1
|
Lu J, Xiaoyang C, Li J, Wu H, Wang Y, Di P, Deyholos MK, Zhang J. Whole-Genome Identification of the Flax Fatty Acid Desaturase Gene Family and Functional Analysis of the LuFAD2.1 Gene Under Cold Stress Conditions. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39564899 DOI: 10.1111/pce.15284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/21/2024]
Abstract
Fatty acid desaturase (FAD) is essential for plant growth and development and plant defence response. Although flax (Linum usitatissimum L.) is an important oil and fibre crop, but its FAD gene remains understudied. This study identified 43 LuFAD genes in the flax genome. The phylogenetic analysis divided the FAD genes into seven subfamilies. LuFAD is unevenly distributed on 15 chromosomes, and fragment duplication is the only driving force for the amplification of the LuFAD gene family. In the LuFAD gene promoter region, most elements respond to plant hormones (MeJA, ABA) and abiotic stresses (anaerobic and low temperature). The expression pattern analysis showed that the temporal and spatial expression patterns of all LuFAD genes in different tissues and the response patterns to abiotic stresses (heat and salt) were identified. Subcellular localisation showed that all LuFAD2-GFP were expressed in the endoplasmic reticulum membrane. RT-qPCR analysis revealed that LuFAD2 was significantly upregulated under cold, salt and drought stress, and its overexpression in Arabidopsis thaliana enhanced cold tolerance genes and reduced ROS accumulation. This study offers key insights into the FAD gene family's role in flax development and stress adaptation.
Collapse
Affiliation(s)
- Jianyu Lu
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Chunxiao Xiaoyang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Jinxi Li
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Hanlu Wu
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
| | - Yifei Wang
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Peng Di
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Michael K Deyholos
- Department of Biology, University of British Columbia, Okanagan, Kelowna, British Columbia, Canada
| | - Jian Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, China
- Department of Biology, University of British Columbia, Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
2
|
Wei H, Xu T, Luo C, Ma D, Yang F, Yang P, Zhou X, Liu G, Lian B, Zhong F, Zhang J. Salix matsudana fatty acid desaturases: Identification, classification, evolution, and expression profiles for development and stress tolerances. Int J Biol Macromol 2024; 278:134574. [PMID: 39122077 DOI: 10.1016/j.ijbiomac.2024.134574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Fatty acid desaturases (FADs) are enzymes that transform carbon‑carbon single bonds into carbon‑carbon double bonds within acyl chains, resulting in the production of unsaturated FAs (UFAs). They are crucial for plant growth, development, and adaptation to environmental stress. In our research, we identified 40 FAD candidates in the Salix matsudana genome, grouping them into seven categories. Exon-intron structures and conserved motifs of SmFADs within the same group showed significant conservation. Cis-element analysis revealed SmFADs are responsive to hormones and stress. Additionally, GO and KEGG analyses linked SmFADs closely with lipid biosynthesis and UFA biosynthesis, which were crucial for the plant's response to environmental stresses. Notably, the SmFAB2.4, SmADS1, SmFAD7.5, and SmFAD8.2 were predicted to participate in submergence tolerance, whereas SmFAD8.1 and SmFAD7.1 played an essential role in salt stress response. The diverse expression profiles of SmFADs across willow varieties, in various tissues, and throughout the willow bud development stages revealed a spectrum of functional diversity for these genes. Moreover, specific SmFADs might play a crucial role in callus development and the response to culturing conditions in various willow cultivars. This research underscored the importance of SmFAD profiles and functions and identified potential genes for enhancing forest resilience.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Tiantian Xu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Chunying Luo
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Duojin Ma
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Fan Yang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Peijian Yang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Xiaoxi Zhou
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Guoyuan Liu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China
| | - Bolin Lian
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China.
| | - Fei Zhong
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China.
