1
|
Qu S, Ke Q, Li X, Yu L, Huang S. Influences of pulsed electric field parameters on cell electroporation and electrofusion events: Comprehensive understanding by experiments and molecular dynamics simulations. PLoS One 2025; 20:e0306945. [PMID: 39841685 PMCID: PMC11753653 DOI: 10.1371/journal.pone.0306945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/26/2024] [Indexed: 01/24/2025] Open
Abstract
Electroporation and electrofusion are efficient methods, which have been widely used in different areas of biotechnology and medicine. Pulse strength and width, as an external condition, play an important role in the process of these methods. However, comparatively little work has been done to explore the effects of pulsed electric field parameters on electroporation and electrofusion. Herein, influences of pulse strength and width on the electroporation and electrofusion of phospholipid bilayers were systematically investigated by using experiments combined with molecular dynamics simulations. Experimental results and machine learning-based regression analysis showed that the number of pores is mainly determined by pulse strength, while the sizes of pores were enlarged by increasing the pulse widths. In addition, the formation of large-size pores is the most crucial factor that affects the fusion rate of myeloma cells. The same trend has taken place on coarse-grained and all-atom MD simulations. The result suggested that electroporation events occur only in an electric field exceeding the strength of threshold, and the unbalanced degree of electric potential between two membranes leads to pores formation during the process of electroporation. Generally, this work provides a comprehensive understanding of how pulse strength and width govern the poration event of bilayer lipid membranes, as well as guidance on the experimental design of electrofusion.
Collapse
Affiliation(s)
- Sujun Qu
- Department of Pharmacy, Jingmen Central Hospital, Jingmen Central Hospital Affiliated to Jingchu University of Technology, Jingmen, Hubei, China
| | - Qiang Ke
- Nanjing Research Institute of Electronics Technology, Nanjing, China
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, China
| | - Xinhao Li
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, China
| | - Lin Yu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shuheng Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| |
Collapse
|
2
|
Zhang Y, Jin D, Tivony R, Kampf N, Klein J. Cell-inspired, massive electromodulation of friction via transmembrane fields across lipid bilayers. NATURE MATERIALS 2024; 23:1720-1727. [PMID: 38914644 DOI: 10.1038/s41563-024-01926-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 05/16/2024] [Indexed: 06/26/2024]
Abstract
Transient electric fields across cell bilayer membranes can lead to electroporation and cell fusion, effects crucial to cell viability whose biological implications have been extensively studied. However, little is known about these behaviours in a materials context. Here we find that transmembrane electric fields can lead to a massive, reversible modulation of the sliding friction between surfaces coated with lipid-bilayer membranes-a 200-fold variation, up to two orders of magnitude greater than that achieved to date. Atomistic simulations reveal that the transverse fields, resembling those at cell membranes, lead to fully reversible electroporation of the confined bilayers and the formation of inter-bilayer bridges analogous to the stalks preceding intermembrane fusion. These increase the interfacial dissipation through reduced hydration at the slip plane, forcing it to revert in part from the low-dissipation, hydrated lipid-headgroup plane to the intra-bilayer, high-dissipation acyl tail interface. Our results demonstrate that lipid bilayers under transmembrane electric fields can have striking materials modification properties.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Di Jin
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel.
| | - Ran Tivony
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nir Kampf
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Jacob Klein
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Bai Y, Yang C, Zhang X, Wu J, Yang J, Ju H, Hu N. Microfluidic Chip for Cell Fusion and In Situ Separation of Fused Cells. Anal Chem 2024. [PMID: 39560470 DOI: 10.1021/acs.analchem.4c04633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Electrofusion is an effective method for fusing two cells into a hybrid cell, and this method is widely used in immunomedicine, gene recombination, and other related fields. Although cell pairing and electrofusion techniques have been accomplished with microfluidic devices, the purification and isolation of fused cells remains limited due to expensive instruments and complex operations. In this study, through the optimization of microstructures and electrodes combined with buffer substitution, the entire cell electrofusion process, including cell capture, pairing, electrofusion, and precise separation of the targeted fused cells, is achieved on a single chip. The proposed microfluidic cell electrofusion achieves an efficiency of 80.2 ± 7.5%, and targeted cell separation could be conveniently performed through the strategic activation of individual microelectrodes via negative dielectrophoresis, which ensures accurate release of the fused cells with an efficiency of up to 91.1 ± 5.1%. Furthermore, the survival rates of the cells after electrofusion and release are as high as 94.7 ± 0.6% and 91.7 ± 1.2%, respectively. These results demonstrate that the in situ cell electrofusion and separation process did not affect the cell activity. This chip offers integrated multifunctional manipulation of cells in situ, and can be applied to multiple fields in the future, thus laying the foundation for the field of precise single-cell analysis.
