1
|
Duan J, Wang Q, He S, Liang XF, Ding L. L-Glutamate Regulates Npy via the mGluR4-Ca 2+-ERK1/2 Signaling Pathway in Mandarin Fish ( Siniperca chuatsi). Int J Mol Sci 2024; 25:10035. [PMID: 39337521 PMCID: PMC11432707 DOI: 10.3390/ijms251810035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Metabotropic glutamate receptor 4 (mGluR4) is widely regarded as an umami receptor activated by L-glutamate to exert essential functions. Numerous studies have shown that umami receptors participate in food intake regulation. However, little is known about mGluR4's role in mediating food ingestion and its possible molecular mechanism. Mandarin fish, a typical carnivorous fish, is sensitive to umami substances and is a promising vertebrate model organism for studying the umami receptor. In this study, we identified the mGluR4 gene and conducted evolutionary analyses from diverse fish species with different feeding habits. mGluR4 of mandarin fish was cloned and functionally expressed to investigate the effects of L-glutamate on mGluR4. We further explored whether the signal pathway mGluR4-Ca2+-ERK1/2 participates in the process in mandarin fish brain cells. The results suggest that L-glutamate could regulate Neuropeptide Y (Npy) via the mGluR4-Ca2+-ERK1/2 signaling pathway in mandarin fish. Our findings unveil the role of mGluR4 in feeding decisions and its possible molecular mechanisms in carnivorous fishes.
Collapse
Affiliation(s)
- Jiahui Duan
- College of Fisheries, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Qiuling Wang
- College of Fisheries, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Shan He
- College of Fisheries, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, China
| | - Liyun Ding
- Poyang Lake Fisheries Research Centre of Jiangxi Province, Jiangxi Fisheries Research Institute, Nanchang 330039, China
| |
Collapse
|
2
|
Oh Y, Barbey CR, Chandra S, Bai J, Fan Z, Plotto A, Pillet J, Folta KM, Whitaker VM, Lee S. Genomic Characterization of the Fruity Aroma Gene, FaFAD1, Reveals a Gene Dosage Effect on γ-Decalactone Production in Strawberry ( Fragaria × ananassa). FRONTIERS IN PLANT SCIENCE 2021; 12:639345. [PMID: 34017348 PMCID: PMC8129584 DOI: 10.3389/fpls.2021.639345] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/16/2021] [Indexed: 06/01/2023]
Abstract
Strawberries produce numerous volatile compounds that contribute to the unique flavors of fruits. Among the many volatiles, γ-decalactone (γ-D) has the greatest contribution to the characteristic fruity aroma in strawberry fruit. The presence or absence of γ-D is controlled by a single locus, FaFAD1. However, this locus has not yet been systematically characterized in the octoploid strawberry genome. It has also been reported that the volatile content greatly varies among the strawberry varieties possessing FaFAD1, suggesting that another genetic factor could be responsible for the different levels of γ-D in fruit. In this study, we explored the genomic structure of FaFAD1 and determined the allele dosage of FaFAD1 that regulates variations of γ-D production in cultivated octoploid strawberry. The genome-wide association studies confirmed the major locus FaFAD1 that regulates the γ-D production in cultivated strawberry. With the hybrid capture-based next-generation sequencing analysis, a major presence-absence variation of FaFAD1 was discovered among γ-D producers and non-producers. To explore the genomic structure of FaFAD1 in the octoploid strawberry, three bacterial artificial chromosome (BAC) libraries were developed. A deletion of 8,262 bp was consistently found in the FaFAD1 region of γ-D non-producing varieties. With the newly developed InDel-based codominant marker genotyping, along with γ-D metabolite profiling data, we revealed the impact of gene dosage effect for the production of γ-D in the octoploid strawberry varieties. Altogether, this study provides systematic information of the prominent role of FaFAD1 presence and absence polymorphism in producing γ-D and proposes that both alleles of FaFAD1 are required to produce the highest content of fruity aroma in strawberry fruit.
Collapse
Affiliation(s)
- Youngjae Oh
- Department of Horticultural Sciences, Institute of Food and Agricultural Sciences (IFAS) Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States
| | - Christopher R. Barbey
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, United States
| | - Saket Chandra
- Department of Horticultural Sciences, Institute of Food and Agricultural Sciences (IFAS) Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States
| | - Jinhe Bai
- Horticultural Research Laboratory, Agricultural Research Service (ARS), U.S. Department of Agriculture (USDA), Fort Pierce, FL, United States
| | - Zhen Fan
- Department of Horticultural Sciences, Institute of Food and Agricultural Sciences (IFAS) Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States
| | - Anne Plotto
- Horticultural Research Laboratory, Agricultural Research Service (ARS), U.S. Department of Agriculture (USDA), Fort Pierce, FL, United States
| | - Jeremy Pillet
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, United States
| | - Kevin M. Folta
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, United States
| | - Vance M. Whitaker
- Department of Horticultural Sciences, Institute of Food and Agricultural Sciences (IFAS) Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States
| | - Seonghee Lee
- Department of Horticultural Sciences, Institute of Food and Agricultural Sciences (IFAS) Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States
| |
Collapse
|
3
|
Lin Z, Nielsen J, Liu Z. Bioprospecting Through Cloning of Whole Natural Product Biosynthetic Gene Clusters. Front Bioeng Biotechnol 2020; 8:526. [PMID: 32582659 PMCID: PMC7290108 DOI: 10.3389/fbioe.2020.00526] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of penicillin, natural products and their derivatives have been a valuable resource for drug discovery. With recent development of genome mining approaches in the post-genome era, a great number of natural product biosynthetic gene clusters (BGCs) have been identified and these can potentially be exploited for the discovery of novel natural products that can find application as pharmaceuticals. Since many BGCs are silent or do not express in native hosts under laboratory conditions, heterologous expression of BGCs in genetically tractable hosts becomes an attractive route to activate these BGCs to discover the corresponding products. Here, we highlight recent achievements in cloning and discovery of natural product biosynthetic pathways via intact BGC capturing, and discuss the prospects of high-throughput and multiplexed cloning of rational-designed gene clusters in the future.
Collapse
Affiliation(s)
- Zhenquan Lin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jens Nielsen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,BioInnovation Institute, Copenhagen, Denmark
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|