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China.
| |
Collapse
|
3
|
John Martin JJ, Song Y, Hou M, Zhou L, Liu X, Li X, Fu D, Li Q, Cao H, Li R. Multi-Omics Approaches in Oil Palm Research: A Comprehensive Review of Metabolomics, Proteomics, and Transcriptomics Based on Low-Temperature Stress. Int J Mol Sci 2024; 25:7695. [PMID: 39062936 PMCID: PMC11277459 DOI: 10.3390/ijms25147695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Oil palm (Elaeis guineensis Jacq.) is a typical tropical oil crop with a temperature of 26-28 °C, providing approximately 35% of the total world's vegetable oil. Growth and productivity are significantly affected by low-temperature stress, resulting in inhibited growth and substantial yield losses. To comprehend the intricate molecular mechanisms underlying the response and acclimation of oil palm under low-temperature stress, multi-omics approaches, including metabolomics, proteomics, and transcriptomics, have emerged as powerful tools. This comprehensive review aims to provide an in-depth analysis of recent advancements in multi-omics studies on oil palm under low-temperature stress, including the key findings from omics-based research, highlighting changes in metabolite profiles, protein expression, and gene transcription, as well as including the potential of integrating multi-omics data to reveal novel insights into the molecular networks and regulatory pathways involved in the response to low-temperature stress. This review also emphasizes the challenges and prospects of multi-omics approaches in oil palm research, providing a roadmap for future investigations. Overall, a better understanding of the molecular basis of the response of oil palm to low-temperature stress will facilitate the development of effective breeding and biotechnological strategies to improve the crop's resilience and productivity in changing climate scenarios.
Collapse
Affiliation(s)
- Jerome Jeyakumar John Martin
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (J.J.J.M.); (Y.S.); (M.H.); (L.Z.); (X.L.); (X.L.); (D.F.); (Q.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Yuqiao Song
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (J.J.J.M.); (Y.S.); (M.H.); (L.Z.); (X.L.); (X.L.); (D.F.); (Q.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
- School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Mingming Hou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (J.J.J.M.); (Y.S.); (M.H.); (L.Z.); (X.L.); (X.L.); (D.F.); (Q.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
- School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Lixia Zhou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (J.J.J.M.); (Y.S.); (M.H.); (L.Z.); (X.L.); (X.L.); (D.F.); (Q.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xiaoyu Liu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (J.J.J.M.); (Y.S.); (M.H.); (L.Z.); (X.L.); (X.L.); (D.F.); (Q.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xinyu Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (J.J.J.M.); (Y.S.); (M.H.); (L.Z.); (X.L.); (X.L.); (D.F.); (Q.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Dengqiang Fu
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (J.J.J.M.); (Y.S.); (M.H.); (L.Z.); (X.L.); (X.L.); (D.F.); (Q.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Qihong Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (J.J.J.M.); (Y.S.); (M.H.); (L.Z.); (X.L.); (X.L.); (D.F.); (Q.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Hongxing Cao
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (J.J.J.M.); (Y.S.); (M.H.); (L.Z.); (X.L.); (X.L.); (D.F.); (Q.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Rui Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (J.J.J.M.); (Y.S.); (M.H.); (L.Z.); (X.L.); (X.L.); (D.F.); (Q.L.)
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| |
Collapse
|
4
|
Khan KY, Ali B, Ghani HU, Fu L, Shohag MJUI, Zhang S, Cui X, Xia Q, Tan J, Ali Z, Guo Y. Single and combined effect of tetracycline and polyethylene microplastics on two drought contrasting cultivars of Oryza sativa L. (Rice) under drought stress. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 101:104191. [PMID: 37343773 DOI: 10.1016/j.etap.2023.104191] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Co-exposure of tetracycline (TC) and polyethylene microplastic (MP-PE) pollution might result in more intricate effects on rice growth and grain quality. In present study, two different rice cultivars of contrasting drought tolerance, Hanyou73 (H73, drought-resistant) and Quanyou280 (Q280, drought-sensitive) were grown on MP-PE and TC-contaminated soils under drought. It was found that drought stress had different influence on TC accumulation in the two rice cultivars. H73 accumulated more TC in leaves and grains without drought stress while Q280 accumulated more TC under drought stress. Furthermore, metabolomics results demonstrated that under drought stress, about 80% of metabolites in H73 and 95% in Q280 were down-regulated as compared to non-drought treatments. These findings provide insights into the effects of TC and MP-PE with and without drought stress on potential risks to rice growth and grain quality, which has implications on rice production and cultivar election under multiple-stress conditions.
