-dependent gene expression. Discussion These findings point to the functional diversity of nitrogen transporter genes, which play different roles under various heat stress conditions. The characteristic effects of heat stress memory on the expression of individual nitrogen transporter genes might represent an indispensable strategy for reducing the threshold of sensitivity to recurrent high-temperature conditions and for maintaining nitrogen absorption under such conditions in 'Bangia' sp. ESS1.
Collapse
Affiliation(s)
- Natsumi Sato
- School of Food Industrial Sciences, Miyagi University, Sendai, Japan
| | - Ho Viet Khoa
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Koji Mikami
- School of Food Industrial Sciences, Miyagi University, Sendai, Japan
| |
Collapse
|
5
|
Investigating the Mechanisms Underlying the Low Irradiance-Tolerance of the Economically Important Seaweed Species Pyropia haitanensis. Life (Basel) 2023; 13:life13020481. [PMID: 36836838 PMCID: PMC9965670 DOI: 10.3390/life13020481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Pyropia haitanensis, one of the most economically and ecologically important seaweed species, is often exposed to persistent or transient low irradiance (LI), resulting in limited yield and quality. However, the mechanisms mediating P. haitanensis responses to LI are largely unknown. In this study, LI-tolerant (LIT) and LI-sensitive (LIS) P. haitanensis strains were compared regarding their physiological and transcriptomic changes induced by 1 and 4 days of LI (5 μmol photons/m2·s). The results indicated that the inhibition of photomorphogenesis and decreases in photosynthesis and photosynthetic carbon fixation as the duration of LI increased are the key reasons for retarded blade growth under LI conditions. A potential self-amplifying loop involving calcium signaling, phosphatidylinositol signaling, reactive oxygen species signaling, and MAPK signaling may be triggered in blades in response to LI stress. These signaling pathways might activate various downstream responses, including improving light energy use, maintaining cell membrane stability, mitigating oxidative damage, to resist LI stress. Additionally, the LIT strain maintained transcriptional homeostasis better than the LIS strain under LI stress. Specifically, photosynthesis and energy production were relatively stable in the LIT strain, which may help to explain why the LIT strain was more tolerant to LI stress than the LIS strain. The findings of this study provide the basis for future investigations on the precise mechanisms underlying the LI stress tolerance of P. haitanensis.
Collapse
|
6
|
Mikami K, Takahashi M. Life cycle and reproduction dynamics of Bangiales in response to environmental stresses. Semin Cell Dev Biol 2023; 134:14-26. [PMID: 35428563 DOI: 10.1016/j.semcdb.2022.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/16/2022]
Abstract
Red algae of the order Bangiales are notable for exhibiting flexible promotion of sexual and asexual reproductive processes by environmental stresses. This flexibility indicates that a trade-off between vegetative growth and reproduction occurs in response to environmental stresses that influence the timing of phase transition within the life cycle. Despite their high phylogenetic divergence, both filamentous and foliose red alga in the order Bangiales exhibit a haploid-diploid life cycle, with a haploid leafy or filamentous gametophyte (thallus) and a diploid filamentous sporophyte (conchocelis). Unlike haploid-diploid life cycles in other orders, the gametophyte in Bangiales is generated independently of meiosis; the regulation of this generation transition is not fully understood. Based on transcriptome and gene expression analyses, the originally proposed biphasic model for alternation of generations in Bangiales was recently updated to include a third stage. Along with the haploid gametophyte and diploid sporophyte, the triphasic framework recognizes a diploid conchosporophyte-a conchosporangium generated on the conchocelis-phase and previously considered to be part of the sporophyte. In addition to this sexual life cycle, some Bangiales species have an asexual life cycle in which vegetative cells of the thallus develop into haploid asexual spores, which are then released from the thallus to produce clonal thalli. Here, we summarize the current knowledge of the triphasic life cycle and life cycle trade-off in Neopyropia yezoensis and 'Bangia' sp. as model organisms for the Bangiales.
Collapse
Affiliation(s)
- Koji Mikami
- Department of Integrative Studies of Plant and Animal Production, School of Food Industrial Sciences, Miyagi University, Sendai, Japan.