Collapse
Affiliation(s)
- Yaqi Bai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Chen Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Xiaoling Zhang
- School of Smart Health, Chongqing Polytechnic University of Electronic Technology, Chongqing 401331, P. R. China
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jun Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
4
|
Kou J, Shen J, Wang Z, Yu W. Advances in hybridoma preparation using electrofusion technology. Biotechnol J 2023; 18:e2200428. [PMID: 37402172 DOI: 10.1002/biot.202200428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/06/2023]
Abstract
As a rapidly developing cell engineering technique, cell electrofusion has been increasingly applied in the field of hybridoma preparation in recent years. However, it is difficult to completely replace the polyethylene glycol-mediated cell fusion using electrofusion due to the high operation requirements, high cost of electrofusion instruments, and lack of prior reference research work. The key elements limiting electrofusion in the field of hybridoma preparation also introduce practical complications, such as the use/choice of electrofusion instruments, setup/optimization of electrical parameters, and precise control of cells. This review summarizes the state of the art of cell electrofusion in hybridoma preparation based on recent published literature, mainly focusing on electrofusion instruments and their components, process control and characterization, and cell treatment. It also provides new information and insightful commentary critically important for further electrofusion development in the field of hybridoma preparation.
Collapse
Affiliation(s)
- Jiaqian Kou
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, People's Republic of China
- Beijing Laboratory for Food Quality and Safety, Beijing, People's Republic of China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, People's Republic of China
- Beijing Laboratory for Food Quality and Safety, Beijing, People's Republic of China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, People's Republic of China
- Beijing Laboratory for Food Quality and Safety, Beijing, People's Republic of China
| | - Wenbo Yu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing, People's Republic of China
- Beijing Laboratory for Food Quality and Safety, Beijing, People's Republic of China
| |
Collapse
|
5
|
Zou Y, Sun Y, Chen X, Hong L, Dong G, Bai X, Wang H, Rao B, Ren Z, Yu Z. Nanosecond pulse effectively ablated hepatocellular carcinoma with alterations in the gut microbiome and serum metabolites. Front Pharmacol 2023; 14:1163628. [PMID: 37234705 PMCID: PMC10205996 DOI: 10.3389/fphar.2023.1163628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death in the world. Nanosecond pulsed electric fields (nsPEFs) have emerged as a new treatment for cancer. This study aims to identify the effectiveness of nsPEFs in the treatment of HCC and analyze the alterations in the gut microbiome and serum metabonomics after ablation. Methods: C57BL/6 mice were randomly divided into three groups: healthy control mice (n = 10), HCC mice (n = 10), and nsPEF-treated HCC mice (n = 23). Hep1-6 cell lines were used to establish the HCC model in situ. Histopathological staining was performed on tumor tissues. The gut microbiome was analyzed by 16S rRNA sequencing. Serum metabolites were analyzed by liquid chromatography-mass spectrometry (LC-MS) metabolomic analysis. Spearman's correlation analysis was carried out to analyze the correlation between the gut microbiome and serum metabonomics. Results: The fluorescence image showed that nsPEFs were significantly effective. Histopathological staining identified nuclear pyknosis and cell necrosis in the nsPEF group. The expression of CD34, PCNA, and VEGF decreased significantly in the nsPEF group. Compared with normal mice, the gut microbiome diversity of HCC mice was increased. Eight genera including Alistipes and Muribaculaceae were enriched in the HCC group. Inversely, these genera decreased in the nsPEF group. LC-MS analysis confirmed that there were significant differences in serum metabolism among the three groups. Correlation analysis showed crucial relationships between the gut microbiome and serum metabolites that are involved in nsPEF ablation of HCC. Conclusion: As a new minimally invasive treatment for tumor ablation, nsPEFs have an excellent ablation effect. The alterations in the gut microbiome and serum metabolites may participate in the prognosis of HCC ablation.
Collapse
Affiliation(s)
- Yawen Zou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinhua Chen
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
| | - Liangjie Hong
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
| | - Gang Dong
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiwen Bai
- Nanchang University Queen Marry School, Nanchang, Jiangxi, China
| | - Haiyu Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Benchen Rao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Theoretical analysis for the fluctuation in the electric parameters of the electroporated cells before and during the electrofusion. Med Biol Eng Comput 2022; 60:3585-3600. [DOI: 10.1007/s11517-022-02683-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
AbstractAn electric pulse with a sufficient amplitude can lead to electroporation of intracellular organelles. Also, the electric field can lead to electrofusion of the neighboring cells. In this paper, a finite element mathematical model was used to simulate the distribution, radius, and density of the pores. We simulated a mathematical model of the two neighbor cells to analyze the fluctuation in the electroporation parameters before the electrofusion under the ultra-shorted electric field pulse (i.e., impulse signal) for each cell separately and after the electrofusion under the ultra-shorted pulse. The analysis of the temporal and spatial distribution can lead to improving the mathematical models that are used to analyze both electroporation and electrofusion. The study combines the advantages of the nanosecond pulse to avoid the effect of the cell size on the electrofusion and the large-pore radius at the contact point between the cells.
