1
|
Porcelli S, Deshuillers PL, Moutailler S, Lagrée AC. Meta-analysis of tick-borne and other pathogens: Co-infection or co-detection? That is the question. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 6:100219. [PMID: 39483631 PMCID: PMC11525461 DOI: 10.1016/j.crpvbd.2024.100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 11/03/2024]
Abstract
This literature-based review aims to distinguish studies describing co-infection with tick-borne pathogens from those describing co-detection or co-exposure scenarios. The review analyzed 426 papers and identified only 20 with direct evidence of co-infection in humans and animals, highlighting the need for accurate terminology and proposing definitions for co-infection, co-exposure and co-detection. Current diagnostic methods - including serology and molecular techniques - have limitations in accurately identifying real co-infections, often leading to misinterpretation. The review highlights the importance of developing laboratory models to better understand tick-borne pathogen interactions, and advocates improved diagnostic strategies for tick screening by testing their RNA for co-infections. Moreover, the establishment of additional animal models for pathogen co-infection will help develop our understanding of selection pressures for various traits of tick-borne pathogens (such as virulence and transmissibility) over time. This comprehensive analysis provides insights into the complexity of tick-borne pathogen co-infections and calls for precise diagnostic terms to improve the clarity and effectiveness of future research.
Collapse
Affiliation(s)
- Stefania Porcelli
- ANSES, INRAE, Ecole Nationale Vétérinaire D’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Pierre Lucien Deshuillers
- ANSES, INRAE, Ecole Nationale Vétérinaire D’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire D’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Anne-Claire Lagrée
- ANSES, INRAE, Ecole Nationale Vétérinaire D’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| |
Collapse
|
2
|
Attaway C, Mathison BA, Misra A. No longer stuck in the past: new advances in artificial intelligence and molecular assays for parasitology screening and diagnosis. Curr Opin Infect Dis 2024; 37:357-366. [PMID: 39133581 DOI: 10.1097/qco.0000000000001041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
PURPOSE OF REVIEW Emerging technologies are revolutionizing parasitology diagnostics and challenging traditional methods reliant on microscopic analysis or serological confirmation, which are known for their limitations in sensitivity and specificity. This article sheds light on the transformative potential of artificial intelligence and molecular assays in the field, promising more accurate and efficient detection methods. RECENT FINDINGS Artificial intelligence has emerged as a promising tool for blood and stool parasite review, when paired with comprehensive databases and expert oversight result in heightened specificity and sensitivity of diagnoses while also increasing efficiency. Significant strides have been made in nucleic acid testing for multiplex panels for enteric pathogen. Both multiplex and single target panels for Plasmodium , Babesia , filaria, and kinetoplastids have been developed and garnered regulatory approval, notably for blood donor screening in the United States. Additional technologies such as MALDI-TOF, metagenomics, flow cytometry, and CRISPR-Cas are under investigation for their diagnostic utility and are currently in the preliminary stages of research and feasibility assessment. SUMMARY Recent implementation of artificial intelligence and digital microscopy has enabled swift smear screening and diagnosis, although widespread implementation remains limited. Simultaneously, molecular assays - both targeted and multiplex panels are promising and have demonstrated promise in numerous studies with some assays securing regulatory approval recently. Additional technologies are under investigation for their diagnostic utility and are compelling avenues for future proof-of-concept diagnostics.
Collapse
Affiliation(s)
| | - Blaine A Mathison
- Scientist III, Institute for Clinical and Experimental Pathology, ARUP Laboratories, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | | |
Collapse
|
3
|
Patiño LH, Castañeda S, Camargo M, Cao LY, Liggayu B, Paniz-Mondolfi A, Ramírez JD. Validation of real-time PCR assays for detecting Plasmodium and Babesia DNA species in blood samples. Acta Trop 2024; 258:107350. [PMID: 39134111 DOI: 10.1016/j.actatropica.2024.107350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/11/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Malaria and babesiosis are global health threats affecting humans, wildlife, and domestic animals, particularly in Africa, the Americas, and Europe. Malaria can lead to severe outcomes, while babesiosis usually resembles a mild illness but can be severe and fatal in individuals with weakened immune systems. Swift, accurate detection of these parasites is crucial for treatment and control. We evaluated a real-time PCR assay for diagnosing five Plasmodium and three Babesia species from blood samples, assessing its sensitivity, specificity, and analytical performance by analyzing 46 malaria-positive and 32 Babesia spp-positive samples diagnosed through microscopy. The limit of detection for Plasmodium species ranged from 30 to 0.0003 copies/µL. For mixed infections, it was 0.3 copies/µL for P. falciparum/P. vivax and 3 copies/µL for P. malariae/P. knowlesi. Babesia species had a detection limit of 0.2 copies/µL. No cross-reactivity was observed among 64 DNA samples from various microorganisms. The assay showed good sensitivity, detecting Plasmodium and Babesia species with 100 % accuracy overall, except for P. falciparum (97.7 %) and B. microti (12.5 %). The low sensitivity of detecting B. microti was attributed to limitations in microscopy for species identification. This technique heavily relies on the proficiency of the examiner, as species within the genus cannot be distinguished under a microscope. Additionally, Babesia can be confused with the early trophozoite stage (ring forms) of Plasmodium parasites. The findings support multiplex qPCR's diagnostic superiority over the gold standard, despite higher costs. It offers enhanced sensitivity, specificity, and detects mixed infections, crucial for effective monitoring and diagnosis of malaria and babesiosis in endemic regions with significant public health challenges.