| | - Megumu Takahashi
- Department of Ocean and Fisheries Sciences, Faculty of Bio-Industry, Tokyo University of Agriculture, Abashiri, Japan
| |
Collapse
|
7
|
Huang Y, Cui J, Wang S, Chen X, Liao J, Guo Y, Xin R, Huang B, Xie E. Transcriptome analysis reveals the molecular mechanisms of adaptation to high temperatures in Gracilaria bailinae. FRONTIERS IN PLANT SCIENCE 2023; 14:1125324. [PMID: 37123824 PMCID: PMC10140531 DOI: 10.3389/fpls.2023.1125324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
Global warming causes great thermal stress to macroalgae and those species that can adapt to it are thought to be better able to cope with warmer oceans. Gracilaria bailinae, a macroalgae with high economic and ecological values, can survive through the hot summer in the South China Sea, but the molecular mechanisms underlying its adaptation to high temperatures are unclear. To address this issue, the present study analyzed the growth and transcriptome of G. bailinae after a 7-day exposure to 15°C (LT: low temperature), 25°C (MT: middle temperature), and 35°C (HT: high temperature). Growth analysis showed that the HT group had the highest relative growth rate (RGR = 2.1%) with the maximum photochemical quantum yield of PSII (F v/F m = 0.62) remaining within the normal range. Transcriptome analysis showed more differentially expressed genes (DEGs) in the comparison between MT and HT groups than in that between MT and LT, and most of these DEGs tended to be downregulated at higher temperatures. The KEGG pathway enrichment analysis showed that the DEGs were mainly enriched in the carbohydrate, energy, and lipid metabolisms. In addition, the genes involved in NADPH and ATP synthesis, which are associated with photosynthesis, the Calvin cycle, pyruvate metabolism, and the citrate cycle, were downregulated. Downregulation was also observed in genes that encode enzymes involved in fatty acid desaturation and alpha-linolenic acid metabolism. In summary, G. bailinae regulated the synthesis of NADPH and ATP, which are involved in the above-mentioned processes, to reduce unnecessary energy consumption, and limited the synthesis of enzymes in the metabolism of unsaturated fatty acids and alpha-linolenic acid to adapt to high environmental temperatures. The results of this study improve our understanding of the molecular mechanisms underlying the adaptation of G. bailinae to high temperatures.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Enyi Xie
- *Correspondence: Jianjun Cui, ; Enyi Xie,
| |
Collapse
|
8
|
Uji T, Mizuta H. The role of plant hormones on the reproductive success of red and brown algae. FRONTIERS IN PLANT SCIENCE 2022; 13:1019334. [PMID: 36340345 PMCID: PMC9627609 DOI: 10.3389/fpls.2022.1019334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Seaweeds or macroalgae are important primary producers that serve as a habitat for functioning ecosystems. A sustainable production of macroalgae has been maintained by a diverse range of life cycles. Reproduction is the most dynamic change to occur during its life cycle, and it is a key developmental event to ensure the species' survival. There is gradually accumulating evidence that plant hormones, such as abscisic acid and auxin, have a role on the sporogenesis of brown alga (Saccharina japonica). Recent studies reported that 1-aminocylopropane-1-carboxylic acid, an ethylene precursor, regulates sexual reproduction in red alga (Neopyropia yezoensis) independently from ethylene. In addition, these macroalgae have an enhanced tolerance against abiotic and biotic stresses during reproduction to protect their gametes and spores. Herein, we reviewed the current understanding on the regulatory mechanisms of red and brown algae on their transition from vegetative to reproductive phase.
Collapse
|
9
|
Membrane-Fluidization-Dependent and -Independent Pathways Are Involved in Heat-Stress-Inducible Gene Expression in the Marine Red Alga Neopyropia yezoensis. Cells 2022; 11:cells11091486. [PMID: 35563791 PMCID: PMC9100149 DOI: 10.3390/cells11091486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Heat stress responses are complex regulatory processes, including sensing, signal transduction, and gene expression. However, the exact mechanisms of these processes in seaweeds are not well known. We explored the relationship between membrane physical states and gene expression in the red alga Neopyropia yezoensis. To analyze heat-stress-induced gene expression, we identified two homologs of the heat-inducible high temperature response 2 (HTR2) gene in Neopyropia seriata, named NyHTR2 and NyHTR2L. We found conservation of HTR2 homologs only within the order Bangiales; their products contained a novel conserved cysteine repeat which we designated the Bangiales cysteine-rich motif. A quantitative mRNA analysis showed that expression of NyHTR2 and NyHTR2L was induced by heat stress. However, the membrane fluidizer benzyl alcohol (BA) did not induce expression of these genes, indicating that the effect of heat was not due to membrane fluidization. In contrast, expression of genes encoding multiprotein-bridging factor 1 (NyMBF1) and HSP70s (NyHSP70-1 and NyHSP70-2) was induced by heat stress and by BA, indicating that it involved a membrane-fluidization-dependent pathway. In addition, dark treatment under heat stress promoted expression of NyHTR2, NyHTR2L, NyMBF1, and NyHSP70-2, but not NyHSP70-1; expression of NyHTR2 and NyHTR2L was membrane-fluidization-independent, and that of other genes was membrane-fluidization-dependent. These findings indicate that the heat stress response in N. yezoensis involves membrane-fluidization-dependent and -independent pathways.