Collapse
Affiliation(s)
- Kiran Yasmin Khan
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 214122, China; School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Barkat Ali
- The Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Food Sciences Research Institute, National Agricultural Research Centre, Islamabad, 44000, Pakistan
| | | | - Lijiang Fu
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Mohammad Jahid Ul Islam Shohag
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, Florida 34945, USA
| | - Shuang Zhang
- The Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoqiang Cui
- School of Environmental Science and Engineering/Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin 300072, China
| | - Qian Xia
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jinglu Tan
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Zeshan Ali
- Ecotoxicology Research Program, Institute of Plant and Environmental Protection, National Agriculture Research Center, Islamabad, 44000, Pakistan
| | - Ya Guo
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Shaheen N, Khan UM, Farooq A, Zafar UB, Khan SH, Ahmad S, Azhar MT, Atif RM, Rana IA, Seo H. Comparative transcriptomic and evolutionary analysis of FAD-like genes of Brassica species revealed their role in fatty acid biosynthesis and stress tolerance. BMC PLANT BIOLOGY 2023; 23:250. [PMID: 37173631 PMCID: PMC10176799 DOI: 10.1186/s12870-023-04232-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Fatty acid desaturases (FADs) are involved in regulating plant fatty acid composition by adding double bonds to growing hydrocarbon chain. Apart from regulating fatty acid composition FADs are of great importance, and are involved in stress responsiveness, plant development, and defense mechanisms. FADs have been extensively studied in crop plants, and are broadly classed into soluble and non-soluble fatty acids. However, FADs have not yet been characterized in Brassica carinata and its progenitors. RESULTS Here we have performed comparative genome-wide identification of FADs and have identified 131 soluble and 28 non-soluble FADs in allotetraploid B. carinata and its diploid parents. Most soluble FAD proteins are predicted to be resided in endomembrane system, whereas FAB proteins were found to be localized in chloroplast. Phylogenetic analysis classed the soluble and non-soluble FAD proteins into seven and four clusters, respectively. Positive type of selection seemed to be dominant in both FADs suggesting the impact of evolution on these gene families. Upstream regions of both FADs were enriched in stress related cis-regulatory elements and among them ABRE type of elements were in abundance. Comparative transcriptomic data analysis output highlighted that FADs expression reduced gradually in mature seed and embryonic tissues. Moreover, under heat stress during seed and embryo development seven genes remained up-regulated regardless of external stress. Three FADs were only induced under elevated temperature whereas five genes were upregulated under Xanthomonas campestris stress suggesting their involvement in abiotic and biotic stress response. CONCLUSIONS The current study provides insights into the evolution of FADs and their role in B. carinata under stress conditions. Moreover, the functional characterization of stress-related genes would exploit their utilization in future breeding programs of B. carinata and its progenitors.
Collapse
Affiliation(s)
- Nabeel Shaheen
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38000, Pakistan
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan
- Seed Center and Plant Genetic Resources Bank, Ministry of Environment, Water & Agriculture, Riyadh, 14712, Saudi Arabia
| | - Uzair Muhammad Khan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38000, Pakistan
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ayesha Farooq
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38000, Pakistan
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ummul Buneen Zafar
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Sultan Habibullah Khan
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Shakeel Ahmad
- Seed Center and Plant Genetic Resources Bank, Ministry of Environment, Water & Agriculture, Riyadh, 14712, Saudi Arabia
| | - Muhammad Tehseen Azhar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38000, Pakistan
- School of Agriculture Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38000, Pakistan
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan
- Precision Agriculture and Analytics Lab, National Center in Big Data and Cloud Computing (NCBC), University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Iqrar Ahmad Rana
- Center for Advanced Studies in Agriculture and Food security, University of Agriculture, Faisalabad, 38000, Pakistan.