Collapse
Affiliation(s)
- Luz Helena Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Milena Camargo
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Li Yong Cao
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bernadette Liggayu
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alberto Paniz-Mondolfi
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
4
|
Wang Y, Zhang S, Li X, Nian Y, Liu X, Liu J, Yin H, Guan G, Wang J. A high-resolution melting approach for the simultaneous differentiation of five human babesiosis-causing Babesia species. Parasit Vectors 2023; 16:299. [PMID: 37641091 PMCID: PMC10463647 DOI: 10.1186/s13071-023-05839-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/16/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Six species of apicomplexan parasites of the genus Babesia, namely B. microti, B. divergens, B. duncani, B. motasi, B. crassa-like and B. venatorum, are considered to be the primary causal agents of human babesiosis in endemic areas. These six species possess variable degrees of virulence for their primary hosts. Therefore, the accurate identification of these species is critical for the adoption of appropriate therapeutic strategies. METHODS We developed a real-time PCR-high-resolution melting (qPCR-HRM) approach targeting 18S ribosomal RNA gene of five Babesia spp. based on melting temperature (Tm) and genotype confidence percentage values. This approach was then evaluated using 429 blood samples collected from patients with a history of tick bites, 120 DNA samples mixed with plasmids and 80 laboratory-infected animal samples. RESULTS The sensitivity and specificity of the proposed qPCR-HRM method were 95% and 100%, respectively, and the detection limit was 1-100 copies of the plasmid with the cloned target gene. The detection level depended on the species of Babesia analyzed. The primers designed in this study ensured not only the high interspecific specificity of our proposed method but also a high versatility for different isolates from the same species worldwide. Additionally, the Tm obtained from the prepared plasmid standard is theoretically suitable for identifying isolates of all known sequences of the five Babesia species. CONCLUSIONS The developed detection method provides a useful tool for the epidemiological investigation of human babesiosis and pre-transfusion screening.
Collapse
Affiliation(s)
- Yanbo Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu People’s Republic of China
- The Second Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Shangdi Zhang
- The Second Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Xiaoyun Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu People’s Republic of China
| | - Yueli Nian
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu People’s Republic of China
- The Second Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Xinyue Liu
- The Second Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Junlong Liu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu People’s Republic of China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, 225009 China
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu People’s Republic of China
| | - Jinming Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu People’s Republic of China
| |
Collapse
|
5
|
Garcia K, Weakley M, Do T, Mir S. Current and Future Molecular Diagnostics of Tick-Borne Diseases in Cattle. Vet Sci 2022; 9:vetsci9050241. [PMID: 35622769 PMCID: PMC9146932 DOI: 10.3390/vetsci9050241] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
Ticks and tick-borne diseases such as babesiosis, anaplasmosis, ehrlichiosis, Lyme disease, Crimean Congo hemorrhagic fever, and Rocky Mountain spotted fever pose a significant threat to animal and human health. Tick-borne diseases cause billions of dollars of losses to livestock farmers annually. These losses are partially attributed to the lack of sensitive, robust, cost effective and efficient diagnostic approaches that could detect the infectious pathogen at the early stages of illness. The modern nucleic acid-based multiplex diagnostic approaches have been developed in human medicine but are still absent in veterinary medicine. These powerful assays can screen 384 patient samples at one time, simultaneously detect numerous infectious pathogens in each test sample and provide the diagnostic answer in a few hours. Development, commercialization, and wide use of such high throughput multiplex molecular assays in the cattle tick-borne disease surveillance will help in early detection and control of infectious pathogens in the animal reservoir before community spread and spillover to humans. Such approaches in veterinary medicine will save animal life, prevent billions of dollars of economic loss to cattle herders and reduce unwanted stress to both human and animal health care systems. This literature review provides recent updates on molecular diagnostics of tick-borne pathogens and discusses the importance of modern nucleic acid high throughput multiplex diagnostic approaches in the prevention of tick-borne infection to livestock.