Collapse
|
10
|
Yang F, Wei Z, Long L. Transcriptomic and Physiological Responses of the Tropical Reef Calcified Macroalga Amphiroa fragilissima to Elevated Temperature 1. JOURNAL OF PHYCOLOGY 2021; 57:1254-1265. [PMID: 33655511 DOI: 10.1111/jpy.13158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Calcareous macroalgae are of particular ecological importance as primary producers, carbonate sediment builders, and habitat providers in coral reef ecosystems. Ocean warming is a major threat to calcareous algae, but it remains unclear exactly how these algae will respond to it. In this study, the potential physiological impacts of ocean warming on the calcareous alga Amphiroa fragilissima were evaluated in laboratory experiments. Increasing temperature from 26 to 28°C had positive effects on algal growth rate and chlorophyll a content, but these parameters decreased significantly at 32°C, which is 5°C above the annual mean temperature in the study region. Algal bleaching occurred at 34°C. There were no significant differences in CaCO3 content of thalli among different temperatures; however, calcification rate was inhibited significantly at 32 and 34°C. Transcriptome analyses using the Illumina RNA-seq platform showed that differentially expressed genes were annotated mainly in the categories of steroid biosynthesis, gap junction, ribosome, and mTOR signaling pathway. The expression levels of PsbA and PsbP were suppressed at 32°C, implying that inactivation of photosystem II could be a main reason for the decreased photosynthetic rate. Down-regulation of the genes encoding carbonic anhydrase and nitrate reductase was observed at 32°C, which could inhibit growth rate. Additionally, several genes that might be related to calcification were identified, including CAMK, CDPK, and CAM and genes encoding alpha-catenin and carbonic anhydrase. This study contributes to our understanding of the effects of temperature on algal calcification and provides a theoretical basis to protect ecological diversity of coral reef ecosystems.
Collapse
Affiliation(s)
- Fangfang Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Inonovation Academy of South China Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Zhangliang Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Inonovation Academy of South China Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Lijuan Long
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Inonovation Academy of South China Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China
| |
Collapse
|
11
|
The Absence of Hydrodynamic Stress Promotes Acquisition of Freezing Tolerance and Freeze-Dependent Asexual Reproduction in the Red Alga ' Bangia' sp. ESS1. PLANTS 2021; 10:plants10030465. [PMID: 33804533 PMCID: PMC8001874 DOI: 10.3390/plants10030465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022]
Abstract
The ebb tide causes calm stress to intertidal seaweeds in tide pools; however, little is known about their physiological responses to loss of water movement. This study investigated the effects of static culture of ‘Bangia’ sp. ESS1 at 15 °C on tolerance to temperature fluctuation. The freezing of aer-obically cultured thalli at −80 °C for 10 min resulted in the death of most cells. By contrast, statically cultured thalli acquired freezing tolerance that increased cell viability after freeze–thaw cycles, although they did not achieve thermotolerance that would enable survival at the lethal temperature of 32 °C. Consistently, the unsaturation of membrane fatty acids occurred in static culture. Notably, static culture of thalli enhanced the release of asexual spores after freeze-and-thaw treatment. We conclude that calm stress triggers both the acquisition of freezing tolerance and the promotion of freezing-dependent asexual reproduction. These findings provide novel insights into stress toler-ance and the regulation of asexual reproduction in Bangiales.
Collapse
|
12
|
Celis-Plá PSM, Moenne F, Rodríguez-Rojas F, Pardo D, Lavergne C, Moenne A, Brown MT, Huovinen P, Gómez I, Navarro N, Sáez CA. Antarctic intertidal macroalgae under predicted increased temperatures mediated by global climate change: Would they cope? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140379. [PMID: 32927555 DOI: 10.1016/j.scitotenv.2020.140379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
The Antarctic Peninsula is one of the regions to be most affected by increase in sea surface temperatures (SSTs) mediated by Global Climate Change; indeed, most negative predictions imply an up to 6 °C increment by the end of the XXI century. Temperature is one of the most important factors mediating diversity and distribution of macroalgae, although there is still no consensus as to the likely effects of higher SSTs, especially for polar seaweeds. Some available information suggests that potential strategies to withstand future increases in SSTs will be founded upon the glutathione-ascorbate cycle and the induction of chaperone-functioning heat shock proteins (HSPs); however, their eventual role, even for general stress responses, is unclear. The intertidal green, brown and red macroalgae species Monostroma hariotii, Adenocystis utricularis and Pyropia endiviifolia, respectively, from King George Island, Antarctic Peninsula, were exposed to 2 °C (control) and 8 °C (climate change scenario) for up to 5 days (d). Photosynthetic activity (αETR and ETRmax, and EkETR), photoinhibition (Fv/Fm) and photoprotection processes (αNPQ, NPQmax, and EkNPQ) provided no evidence of negative ecophysiological effects. There were moderate increases in H2O2 production and levels of lipid peroxidation with temperature, results supported by stable levels of total glutathione and ascorbate pools, with mostly higher levels of reduced ascorbate and glutathione than oxidized forms in all species. Transcripts of P. endiviifolia indicated a general upregulation of all antioxidant enzymes and HSPs genes studied under warmer temperature, although with different levels of activation with time. This pioneering investigation exploring different levels of biological organization, suggested that Antarctic intertidal macroalgae may be able to withstand future rise in SSTs, probably slightly altering their latitudinal distribution and/or range of thermal tolerance, by exhibiting robust glutathione-ascorbate production and recycling, as well as the induction of associated antioxidant enzymatic machinery and the syntheses of HSPs.