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan.
| | - Hyojin Seo
- Korea Soybean Research Institute, Jinju, 52840, Korea.
| |
Collapse
|
6
|
Wei H, Movahedi A, Xu S, Zhang Y, Liu G, Aghaei-Dargiri S, Ghaderi Zefrehei M, Zhu S, Yu C, Chen Y, Zhong F, Zhang J. Genome-Wide Characterization and Expression Analysis of Fatty acid Desaturase Gene Family in Poplar. Int J Mol Sci 2022; 23:ijms231911109. [PMID: 36232411 PMCID: PMC9570219 DOI: 10.3390/ijms231911109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Fatty acid desaturases (FADs) modulate carbon–carbon single bonds to form carbon–carbon double bonds in acyl chains, leading to unsaturated fatty acids (UFAs) that have vital roles in plant growth and development and their response to environmental stresses. In this study, a total of 23 Populus trichocarpaFAD (PtFAD) candidates were identified from the poplar genome and clustered into seven clades, including FAB2, FAD2, FAD3/7/8, FAD5, FAD6, DSD, and SLD. The exon–intron compositions and conserved motifs of the PtFADs, clustered into the same clade, were considerably conserved. It was found that segmental duplication events are predominantly attributable to the PtFAD gene family expansion. Several hormone- and stress-responsive elements in the PtFAD promoters implied that the expression of the PtFAD members was complicatedly regulated. A gene expression pattern analysis revealed that some PtFAD mRNA levels were significantly induced by abiotic stress. An interaction proteins and gene ontology (GO) analysis indicated that the PtFADs are closely associated with the UFAs biosynthesis. In addition, the UFA contents in poplars were significantly changed under drought and salt stresses, especially the ratio of linoleic and linolenic acids. The integration of the PtFAD expression patterns and UFA contents showed that the abiotic stress-induced PtFAD3/7/8 members mediating the conversion of linoleic and linolenic acids play vital roles in response to osmotic stress. This study highlights the profiles and functions of the PtFADs and identifies some valuable genes for forest improvements.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226001, China
| | - Ali Movahedi
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
- College of Arts and Sciences, Arlington International University, Wilmington, DE 19804, USA
- Correspondence: (A.M.); (J.Z.)
| | - Songzhi Xu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226001, China
| | - Yanyan Zhang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Guoyuan Liu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226001, China
| | - Soheila Aghaei-Dargiri
- Department of Horticulture, Faculty of Agriculture and Natural Resources, University of Hormozgan, Bandar Abbas 7916193145, Iran
| | - Mostafa Ghaderi Zefrehei
- Department of Animal Science, Faculty of Agriculture, Yasouj University, Yasouj 7591874831, Iran
| | - Sheng Zhu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Chunmei Yu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226001, China
| | - Yanhong Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226001, China
| | - Fei Zhong
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226001, China
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong 226001, China
- Correspondence: (A.M.); (J.Z.)