Collapse
|
6
|
Fluorescence In Situ Hybridization (FISH) Tests for Identifying Protozoan and Bacterial Pathogens in Infectious Diseases
. Diagnostics (Basel) 2022; 12:diagnostics12051286. [PMID: 35626441 PMCID: PMC9141552 DOI: 10.3390/diagnostics12051286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/02/2022] Open
Abstract
Diagnosing and treating many infectious diseases depends on correctly identifying the causative pathogen. Characterization of pathogen-specific nucleic acid sequences by PCR is the most sensitive and specific method available for this purpose, although it is restricted to laboratories that have the necessary infrastructure and finance. Microscopy, rapid immunochromatographic tests for antigens, and immunoassays for detecting pathogen-specific antibodies are alternative and useful diagnostic methods with different advantages and disadvantages. Detection of ribosomal RNA molecules in the cytoplasm of bacterial and protozoan pathogens by fluorescence in-situ hybridization (FISH) using sequence-specific fluorescently labelled DNA probes, is cheaper than PCR and requires minimal equipment and infrastructure. A LED light source attached to most laboratory light microscopes can be used in place of a fluorescence microscope with a UV lamp for FISH. A FISH test hybridization can be completed in 30 min at 37 °C and the whole test in less than two hours. FISH tests can therefore be rapidly performed in both well-equipped and poorly-resourced laboratories. Highly sensitive and specific FISH tests for identifying many bacterial and protozoan pathogens that cause disease in humans, livestock and pets are reviewed, with particular reference to parasites causing malaria and babesiosis, and mycobacteria responsible for tuberculosis.
Collapse
|
7
|
Karshima SN, Karshima MN, Ahmed MI. Global meta-analysis on Babesia infections in human population: prevalence, distribution and species diversity. Pathog Glob Health 2021; 116:220-235. [PMID: 34788196 DOI: 10.1080/20477724.2021.1989185] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Human babesiosis is an emerging tick-borne protozoan zoonosis caused by parasites of the genus Babesia and transmitted by ixodid ticks. It was thought to be a public health problem mainly for the immunocompromised, however the increasing numbers of documented cases among immunocompetent individuals is a call for concern. In this systematic review and meta-analysis, we reported from 22 countries and 69 studies, an overall pooled estimate (PE) of 2.23% (95% CI: 1.46-3.39) for Babesia infections in humans. PEs for all sub-groups varied significantly (p < 0.05) with a continental range of 1.54% (95% CI: 0.89-2.65) in North America to 4.17% (95% CI: 2.11-8.06) in Europe. PEs for country income levels, methods of diagnosis, study period, sample sizes, Babesia species and targeted population ranged between 0.43% (95% CI: 0.41-0.44) and 7.41% (95% CI: 0.53-54.48). Babesia microti recorded the widest geographic distribution and was the predominant specie reported in North America while B. divergens was predominantly reported in Europe. Eight Babesia species; B. bigemina, B. bovis, B. crassa-like, B. divergens, B. duncani, B. microti, B. odocoilei and B. venatorum were reported in humans from different parts of the world with the highest prevalence in Europe, lower middle income countries and among individuals with history of tick bite and other tick-borne diseases. To control the increasing trend of this emerging public health threat, tick control in human settlements, the use of protective clothing by occupationally exposed people and the screening of transfusion blood in endemic countries are recommended.Abbreviations AJOL: African Journals OnLine, CI: Confidence interval, CIL: Country income level, df: Degree of freedom, HIC: Higher-income countries, HQ: High quality, I2: Inverse variance index, IFAT: Indirect fluorescent antibody test, ITBTBD: Individuals with tick-bite and tick-borne diseases, JBI: Joanna Briggs Institute, LIC: Lower-income countries, LMIC: Lower middle-income countries, MQ: Medium quality, NA: Not applicable, N/America: North America, OEI: Occupational exposed individuals, OR: Odds ratio, PE: Pooled estimates, PCR: Polymerase chain reaction, Prev: Prevalence, PRISMA: Preferred Reporting System for Systematic Reviews and Meta-Analyses, Q: Cochran's heterogeneity statistic, QA: Quality assessment, Q-p: Cochran's p-value, qPCR: Quantitative polymerase chain reaction, S/America: South America, Seq: Sequencing, UMIC: Upper middle-income countries, USA: United States of America.
