1
|
Baudouin L, Adès N, Kanté K, Bachelin C, Hmidan H, Deboux C, Panic R, Ben Messaoud R, Velut Y, Hamada S, Pionneau C, Duarte K, Poëa-Guyon S, Barnier JV, Nait Oumesmar B, Bouslama-Oueghlani L. Antagonistic actions of PAK1 and NF2/Merlin drive myelin membrane expansion in oligodendrocytes. Glia 2024; 72:1518-1540. [PMID: 38794866 DOI: 10.1002/glia.24570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
In the central nervous system, the formation of myelin by oligodendrocytes (OLs) relies on the switch from the polymerization of the actin cytoskeleton to its depolymerization. The molecular mechanisms that trigger this switch have yet to be elucidated. Here, we identified P21-activated kinase 1 (PAK1) as a major regulator of actin depolymerization in OLs. Our results demonstrate that PAK1 accumulates in OLs in a kinase-inhibited form, triggering actin disassembly and, consequently, myelin membrane expansion. Remarkably, proteomic analysis of PAK1 binding partners enabled the identification of NF2/Merlin as its endogenous inhibitor. Our findings indicate that Nf2 knockdown in OLs results in PAK1 activation, actin polymerization, and a reduction in OL myelin membrane expansion. This effect is rescued by treatment with a PAK1 inhibitor. We also provide evidence that the specific Pak1 loss-of-function in oligodendroglia stimulates the thickening of myelin sheaths in vivo. Overall, our data indicate that the antagonistic actions of PAK1 and NF2/Merlin on the actin cytoskeleton of the OLs are critical for proper myelin formation. These findings have broad mechanistic and therapeutic implications in demyelinating diseases and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lucas Baudouin
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Noémie Adès
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Kadia Kanté
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Corinne Bachelin
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Hatem Hmidan
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
- Al-Quds University, Faculty of Medicine, Jerusalem, Palestine
| | - Cyrille Deboux
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Radmila Panic
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Rémy Ben Messaoud
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Yoan Velut
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Soumia Hamada
- Sorbonne Université, Inserm, UMS Production et Analyse des Données en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, Paris, France
| | - Cédric Pionneau
- Sorbonne Université, Inserm, UMS Production et Analyse des Données en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, Paris, France
| | - Kévin Duarte
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Sandrine Poëa-Guyon
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Jean-Vianney Barnier
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Brahim Nait Oumesmar
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Lamia Bouslama-Oueghlani
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
2
|
Rajan ARD, Huang Y, Stundl J, Chu K, Irodi A, Yang Z, Applegate BE, Bronner ME. Generation of a zebrafish neurofibromatosis model via inducible knockout of nf2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590787. [PMID: 38712289 PMCID: PMC11071375 DOI: 10.1101/2024.04.23.590787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Neurofibromatosis Type 2 (NF-2) is a dominantly inherited genetic disorder that results from mutations in the tumor suppressor gene, neurofibromin 2 (NF2) gene. Here, we report the generation of a conditional zebrafish model of neurofibromatosis established by an inducible genetic knockout of nf2a/b, the zebrafish homolog of human NF2. Analysis of nf2a and nf2b expression reveals ubiquitous expression of nf2b in the early embryo, with overlapping expression in the neural crest and its derivatives and in the cranial mesenchyme. In contrast, nf2a displays lower expression levels. Induction of nf2a/b knockout at early stages increases the proliferation of larval Schwann cells and meningeal fibroblasts. Subsequently, in adult zebrafish, nf2a/b knockout triggers the development of a spectrum of tumors, including vestibular schwannomas, spinal schwannomas, meningiomas, and retinal hamartomas, mirroring the tumor manifestations observed in patients with NF-2. Collectively, these findings highlight the generation of a novel zebrafish model that mimics the complexities of the human NF-2 disorder. Consequently, this model holds significant potential for facilitating therapeutic screening and elucidating key driver genes implicated in NF-2 onset.