Collapse
Affiliation(s)
- Paula S M Celis-Plá
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar, Chile; HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso, Chile
| | - Fabiola Moenne
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar, Chile; HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso, Chile
| | - Fernanda Rodríguez-Rojas
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar, Chile; HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso, Chile
| | - Diego Pardo
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar, Chile; HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso, Chile; Departamento de Medio Ambiente, Facultad de Ingeniería, Universidad de Playa Ancha, Valparaíso, Chile
| | - Céline Lavergne
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar, Chile; HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso, Chile; Escuela Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, 2340950 Valparaíso, Chile
| | - Alejandra Moenne
- Laboratory of Marine Biotechnology, Departamento de Biología, Facultad de Química y Biología, Estación Central, Chile
| | - Murray T Brown
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Pirjo Huovinen
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Punta Arenas, Chile
| | - Iván Gómez
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Punta Arenas, Chile
| | - Nelso Navarro
- Centro de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Punta Arenas, Chile; Departamento de Ciencias y Recursos Naturales, Facultad de Ciencias, Universidad de Magallanes, Punta Arenas, Chile
| | - Claudio A Sáez
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar, Chile; HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso, Chile.
| |
Collapse
|
13
|
Balyan S, Rao S, Jha S, Bansal C, Das JR, Mathur S. Characterization of novel regulators for heat stress tolerance in tomato from Indian sub-continent. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2118-2132. [PMID: 32163647 PMCID: PMC7540533 DOI: 10.1111/pbi.13371] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 05/03/2023]
Abstract
The footprint of tomato cultivation, a cool region crop that exhibits heat stress (HS) sensitivity, is increasing in the tropics/sub-tropics. Knowledge of novel regulatory hot spots from varieties growing in the Indian sub-continent climatic zones could be vital for developing HS-resilient crops. Comparative transcriptome-wide signatures of a tolerant (CLN1621L) and sensitive (CA4) cultivar pair shortlisted from a pool of varieties exhibiting variable thermo-sensitivity using physiological-, survival- and yield-related traits revealed redundant to cultivar-specific HS regulation. The antagonistically expressing genes encode enzymes and proteins that have roles in plant defence and abiotic stresses. Functional characterization of three antagonistic genes by overexpression and silencing established Solyc09g014280 (Acylsugar acyltransferase) and Solyc07g056570 (Notabilis) that are up-regulated in tolerant cultivar, as positive regulators of HS tolerance and Solyc03g020030 (Pin-II proteinase inhibitor), that are down-regulated in CLN1621L, as negative regulator of thermotolerance. Transcriptional assessment of promoters of these genes by SNPs in stress-responsive cis-elements and promoter swapping experiments in opposite cultivar background showed inherent cultivar-specific orchestration of transcription factors in regulating transcription. Moreover, overexpression of three ethylene response transcription factors (ERF.C1/F4/F5) also improved HS tolerance in tomato. This study identifies several novel HS tolerance genes and provides proof of their utility in tomato thermotolerance.
Collapse
Affiliation(s)
- Sonia Balyan
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Sombir Rao
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Sarita Jha
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Chandni Bansal
- National Institute of Plant Genome ResearchNew DelhiIndia
| | | | - Saloni Mathur
- National Institute of Plant Genome ResearchNew DelhiIndia
| |
Collapse
|
14
|
Zhang B, Xie X, Liu X, He L, Sun Y, Wang G. The carbonate concentration mechanism of Pyropia yezoensis (Rhodophyta): evidence from transcriptomics and biochemical data. BMC PLANT BIOLOGY 2020; 20:424. [PMID: 32933475 PMCID: PMC7491142 DOI: 10.1186/s12870-020-02629-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/30/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Pyropia yezoensis (Rhodophyta) is widely cultivated in East Asia and plays important economic, ecological and research roles. Although inorganic carbon utilization of P. yezoensis has been investigated from a physiological aspect, the carbon concentration mechanism (CCM) of P. yezoensis remains unclear. To explore the CCM of P. yezoensis, especially during its different life stages, we tracked changes in the transcriptome, photosynthetic efficiency and in key enzyme activities under different inorganic carbon concentrations. RESULTS Photosynthetic efficiency demonstrated that sporophytes were more sensitive to low carbon (LC) than gametophytes, with increased photosynthesis rate during both life stages under high carbon (HC) compared to normal carbon (NC) conditions. The amount of starch and number of plastoglobuli in cells corresponded with the growth reaction to different inorganic carbon (Ci) concentrations. We constructed 18 cDNA libraries from 18 samples (three biological replicates per Ci treatment at two life cycles stages) and sequenced these using the Illumina platform. De novo assembly generated 182,564 unigenes, including approximately 275 unigenes related to CCM. Most genes encoding internal carbonic anhydrase (CA) and bicarbonate transporters involved in the biophysical CCM pathway were induced under LC in comparison with NC, with transcript abundance of some PyCAs in gametophytes typically higher than that in sporophytes. We identified all key genes participating in the C4 pathway and showed that their RNA abundances changed with varying Ci conditions. High decarboxylating activity of PEPCKase and low PEPCase activity were observed in P. yezoensis. Activities of other key enzymes involved in the C4-like pathway were higher under HC than under the other two conditions. Pyruvate carboxylase (PYC) showed higher carboxylation activity than PEPC under these Ci conditions. Isocitrate lyase (ICL) showed high activity, but the activity of malate synthase (MS) was very low. CONCLUSION We elucidated the CCM of P. yezoensis from transcriptome and enzyme activity levels. All results indicated at least two types of CCM in P. yezoensis, one involving CA and an anion exchanger (transporter), and a second, C4-like pathway belonging to the PEPCK subtype. PYC may play the main carboxylation role in this C4-like pathway, which functions in both the sporophyte and gametophyte life cycles.