Collapse
Affiliation(s)
- Solomon Ngutor Karshima
- Department of Veterinary Public Health and Preventive Medicine, University of Jos, Jos, Nigeria
| | | | - Musa Isiyaku Ahmed
- Department of Veterinary Parasitology and Entomology, Federal University of Agriculture, Zuru, Nigeria
| |
Collapse
|
8
|
LoopTag FRET Probe System for Multiplex qPCR Detection of Borrelia Species. Life (Basel) 2021; 11:life11111163. [PMID: 34833039 PMCID: PMC8624210 DOI: 10.3390/life11111163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Laboratory diagnosis of Lyme borreliosis refers to some methods with known limitations. Molecular diagnostics using specific nucleic acid probes may overcome some of these limitations. Methods: We describe the novel reporter fluorescence real-time polymerase chain reaction (PCR) probe system LoopTag for detection of Borrelia species. Advantages of the LoopTag system include having cheap conventional fluorescence dyes, easy primer design, no restrictions for PCR product lengths, robustness, high sequence specificity, applicability for multiplex real-time PCRs, melting curve analysis (single nucleotide polymorphism analysis) over a large temperature range, high sensitivity, and easy adaptation of conventional PCRs. Results: Using the LoopTag probe system we were able to detect all nine tested European species belonging to the Borrelia burgdorferi (sensu lato) complex and differentiated them from relapsing fever Borrelia species. As few as 10 copies of Borrelia in one PCR reaction were detectable. Conclusion: We established a novel multiplex probe real-time PCR system, designated LoopTag, that is simple, robust, and incorporates melting curve analysis for the detection and in the differentiation of European species belonging to the Borrelia burgdorferi s.l. complex.
Collapse
|
9
|
Akoolo L, Djokic V, Rocha SC, Parveen N. Pathogenesis of Borrelia burgdorferi and Babesia microti in TLR4-Competent and TLR4-dysfunctional C3H mice. Cell Microbiol 2021; 23:e13350. [PMID: 33938125 PMCID: PMC8459286 DOI: 10.1111/cmi.13350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 12/28/2022]
Abstract
Toll‐like receptors (TLRs) are a class of membrane‐spanning proteins of host cells. TLR2 and TLR4 are displayed on the surface of macrophages, neutrophils and dendritic cells and recognise structurally conserved microbial signatures defined as Pathogen associated molecular patterns (PAMPs). C3H mice are susceptible to tick‐borne pathogens; Lyme disease causing Borrelia burgdorferi that manifests arthritis and carditis and Apicomplexan protozoan, Babesia microti (Bm) that causes significant parasitemia associated with erythrocytopenia and haemoglobinuria. B. burgdorferi lacks typical TLR4 ligand lipopolysaccharides (LPS) and Bm TLR ligand(s) remain unknown. Only Borrelia lipoproteins that signal through TLR2 are established as PAMPs of these pathogens for TLR2/TLR4. Infection of C3H mice with each pathogen individually resulted in increase in the percentage of splenic B, T and FcR+ cells while their co‐infection significantly diminished levels of these cells and caused increased B. burgdorferi burden in the specific organs. The most pronounced inflammatory arthritis was observed in co‐infected C3H/HeJ mice. Parasitemia levels and kinetics of resolution of Bm in both mice strains were not significantly different. Transfected HEK293 cells showed pronounced signalling by B. burgdorferi through TLR2 and to some extent by TLR4 while Bm and infected erythrocytes did not show any response confirming our results in mice.
Collapse
Affiliation(s)
- Lavoisier Akoolo
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Vitomir Djokic
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Sandra C Rocha
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
10
|
Krause PJ, Auwaerter PG, Bannuru RR, Branda JA, Falck-Ytter YT, Lantos PM, Lavergne V, Meissner HC, Osani MC, Rips JG, Sood SK, Vannier E, Vaysbrot EE, Wormser GP. Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA): 2020 Guideline on Diagnosis and Management of Babesiosis. Clin Infect Dis 2021; 72:e49-e64. [PMID: 33252652 DOI: 10.1093/cid/ciaa1216] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Indexed: 11/12/2022] Open
Abstract
The purpose of this guideline is to provide evidence-based guidance for the most effective strategies for the diagnosis and management of babesiosis. The diagnosis and treatment of co-infection with babesiosis and Lyme disease will be addressed in a separate Infectious Diseases Society of America (IDSA), American Academy of Neurology (AAN), and American College of Rheumatology (ACR) guideline [1]. Recommendations for the diagnosis and treatment of human granulocytic anaplasmosis can be found in the recent rickettsial disease guideline developed by the Centers for Disease Control and Prevention [2]. The target audience for the babesiosis guideline includes primary care physicians and specialists caring for this condition, such as infectious diseases specialists, emergency physicians, intensivists, internists, pediatricians, hematologists, and transfusion medicine specialists.