| |
Collapse
|
7
|
Wei L, John Martin JJ, Zhang H, Zhang R, Cao H. Problems and Prospects of Improving Abiotic Stress Tolerance and Pathogen Resistance of Oil Palm. PLANTS 2021; 10:plants10122622. [PMID: 34961092 PMCID: PMC8704689 DOI: 10.3390/plants10122622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 12/03/2022]
Abstract
Oil palm crops are the most important determinant of the agricultural economy within the segment of oilseed crops. Oil palm growing in their natural habitats are often challenged simultaneously by multiple stress factors, both abiotic and biotic that limit crop productivity and are major constraints to meeting global food demands. The stress-tolerant oil palm crops that mitigate the effects of abiotic stresses on crop productivity are crucially needed to sustain agricultural production. Basal stem rot threatens the development of the industry, and the key to solving the problem is to breed new oil palm varieties resistant to adversity. This has created a need for genetic improvement which involves evaluation of germplasm, pest and disease resistance, earliness and shattering resistance, quality of oil, varieties for different climatic conditions, etc. In recent years, insights into physiology, molecular biology, and genetics have significantly enhanced our understanding of oil palm response towards such stimuli as well as the reason for varietal diversity in tolerance. In this review, we explore the research progress, existing problems, and prospects of oil palm stress resistance-based physiological mechanisms of stress tolerance as well as the genes and metabolic pathways that regulate stress response.
Collapse
Affiliation(s)
- Lu Wei
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (L.W.); (J.J.J.M.); (H.Z.); (R.Z.)
- Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang 571339, China
| | - Jerome Jeyakumar John Martin
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (L.W.); (J.J.J.M.); (H.Z.); (R.Z.)
- Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang 571339, China
| | - Haiqing Zhang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (L.W.); (J.J.J.M.); (H.Z.); (R.Z.)
- Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang 571339, China
| | - Ruining Zhang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (L.W.); (J.J.J.M.); (H.Z.); (R.Z.)
- Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang 571339, China
| | - Hongxing Cao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (L.W.); (J.J.J.M.); (H.Z.); (R.Z.)
- Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang 571339, China
- Correspondence:
| |
Collapse
|
8
|
Muthulakshmi C, Sivaranjani R, Selvi S. Modification of sesame ( Sesamum indicum L.) for Triacylglycerol accumulation in plant biomass for biofuel applications. ACTA ACUST UNITED AC 2021; 32:e00668. [PMID: 34567983 PMCID: PMC8449027 DOI: 10.1016/j.btre.2021.e00668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/08/2021] [Accepted: 09/03/2021] [Indexed: 11/26/2022]
Abstract
Increased oil biomass in sesame vegetative tissues. Enhancement of plant oil biomass plays a chief role in biofuel applications. This is a maiden attempt to develop sesame plant for biofuel production.
Sesame is considered as the queen of oil seeds owing to its high oil content of about 56–62% and good quality oil. Sesame oil alone or in combination with other vegetable oils can yield good quality biodiesel. Sesame biodiesel blends up to 20% yields fuel efficiency and power output on par with mineral diesel but superior in environmental performance. Though biodiesel from edible oil is highly criticized, the demand for renewable energy compels the development of high-performance sesame plants. Triacylglycerol synthesis in flowering plants follows an acyl CoA-dependent and independent manner. This study envisages transgenic approaches to enhance oil production in sesame biomass. The genes of choice for oil enhancement includes DGAT1, PDAT1, FAD3 and cytochrome b5F. Diacylglycerol acyltransferase (DGAT) and phospholipid diacylglycerol acyltransferases (PDAT) are key enzymes in TAG synthesis. Fatty acid desaturases (FAD) has the ability to enhance specific fatty acids, whereas cytochrome b5 genes augment the process by donating electrons. A combination of the above categories of genes which performed well in terms of oil content in the yeast expression system from our earlier studies is used in Agrobacterium-mediated sesame transformation experiments to evaluate the biodiesel potential of transgenic sesame plants. The transgenic construct with PDAT1 and FAD3 combination yielded a 10% increase in TAG content. The possibility of transgenic sesame as a biodiesel plant is discussed.
Collapse
Affiliation(s)
- C Muthulakshmi
- Department of Biotechnology, PSG College of Technology, Coimbatore, 641004, Tamil Nadu, India
| | - R Sivaranjani
- Department of Biotechnology, PSG College of Technology, Coimbatore, 641004, Tamil Nadu, India
| | - S Selvi
- Department of Biotechnology, PSG College of Technology, Coimbatore, 641004, Tamil Nadu, India
| |
Collapse
|