Collapse
Affiliation(s)
- Baoyu Zhang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiujun Xie
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xuehua Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Linwen He
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuanyuan Sun
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
15
|
de Oliveira RR, Ribeiro THC, Cardon CH, Fedenia L, Maia VA, Barbosa BCF, Caldeira CF, Klein PE, Chalfun-Junior A. Elevated Temperatures Impose Transcriptional Constraints and Elicit Intraspecific Differences Between Coffee Genotypes. FRONTIERS IN PLANT SCIENCE 2020; 11:1113. [PMID: 32849685 PMCID: PMC7396624 DOI: 10.3389/fpls.2020.01113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/06/2020] [Indexed: 05/19/2023]
Abstract
The projected impact of global warming on coffee production may require the heat-adapted genotypes in the next decades. To identify cellular strategies in response to warmer temperatures, we compared the effect of elevated temperature on two commercial Coffea arabica L. genotypes exploring leaf physiology, transcriptome, and carbohydrate/protein composition. Growth temperatures were 23/19°C (day/night), as optimal condition (OpT), and 30/26°C (day/night) as a possible warmer scenario (WaT). The cv. Acauã showed lower levels of leaf temperature (Tleaf) under both conditions compared to cv. Catuaí, whereas slightly or no differences for other leaf physiological parameters. Therefore, to explore temperature responsive pathways the leaf transcriptome was examined using RNAseq. Genotypes showed a marked number of differentially-expressed genes (DEGs) under OpT, however DEGs strongly decrease in both at WaT condition indicating a transcriptional constraint. DEGs responsive to WaT revealed shared and genotype-specific genes mostly related to carbohydrate metabolism. Under OpT, leaf starch content was greater in cv. Acauã and, as WaT temperature was imposed, the leaf soluble sugar did not change in contrast to cv. Catuaí, although the levels of leaf starch, sucrose, and leaf protein decreased in both genotypes. These findings revealed intraspecific differences in the underlying transcriptional and metabolic interconnected pathways responsive to warmer temperatures, which is potentially linked to thermotolerance, and thus may be useful as biomarkers in breeding for a changing climate.
Collapse
Affiliation(s)
| | | | - Carlos Henrique Cardon
- Plant Physiology Sector, Biology Department, Universidade Federal de Lavras (UFLA), Lavras, Brazil
| | - Lauren Fedenia
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | | | | | - Cecílio Frois Caldeira
- Plant Physiology Sector, Biology Department, Universidade Federal de Lavras (UFLA), Lavras, Brazil
| | - Patricia E. Klein
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, United States
| | - Antonio Chalfun-Junior
- Plant Physiology Sector, Biology Department, Universidade Federal de Lavras (UFLA), Lavras, Brazil
| |
Collapse
|
16
|
Wang W, Chen T, Xu Y, Xu K, Xu Y, Ji D, Chen C, Xie C. Investigating the mechanisms underlying the hyposaline tolerance of intertidal seaweed, Pyropia haitanensis. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101886] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
17
|
Cho TJ, Rhee MS. Health Functionality and Quality Control of Laver ( Porphyra, Pyropia): Current Issues and Future Perspectives as an Edible Seaweed. Mar Drugs 2019; 18:E14. [PMID: 31877971 PMCID: PMC7024182 DOI: 10.3390/md18010014] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
The growing interest in laver as a food product and as a source of substances beneficial to health has led to global consumer demand for laver produced in a limited area of northeastern Asia. Here we review research into the benefits of laver consumption and discuss future perspectives on the improvement of laver product quality. Variation in nutritional/functional values among product types (raw and processed (dried, roasted, or seasoned) laver) makes product-specific nutritional analysis a prerequisite for accurate prediction of health benefits. The effects of drying, roasting, and seasoning on the contents of both beneficial and harmful substances highlight the importance of managing laver processing conditions. Most research into health benefits has focused on substances present at high concentrations in laver (porphyran, Vitamin B12, taurine), with assessment of the expected effects of laver consumption. Mitigation of chemical/microbiological risks and the adoption of novel technologies to exploit under-reported biochemical characteristics of lavers are suggested as key strategies for the further improvement of laver product quality. Comprehensive analysis of the literature regarding laver as a food product and as a source of biomedical compounds highlights the possibilities and challenges for application of laver products.