Collapse
Affiliation(s)
- Peter J Krause
- Yale School of Public Health and Yale School of Medicine, New Haven, Connecticut, USA
| | - Paul G Auwaerter
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Raveendhara R Bannuru
- Center for Treatment Comparison and Integrative Analysis (CTCIA), Division of Rheumatology, Tufts Medical Center, Boston, Massachusetts, USA
| | - John A Branda
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yngve T Falck-Ytter
- Case Western Reserve University and VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Paul M Lantos
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Valéry Lavergne
- Research Center CIUSSS NIM, University of Montreal, Quebec, Canada
| | - H Cody Meissner
- Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Mikala C Osani
- Center for Treatment Comparison and Integrative Analysis (CTCIA), Division of Rheumatology, Tufts Medical Center, Boston, Massachusetts, USA
| | | | - Sunil K Sood
- Zucker School of Medicine and Cohen Children's Medical Center, Northwell Health, New York, USA
| | - Edouard Vannier
- Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Elizaveta E Vaysbrot
- Center for Treatment Comparison and Integrative Analysis (CTCIA), Division of Rheumatology, Tufts Medical Center, Boston, Massachusetts, USA
| | | |
Collapse
|
11
|
Shan J, Jia Y, Teulières L, Patel F, Clokie MRJ. Targeting Multicopy Prophage Genes for the Increased Detection of Borrelia burgdorferi Sensu Lato (s.l.), the Causative Agents of Lyme Disease, in Blood. Front Microbiol 2021; 12:651217. [PMID: 33790883 PMCID: PMC8005754 DOI: 10.3389/fmicb.2021.651217] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/16/2021] [Indexed: 11/20/2022] Open
Abstract
The successful treatment of Lyme disease (LD) is contingent on accurate diagnosis. However, current laboratory detection assays lack sensitivity in the early stages of the disease. Because delayed diagnosis of LD incurs high healthcare costs and great suffering, new highly sensitive tests are in need. To overcome these challenges, we developed an internally controlled quantitative PCR (Ter-qPCR) that targets the multicopy terminase large subunit (terL) gene encoded by prophages that are only found in LD-causing bacteria. The terL protein helps phages pack their DNA. Strikingly, the detection limit of the Ter-qPCR was analytically estimated to be 22 copies and one bacterial cell in bacteria spiked blood. Furthermore, significant quantitative differences was observed in terms of the amount of terL detected in healthy individuals and patients with either early or late disease. Together, the data suggests that the prophage-targeting PCR has significant power to improve success detection for LD. After rigorous clinical validation, this new test could deliver a step-change in the detection of LD. Prophage encoded markers are prevalent in many other pathogenic bacteria rendering this approach highly applicable to bacterial identification in general.
Collapse
Affiliation(s)
- Jinyu Shan
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Ying Jia
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Louis Teulières
- PhelixRD Charity 230 Rue du Faubourg St Honoré, Paris, France
| | - Faizal Patel
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Martha R. J. Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
12
|
Emerging Human Babesiosis with "Ground Zero" in North America. Microorganisms 2021; 9:microorganisms9020440. [PMID: 33672522 PMCID: PMC7923768 DOI: 10.3390/microorganisms9020440] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/15/2022] Open
Abstract
The first case of human babesiosis was reported in the literature in 1957. The clinical disease has sporadically occurred as rare case reports in North America and Europe in the subsequent decades. Since the new millennium, especially in the last decade, many more cases have apparently appeared not only in these regions but also in Asia, South America, and Africa. More than 20,000 cases of human babesiosis have been reported in North America alone. In several cross-sectional surveys, exposure to Babesia spp. has been demonstrated within urban and rural human populations with clinical babesiosis reported in both immunocompromised and immunocompetent humans. This review serves to highlight the widespread distribution of these tick-borne pathogens in humans, their tick vectors in readily accessible environments such as parks and recreational areas, and their phylogenetic relationships.