Collapse
Affiliation(s)
| | - Yuanyun Huang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jan Stundl
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Katelyn Chu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Anushka Irodi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- University of Cambridge School of Clinical Medicine, Addenbrooke’s Hospital NHS Foundation Trust, Cambridge, UK
| | - Zihan Yang
- University of Southern California, Caruso Department of Otolaryngology-Head & Neck Surgery, Los Angeles, CA, USA
| | - Brian E. Applegate
- University of Southern California, Caruso Department of Otolaryngology-Head & Neck Surgery, Los Angeles, CA, USA
- University of Southern California, Alfred Mann Department of Biomedical Engineering, Los Angeles, CA, USA
| | - Marianne E. Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
3
|
Ahmed SG, Hadaegh F, Brenner GJ. Developing myelin specific promoters for schwannoma gene therapy. J Neurosci Methods 2019; 323:77-81. [PMID: 31125589 DOI: 10.1016/j.jneumeth.2019.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 05/09/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Schwannomas are peripheral nerve sheath tumors composed entirely of Schwann-lineage cells that cause pain and sensory-motor dysfunction through compression of peripheral nerves, the spinal cord, and/or the brain stem. Treatment of schwannoma is largely limited to resection which itself has limited value. The goal of this study is to establish a technique to identify the most efficient and tissue-specific promoter for use in a schwannoma gene therapy construct. NEW METHOD This work involves transfection of schwannoma cells with adeno-associated viral vector plasmids expressing GFP under different myelin cell specific promoters. The transfected cells were evaluated for green fluorescence intensity in vitro, and in vivo after implantation into sciatic nerves of nude mice. RESULTS Our data demonstrate that myelin protein zero (MPZ, P0) and peripheral myelin protein 22 (PMP22) promoters produce greater GFP expression in schwannoma cell lines than myelin basic protein (MBP) promoter. In vitro, P0 promoter activity in schwannoma cell lines was shown to be less active than the cytomegalovirus and chicken β-actin (CBA) promoter. However, we did not observe any significant difference between the activity of the CBA and P0 promoters in a xenograft schwannoma model. COMPARISON WITH EXISTING METHODS(S) We show here the influence of the peripheral nerve microenvironment on promoter efficacy in expressing transgenes using simple transfection by lipofection followed by prompt implantation of the transfected cells into the sciatic nerve of nude mice. CONCLUSIONS We demonstrate that of the myelin specific promoters evaluated, P0 is optimal for driving expression of transgenes in schwannoma cells.
Collapse
Affiliation(s)
- Sherif G Ahmed
- Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, United States
| | - Farnaz Hadaegh
- Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, United States
| | - Gary J Brenner
- Department of Anesthesiology, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, United States.
| |
Collapse
|
4
|
Litan A, Li Z, Tokhtaeva E, Kelly P, Vagin O, Langhans SA. A Functional Interaction Between Na,K-ATPase β 2-Subunit/AMOG and NF2/Merlin Regulates Growth Factor Signaling in Cerebellar Granule Cells. Mol Neurobiol 2019; 56:7557-7571. [PMID: 31062247 DOI: 10.1007/s12035-019-1592-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/02/2019] [Indexed: 10/26/2022]
Abstract
The Na,K-ATPase, consisting of a catalytic α-subunit and a regulatory β-subunit, is a ubiquitously expressed ion pump that carries out the transport of Na+ and K+ across the plasma membranes of most animal cells. In addition to its pump function, Na,K-ATPase serves as a signaling scaffold and a cell adhesion molecule. Of the three β-subunit isoforms, β1 is found in almost all tissues, while β2 expression is mostly restricted to brain and muscle. In cerebellar granule cells, the β2-subunit, also known as adhesion molecule on glia (AMOG), has been linked to neuron-astrocyte adhesion and granule cell migration, suggesting its role in cerebellar development. Nevertheless, little is known about molecular pathways that link the β2-subunit to its cellular functions. Using cerebellar granule precursor cells, we found that the β2-subunit, but not the β1-subunit, negatively regulates the expression of a key activator of the Hippo/YAP signaling pathway, Merlin/neurofibromin-2 (NF2). The knockdown of the β2-subunit resulted in increased Merlin/NF2 expression and affected downstream targets of Hippo signaling, i.e., increased YAP phosphorylation and decreased expression of N-Ras. Further, the β2-subunit knockdown altered the kinetics of epidermal growth factor receptor (EGFR) signaling in a Merlin-dependent mode and impaired EGF-induced reorganization of the actin cytoskeleton. Therefore, our studies for the first time provide a functional link between the Na,K-ATPase β2-subunit and Merlin/NF2 and suggest a role for the β2-subunit in regulating cytoskeletal dynamics and Hippo/YAP signaling during neuronal differentiation.
Collapse
Affiliation(s)
- Alisa Litan
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, DuPont Experimental Station, Bldg 400, #4414, 200 Powder Mill Road, Wilmington, DE, 19803, USA.,Biological Sciences Graduate Program, University of Delaware, Newark, DE, 19716, USA
| | - Zhiqin Li
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, DuPont Experimental Station, Bldg 400, #4414, 200 Powder Mill Road, Wilmington, DE, 19803, USA
| | - Elmira Tokhtaeva
- David Geffen School of Medicine, University of California, Los Angeles, and VA Greater Los Angeles Health Care System, Los Angeles, CA, 90073, USA
| | - Patience Kelly
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, DuPont Experimental Station, Bldg 400, #4414, 200 Powder Mill Road, Wilmington, DE, 19803, USA.,Biological Sciences Graduate Program, University of Delaware, Newark, DE, 19716, USA
| | - Olga Vagin
- David Geffen School of Medicine, University of California, Los Angeles, and VA Greater Los Angeles Health Care System, Los Angeles, CA, 90073, USA
| | - Sigrid A Langhans
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, DuPont Experimental Station, Bldg 400, #4414, 200 Powder Mill Road, Wilmington, DE, 19803, USA.
| |
Collapse
|