Collapse
Affiliation(s)
| | - Min Suk Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
| |
Collapse
|
18
|
Liu S, Hu ZM, Zhang Q, Yang X, Critchley AT, Duan D. PI signal transduction and ubiquitination respond to dehydration stress in the red seaweed Gloiopeltis furcata under successive tidal cycles. BMC PLANT BIOLOGY 2019; 19:516. [PMID: 31771523 PMCID: PMC6880600 DOI: 10.1186/s12870-019-2125-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 11/08/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Intermittent dehydration caused by tidal changes is one of the most important abiotic factors that intertidal seaweeds must cope with in order to retain normal growth and reproduction. However, the underlying molecular mechanisms for the adaptation of red seaweeds to repeated dehydration-rehydration cycles remain poorly understood. RESULTS We chose the red seaweed Gloiopeltis furcata as a model and simulated natural tidal changes with two consecutive dehydration-rehydration cycles occurring over 24 h in order to gain insight into key molecular pathways and regulation of genes which are associated with dehydration tolerance. Transcription sequencing assembled 32,681 uni-genes (GC content = 55.32%), of which 12,813 were annotated. Weighted gene co-expression network analysis (WGCNA) divided all transcripts into 20 modules, with Coral2 identified as the key module anchoring dehydration-induced genes. Pathways enriched analysis indicated that the ubiquitin-mediated proteolysis pathway (UPP) and phosphatidylinositol (PI) signaling system were crucial for a successful response in G. furcata. Network-establishing and quantitative reverse transcription PCR (qRT-PCR) suggested that genes encoding ubiquitin-protein ligase E3 (E3-1), SUMO-activating enzyme sub-unit 2 (SAE2), calmodulin (CaM) and inositol-1,3,4-trisphosphate 5/6-kinase (ITPK) were the hub genes which responded positively to two successive dehydration treatments. Network-based interactions with hub genes indicated that transcription factor (e.g. TFIID), RNA modification (e.g. DEAH) and osmotic adjustment (e.g. MIP, ABC1, Bam1) were related to these two pathways. CONCLUSIONS RNA sequencing-based evidence from G. furcata enriched the informational database for intertidal red seaweeds which face periodic dehydration stress during the low tide period. This provided insights into an increased understanding of how ubiquitin-mediated proteolysis and the phosphatidylinositol signaling system help seaweeds responding to dehydration-rehydration cycles.
Collapse
Affiliation(s)
- Shun Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Zi-Min Hu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 People’s Republic of China
| | - Quansheng Zhang
- Ocean School, Yantai University, Yantai, 264005 People’s Republic of China
| | - Xiaoqi Yang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Alan T. Critchley
- Verschuren Centre for Sustainability in Energy and Environment, University of Cape Breton, Sydney, Nova Scotia Canada
| | - Delin Duan
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 People’s Republic of China
| |
Collapse
|
19
|
Shi J, Wang W, Lin Y, Xu K, Xu Y, Ji D, Chen C, Xie C. Insight into transketolase of Pyropia haitanensis under desiccation stress based on integrative analysis of omics and transformation. BMC PLANT BIOLOGY 2019; 19:475. [PMID: 31694541 PMCID: PMC6836531 DOI: 10.1186/s12870-019-2076-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Pyropia haitanensis, distributes in the intertidal zone, can tolerate water losses exceeding 90%. However, the mechanisms enabling P. haitanensis to survive harsh conditions remain uncharacterized. To elucidate the mechanism underlying P. haitanensis desiccation tolerance, we completed an integrated analysis of its transcriptome and proteome as well as transgenic Chlamydomonas reinhardtii carrying a P. haitanensis gene. RESULTS P. haitanensis rapidly adjusted its physiological activities to compensate for water losses up to 60%, after which, photosynthesis, antioxidant systems, chaperones, and cytoskeleton were activated to response to severe desiccation stress. The integrative analysis suggested that transketolase (TKL) was affected by all desiccation treatments. Transgenic C. reinhardtii cells overexpressed PhTKL grew better than the wild-type cells in response to osmotic stress. CONCLUSION P. haitanensis quickly establishes acclimatory homeostasis regarding its transcriptome and proteome to ensure its thalli can recover after being rehydrated. Additionally, PhTKL is vital for P. haitanensis desiccation tolerance. The present data may provide new insights for the breeding of algae and plants exhibiting enhanced desiccation tolerance.