Collapse
|
13
|
Shah JS, Caoili E, Patton MF, Tamhankar S, Myint MM, Poruri A, Mark O, Horowitz RI, Ashbaugh AD, Ramasamy R. Combined Immunofluorescence (IFA) and Fluorescence In Situ Hybridization (FISH) Assays for Diagnosing Babesiosis in Patients from the USA, Europe and Australia. Diagnostics (Basel) 2020; 10:diagnostics10100761. [PMID: 32998244 PMCID: PMC7650773 DOI: 10.3390/diagnostics10100761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/18/2020] [Accepted: 09/27/2020] [Indexed: 11/16/2022] Open
Abstract
Apicomplexan parasites of the genus Babesia cause babesiosis in humans and animals worldwide. Human babesiosis is a predominantly zoonotic disease transmitted by hard ticks that is of increasing health concern in the USA and many other countries. Microscopic examination of stained blood smears, detection of serum antibodies by immunoassays and identification of parasite nucleic acid in blood by qPCR and fluorescence in situ hybridization (FISH) are some methods available for diagnosing babesiosis. This study investigated the use of a Babesia genus-specific FISH test for detecting Babesia parasites in blood smears and immunofluorescence assay (IFA) for detecting serum antibodies to Babesia duncani and Babesia microti, two common species that cause human babesiosis in the USA. The findings with clinical samples originating from USA, Australia, Europe and elsewhere demonstrate that the parallel use of Babesia genus-specific FISH and IFA tests for B. duncani and B. microti provides more useful diagnostic information in babesiosis and that B. duncani infections are more widespread globally than presently recognized.
Collapse
Affiliation(s)
- Jyotsna S. Shah
- ID-FISH Technology Inc., Milpitas, CA 95035, USA
- IGenex Inc., 556 Gibraltar Drive, Milpitas, CA 95035, USA; (E.C.); (M.F.P.); (S.T.); (M.M.M.); (A.P.); (O.M.)
- Correspondence: (J.S.S.); (R.R.)
| | - Eddie Caoili
- IGenex Inc., 556 Gibraltar Drive, Milpitas, CA 95035, USA; (E.C.); (M.F.P.); (S.T.); (M.M.M.); (A.P.); (O.M.)
| | - Marie Fe Patton
- IGenex Inc., 556 Gibraltar Drive, Milpitas, CA 95035, USA; (E.C.); (M.F.P.); (S.T.); (M.M.M.); (A.P.); (O.M.)
| | - Snehal Tamhankar
- IGenex Inc., 556 Gibraltar Drive, Milpitas, CA 95035, USA; (E.C.); (M.F.P.); (S.T.); (M.M.M.); (A.P.); (O.M.)
| | - Mu Mu Myint
- IGenex Inc., 556 Gibraltar Drive, Milpitas, CA 95035, USA; (E.C.); (M.F.P.); (S.T.); (M.M.M.); (A.P.); (O.M.)
| | - Akhila Poruri
- IGenex Inc., 556 Gibraltar Drive, Milpitas, CA 95035, USA; (E.C.); (M.F.P.); (S.T.); (M.M.M.); (A.P.); (O.M.)
| | - Olivia Mark
- IGenex Inc., 556 Gibraltar Drive, Milpitas, CA 95035, USA; (E.C.); (M.F.P.); (S.T.); (M.M.M.); (A.P.); (O.M.)
| | - Richard I. Horowitz
- Hudson Valley Healing Arts Center, New York, NY 12538, USA;
- HHS Subcommittee on Babesia and Tick-Borne Pathogens, US Department of Health and Human Services, Washington, DC 20201, USA
| | - Alan D. Ashbaugh
- College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Ranjan Ramasamy
- ID-FISH Technology Inc., Milpitas, CA 95035, USA
- Correspondence: (J.S.S.); (R.R.)
| |
Collapse
|
14
|
A Fluorescence in Situ Hybridization (FISH) Test for Diagnosing Babesiosis. Diagnostics (Basel) 2020; 10:diagnostics10060377. [PMID: 32517217 PMCID: PMC7344499 DOI: 10.3390/diagnostics10060377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/23/2020] [Accepted: 06/02/2020] [Indexed: 11/16/2022] Open
Abstract
Apicomplexan parasites of the genus Babesia cause babesiosis in humans and animals. The microscopic examination of stained blood smears, detection of serum antibodies by immunoassays, and PCR-based identification of parasite nucleic acid in blood are common laboratory methods for diagnosing babesiosis. The present study evaluated a commercially available Babesia genus-specific fluorescence in situ hybridization (FISH) test for detecting Babesia parasites in blood smears. The FISH test detected Babesia duncani and Babesia microti, two common species that cause human infections in the USA, and other Babesia species of human and veterinary importance in less than two hours. The Babesia genus-specific FISH test supplements other existing laboratory methods for diagnosing babesiosis and may be particularly useful in resource-limited laboratories.