Collapse
Affiliation(s)
- Jianzhi Shi
- Fisheries College, Jimei University, Xiamen, 361021 China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, 361021 China
| | - Wenlei Wang
- Fisheries College, Jimei University, Xiamen, 361021 China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, 361021 China
| | - Yinghui Lin
- Fisheries College, Jimei University, Xiamen, 361021 China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, 361021 China
| | - Kai Xu
- Fisheries College, Jimei University, Xiamen, 361021 China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, 361021 China
| | - Yan Xu
- Fisheries College, Jimei University, Xiamen, 361021 China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, 361021 China
| | - Dehua Ji
- Fisheries College, Jimei University, Xiamen, 361021 China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, 361021 China
| | - Changsheng Chen
- Fisheries College, Jimei University, Xiamen, 361021 China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, 361021 China
| | - Chaotian Xie
- Fisheries College, Jimei University, Xiamen, 361021 China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, 361021 China
| |
Collapse
|
20
|
Kishimoto I, Ariga I, Itabashi Y, Mikami K. Heat-stress Memory is Responsible for Acquired Thermotolerance in Bangia fuscopurpurea. JOURNAL OF PHYCOLOGY 2019; 55:971-975. [PMID: 31233611 DOI: 10.1111/jpy.12895] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
The environmental stresses that sessile organisms experience usually fluctuate dramatically and are often recurrent. Terrestrial plants can acquire memory of exposure to sublethal heat stress to acquire thermotolerance and survive subsequent lethal high-temperature stress; however, little is known concerning whether seaweeds acquire thermotolerance via heat-stress memory. We have demonstrated that the red seaweed Bangia fuscopurpurea can indeed acquire memory of sublethal high-temperature stress, resulting in the acquisition of thermotolerance that protects against subsequent lethal high-temperature stress. Moreover, the maintenance of heat-stress memory was associated with a slight increase in the saturation level of membrane fatty acids. This suggests that the modification of membrane fluidity via changes in membrane fatty acid composition is involved in the establishment and maintenance of heat-stress memory in B. fuscopurpurea. These findings provide insights into the physiological survival and growth strategies of sessile red seaweeds to cope with recurrent changes in environmental conditions.
Collapse
Affiliation(s)
- Ikuya Kishimoto
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, 041-8611, Japan
| | - Inori Ariga
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, 041-8611, Japan
| | - Yutaka Itabashi
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, 041-8611, Japan
| | - Koji Mikami
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, 041-8611, Japan
| |
Collapse
|
21
|
Guo SM, Tan Y, Chu HJ, Sun MX, Xing JC. Transcriptome sequencing revealed molecular mechanisms underlying tolerance of Suaeda salsa to saline stress. PLoS One 2019; 14:e0219979. [PMID: 31335886 PMCID: PMC6650071 DOI: 10.1371/journal.pone.0219979] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 07/05/2019] [Indexed: 11/19/2022] Open
Abstract
The halophyte Suaeda salsa displayed strong resistance to salinity. Up to date, molecular mechanisms underlying tolerance of S. salsa to salinity have not been well understood. In the present study, S. salsa seedlings were treated with 30‰ salinity and then leaves and roots were subjected to Illumina sequencing. Compared with the control, 68,599 and 77,250 unigenes were significantly differentially expressed in leaves and roots in saline treatment, respectively. KEGG enrichment analyses indicated that photosynthesis process, carbohydrate, lipid and amino acid metabolisms were all downregulated in saline treatment, which should inhibit growth of S. salsa. Expression levels of Na+/H+ exchanger, V-H+ ATPase, choline monooxygenase, potassium and chloride channels were upregulated in saline treatment, which could relieve reduce over-accumulation of Na+ and Cl-. Fe-SOD, glutathione, L-ascorbate and flavonoids function as antioxidants in plants. Genes in relation to them were all upregulated, suggesting that S. salsa initiated various antioxidant mechanisms to tolerate high salinity. Besides, plant hormones, especially auxin, ethylene and jasmonic acid signaling transduction pathways were all upregulated in response to saline treatment, which were important to gene regulations of ion transportation and antioxidation. These changes might comprehensively contribute to tolerance of S. salsa to salinity. Overall, the present study provided new insights to understand the mechanisms underlying tolerance to salinity in halophytes.
Collapse
Affiliation(s)
- Su-Ming Guo
- College of Landscape Architecture, Nanjing Forestry University, Nanjing City, Jiangsu Province, P. R. China
| | - Ying Tan
- College of Architecture, Southeast University, Nanjing City, Jiangsu Province, P. R. China
| | - Han-Jie Chu
- College of Landscape Architecture, Nanjing Forestry University, Nanjing City, Jiangsu Province, P. R. China
| | - Mei-Xia Sun
- College of Landscape Architecture, Nanjing Forestry University, Nanjing City, Jiangsu Province, P. R. China
| | - Jin-Cheng Xing
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng City, Jiangsu Province, P. R. China
| |
Collapse
|
22
|
Franke K, Karl I, Centeno TP, Feldmeyer B, Lassek C, Oostra V, Riedel K, Stanke M, Wheat CW, Fischer K. Effects of adult temperature on gene expression in a butterfly: identifying pathways associated with thermal acclimation. BMC Evol Biol 2019; 19:32. [PMID: 30674272 PMCID: PMC6345059 DOI: 10.1186/s12862-019-1362-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 01/14/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Phenotypic plasticity is a pervasive property of all organisms and considered to be of key importance for dealing with environmental variation. Plastic responses to temperature, which is one of the most important ecological factors, have received much attention over recent decades. A recurrent pattern of temperature-induced adaptive plasticity includes increased heat tolerance after exposure to warmer temperatures and increased cold tolerance after exposure to cooler temperatures. However, the mechanisms underlying these plastic responses are hitherto not well understood. Therefore, we here investigate effects of adult acclimation on gene expression in the tropical butterfly Bicyclus anynana, using an RNAseq approach. RESULTS We show that several antioxidant markers (e.g. peroxidase, cytochrome P450) were up-regulated at a higher temperature compared with a lower adult temperature, which might play an important role in the acclamatory responses subsequently providing increased heat tolerance. Furthermore, several metabolic pathways were up-regulated at the higher temperature, likely reflecting increased metabolic rates. In contrast, we found no evidence for a decisive role of the heat shock response. CONCLUSIONS Although the important role of antioxidant defence mechanisms in alleviating detrimental effects of oxidative stress is firmly established, we speculate that its potentially important role in mediating heat tolerance and survival under stress has been underestimated thus far and thus deserves more attention.
Collapse
Affiliation(s)
- Kristin Franke
- Zoological Institute and Museum, University of Greifswald, D-17489, Greifswald, Germany
| | - Isabell Karl
- Zoological Institute and Museum, University of Greifswald, D-17489, Greifswald, Germany
| | - Tonatiuh Pena Centeno
- Institute for Mathematics and Computer Science, University of Greifswald, D-17487, Greifswald, Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Molecular Ecology Group, D-60325, Frankfurt am Main, Germany
| | - Christian Lassek
- Institute for Microbiology, University of Greifswald, D-17489, Greifswald, Germany
| | - Vicencio Oostra
- Department of Genetics, Evolution and Environment, University College London, WC1E 6BT, London, UK
| | - Katharina Riedel
- Institute for Microbiology, University of Greifswald, D-17489, Greifswald, Germany
| | - Mario Stanke
- Institute for Mathematics and Computer Science, University of Greifswald, D-17487, Greifswald, Germany
| | | | - Klaus Fischer
- Zoological Institute and Museum, University of Greifswald, D-17489, Greifswald, Germany. .,Present address: Institute for Integrated Natural Sciences, University Koblenz-Landau, Universitätsstraße 1, D-56070, Koblenz, Germany.
| |
Collapse
|
23
|
Chen N, Huang Z, Lu C, Shen Y, Luo X, Ke C, You W. Different Transcriptomic Responses to Thermal Stress in Heat-Tolerant and Heat-Sensitive Pacific Abalones Indicated by Cardiac Performance. Front Physiol 2019; 9:1895. [PMID: 30687115 PMCID: PMC6334008 DOI: 10.3389/fphys.2018.01895] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022] Open
Abstract
The Pacific abalone Haliotis discus hannai is one of the most economically important mollusks in China. Even though it has been farmed in southern China for almost 20 years, summer mortality remains the most challengeable problem for Pacific abalone aquaculture recently. Here, we determined the different heat tolerance ability for five selective lines of H. discus hannai by measuring the cardiac performance and Arrhenius breakpoint temperature (ABT). The Red line (RL) and Yangxia line (YL) were determined as the most heat-sensitive and most heat-tolerant line, respectively. Heart rates for RL were significantly lower than those of the YL at the same temperature (p < 0.05). The differentially expressed genes (DEGs), which were enriched in several pathways including cardiac muscle contraction, glutathione metabolism and oxidative phosphorylation, were identified between RL and YL at control temperature (20°C) and heat stress temperature (28.5°C, the ABT of the RL) by RNA-seq method. In the RL, 3370 DEGs were identified between the control and the heat-stress temperature, while only 1351 DEGs were identified in YL between these two temperature tests. Most of these DEGs were enriched in the pathways such as protein processing in endoplasmic reticulum, nucleotide binding and oligomerization domain (NOD) like receptor signaling, and ubiquitin mediated proteolysis. Notably, the most heat-tolerant line YL used an effective heat-protection strategy based on moderate transcriptional changes and regulation on the expression of key genes.
Collapse
Affiliation(s)
- Nan Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Zekun Huang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Chengkuan Lu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yawei Shen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xuan Luo
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|