Collapse
|
15
|
Tang TTM, Tran MH. Transfusion transmitted babesiosis: A systematic review of reported cases. Transfus Apher Sci 2020; 59:102843. [PMID: 32616365 DOI: 10.1016/j.transci.2020.102843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Transfusion transmitted babesiosis (TTB) has a high mortality rate but may go unrecognized, particularly in non-endemic areas. We therefore conducted a systematic review to better characterize clinical aspects of TTB. METHODS A literature search was conducted in PubMed and CINAHL databases, from which 25 eligible articles describing 60 TTB patients met criteria for data extraction. RESULTS Symptom evaluation was provided for 25 implicated donors: 18/25 (72%) were asymptomatic while 7/25 (28%) had mild flu-like symptoms but were asymptomatic at time of donation. It was common for a single donor or donation to infect multiple patients. Where reported, species included B. microti - 54/60 (90%), B. duncani - 3/60 (5%), and B. divergens-like/MO-1 - 1/60 (2%). Most TTB patients (44/60, 73%) resided in endemic states, while most TTB deaths 6/9 (67%) occurred in non-endemic states. Severity of hemolysis was proportional to degree of parasitemia. Mortality in our series was 9/60 (15%); most deaths occurred at extremes of the age spectrum: 6/9 non-survivors were aged >55 years, 2/9 were <1 year, only 1/9 was 2-54 years. Number of comorbidities was higher among non-survivors (median = 4) compared to survivors (median = 1). CONCLUSIONS All implicated donors (for which symptoms data were reported) resulting in TTB infections were asymptomatic at the time of donation, and it was common for a single donor or donation to infect multiple patients. Mortality of TTB appeared highest among those with more comorbidities and in non-endemic states. Heightened awareness of this diagnosis is key in its recognition.
Collapse
Affiliation(s)
| | - Minh-Ha Tran
- UC Irvine School of Medicine, Department of Pathology and Laboratory Medicine, United States.
| |
Collapse
|
16
|
Djokic V, Akoolo L, Primus S, Schlachter S, Kelly K, Bhanot P, Parveen N. Protozoan Parasite Babesia microti Subverts Adaptive Immunity and Enhances Lyme Disease Severity. Front Microbiol 2019; 10:1596. [PMID: 31354683 PMCID: PMC6635642 DOI: 10.3389/fmicb.2019.01596] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
Lyme disease is the most prominent tick-borne disease in the United States. Co-infections with the tick-transmitted pathogens Babesia microti and Borrelia burgdorferi sensu stricto are becoming a serious health problem. B. burgdorferi is an extracellular spirochete that causes Lyme disease while B. microti is a protozoan that infects erythrocytes and causes babesiosis. Testing of donated blood for Babesia species is not currently mandatory due to unavailability of an FDA approved test. Transmission of this protozoan by blood transfusion often results in high morbidity and mortality in recipients. Infection of C3H/HeJ mice with B. burgdorferi and B. microti individually results in inflammatory Lyme disease and display of human babesiosis-like symptoms, respectively. Here we use this mouse model to provide a detailed investigation of the reciprocal influence of the two pathogens on each other during co-infection. We show that B. burgdorferi infection attenuates parasitemia in mice while B. microti subverts the splenic immune response, such that a marked decrease in splenic B and T cells, reduction in antibody levels and diminished functional humoral immunity, as determined by spirochete opsonophagocytosis, are observed in co-infected mice compared to only B. burgdorferi infected mice. Furthermore, immunosuppression by B. microti in co-infected mice showed an association with enhanced Lyme disease manifestations. This study demonstrates the effect of only simultaneous infection by B. burgdorferi and B. microti on each pathogen, immune response and on disease manifestations with respect to infection by the spirochete and the parasite. In our future studies, we will examine the overall effects of sequential infection by these pathogens on host immune responses and disease outcomes.
Collapse
Affiliation(s)
- Vitomir Djokic
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Lavoisier Akoolo
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Shekerah Primus
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Samantha Schlachter
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Kathleen Kelly
- Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, United States
| | - Purnima Bhanot
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
17
|
TickPath Layerplex: adaptation of a real-time PCR methodology for the simultaneous detection and molecular surveillance of tick-borne pathogens. Sci Rep 2019; 9:6950. [PMID: 31061487 PMCID: PMC6502835 DOI: 10.1038/s41598-019-43424-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/23/2019] [Indexed: 12/19/2022] Open
Abstract
Tick-borne diseases (TBD) are common across the United States and can result in critical and chronic diseases in a variety of veterinary patients. Moreover, borreliosis, anaplasmosis, rickettsiosis, ehrlichiosis, and babesiosis are zoonotic and have been cited as the most common TBDs. Molecular diagnostic methodologies utilized for screening domestic dogs for these causative agents include real-time PCR (qPCR) assays in both singleplex and multiplex formats. However, current limitations of qPCR instruments restrict the number of fluorogenic labels that can be differentiated by the instrument for a given reaction. This study describes the development of the TickPath Layerplex, a diagnostic assay based on qPCR methodology that was adapted for the simultaneous detection and characterization of 11 pathogens responsible for causing 5 common TBDs in domestic dogs. The analytical and diagnostic performance of the layerplex assay was evaluated and shown to be compatible with common instruments utilized in molecular diagnostic laboratories. Test results revealed no inhibition or reduction in sensitivity during validation of the layerplex assay, and the limit of detection was determined to be near 16 genome copy equivalents per microliter. Overall, the high sensitivity, specificity, and screening capability of the assay demonstrate its utility for broadly screening dogs for common TBDs.
Collapse
|
18
|
Modarelli JJ, Tomeček JM, Piccione J, Ferro PJ, Esteve‐Gasent MD. Molecular prevalence and ecoregion distribution of select tick‐borne pathogens in Texas dogs. Transbound Emerg Dis 2019; 66:1291-1300. [DOI: 10.1111/tbed.13145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/31/2019] [Accepted: 02/02/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Joseph J. Modarelli
- Department of Veterinary PathobiologyCollege of Veterinary Medicine and Biomedical SciencesTexas A&M University College Station Texas
| | - John M. Tomeček
- Department of Wildlife and Fisheries SciencesTexas A&M University College Station Texas
| | - Julie Piccione
- Texas A&M Veterinary Medical Diagnostic LaboratoryTexas A&M University College Station Texas
| | - Pamela J. Ferro
- Texas A&M Veterinary Medical Diagnostic LaboratoryTexas A&M University College Station Texas
| | - Maria D. Esteve‐Gasent
- Department of Veterinary PathobiologyCollege of Veterinary Medicine and Biomedical SciencesTexas A&M University College Station Texas
| |
Collapse
|
19
|
Investigating disease severity in an animal model of concurrent babesiosis and Lyme disease. Int J Parasitol 2018; 49:145-151. [PMID: 30367867 DOI: 10.1016/j.ijpara.2018.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/11/2018] [Accepted: 06/19/2018] [Indexed: 02/04/2023]
Abstract
The incidence of babesiosis, Lyme disease and other tick-borne diseases has increased steadily in Europe and North America during the last five decades. Babesia microti is transmitted by species of Ixodes, the same ticks that transmit the Lyme disease-causing spirochete, Borrelia burgdorferi. B. microti can also be transmitted through transfusion of blood products and is the most common transfusion-transmitted infection in the U.S.A. Ixodes ticks are commonly infected with both B. microti and B. burgdorferi, and are competent vectors for transmitting them together into hosts. Few studies have examined the effects of coinfections on humans and they had somewhat contradictory results. One study linked coinfection with B. microti to a greater number of symptoms of overall disease in patients, while another report indicated that B. burgdorferi infection either did not affect babesiosis symptoms or decreased its severity. Mouse models of infection that manifest pathological effects similar to those observed in human babesiosis and Lyme disease offer a unique opportunity to thoroughly investigate the effects of coinfection on the host. Lyme disease has been studied using the susceptible C3H mouse infection model, which can also be used to examine B. microti infection to understand pathological mechanisms of human diseases, both during a single infection and during coinfections. We observed that high B. microti parasitaemia leads to low haemoglobin levels in infected mice, reflecting the anaemia observed in human babesiosis. Similar to humans, B. microti coinfection appears to enhance the severity of Lyme disease-like symptoms in mice. Coinfected mice have lower peak B. microti parasitaemia compared to mice infected with B. microti alone, which may reflect attenuation of babesiosis symptoms reported in some human coinfections. These findings suggest that B. burgdorferi coinfection attenuates parasite growth while B. microti presence exacerbates Lyme disease-like symptoms in mice.
Collapse
|