Graphical abstract
Collapse
|
7
|
Wu M, Ke Q, Bi J, Li X, Huang S, Liu Z, Ge L. Substantially Improved Electrofusion Efficiency of Hybridoma Cells: Based on the Combination of Nanosecond and Microsecond Pulses. Bioengineering (Basel) 2022; 9:bioengineering9090450. [PMID: 36134996 PMCID: PMC9495357 DOI: 10.3390/bioengineering9090450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022] Open
Abstract
As the initial antibody technology, the preparation of hybridoma cells has been widely used in discovering antibody drugs and is still in use. Various antibody drugs obtained through this technology have been approved for treating human diseases. However, the key to producing hybridoma cells is efficient cell fusion. High-voltage microsecond pulsed electric fields (μsHVPEFs) are currently one of the most common methods used for cell electrofusion. Nevertheless, the membrane potential induced by the external microsecond pulse is proportional to the diameter of the cell, making it difficult to fuse cells of different sizes. Although nanosecond pulsed electric fields (nsPEFs) can achieve the fusion of cells of different sizes, due to the limitation of pore size, deoxyribonucleic acid (DNA) cannot efficiently pass through the cell pores produced by nsPEFs. This directly causes the significant loss of the target gene and reduces the proportion of positive cells after fusion. To achieve an electric field environment independent of cell size and enable efficient cell fusion, we propose a combination of nanosecond pulsed electric fields and low-voltage microsecond pulsed electric fields (ns/μsLVPEFs) to balance the advantages and disadvantages of the two techniques. The results of fluorescence experiments and hybridoma culture experiments showed that after lymphocytes and myeloma cells were stimulated by a pulse (ns/μsLVPEF, μsHVPEF, and control), compared with μsHVPEF, applying ns/μsLVPEF at the same energy could increase the cell fusion efficiency by 1.5–3.0 times. Thus far, we have combined nanosecond and microsecond pulses and provided a practical solution that can significantly increase cell fusion efficiency. This efficient cell fusion method may contribute to the further development of hybridoma technology in electrofusion.
Collapse
Affiliation(s)
- Meng Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Qiang Ke
- Nanjing Research Institute of Electronics Technology, Nanjing 210039, China
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
- School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906, USA
- Correspondence: (Q.K.); (Z.L.); (L.G.)
| | - Jinhao Bi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
- School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Xinhao Li
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Shuheng Huang
- College of Bioengineering, Chongqing University, Chongqing 400044, China
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zuohua Liu
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- Correspondence: (Q.K.); (Z.L.); (L.G.)
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- Correspondence: (Q.K.); (Z.L.); (L.G.)
| |
Collapse
|
8
|
Consales C, Merla C, Benassi B, Garcia-Sanchez T, Muscat A, André FM, Marino C, Mir LM. Biological effects of ultrashort electric pulses in a neuroblastoma cell line: the energy density role. Int J Radiat Biol 2021; 98:109-121. [PMID: 34714724 DOI: 10.1080/09553002.2022.1998704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Despite the numerous literature results about biological effects of electromagnetic field (EMF) exposure, the interaction mechanisms of these fields with organisms are still a matter of debate. Extremely low frequency (ELF) MFs can modulate redox homeostasis and we showed that 24 h exposure to 50 Hz-1 mT has a pro-oxidant effect and effects on the epigenome of SH-SY5Y cells, decreasing miR-34b/c expression through the hypermethylation of their promoter. METHODS Here, we investigated the role of the electromagnetic deposited energy density (ED) during exposures lasting 24 h to 1 mT amplitude MFs at a frequency of 50 Hz in inducing the above mentioned effects. To this end, we delivered ultrashort electric pulses, in the range of microsecond and nanosecond duration, with the same ED of the previously performed magnetic exposure to SH-SY5Y cells. Furthermore, we explored the effect of higher deposited energy densities. Analysis of i) gene and microRNA expression, ii) cell morphology, iii) reactive oxygen species (ROS) generation, and iv) apoptosis were carried out. RESULTS We observed significant changes in egr-1 and c-fos expression at very low deposited ED levels, but no change of the ROS production, miR-34b/c expression, nor the appearance of indicators of apoptosis. We thus sought investigating changes in egr-1 and c-fos expression caused by ultrashort electric pulses at increasing deposited ED levels. The pulses with the higher deposited ED caused cell electroporation and even other morphological changes such as cell fusion. The changes in egr-1 and c-fos expression were more intense, but, again, no change of the ROS production, miR-34b/c expression, nor apoptosis induction was observed. CONCLUSIONS These results, showing that extremely low levels of electric stimulation (never investigated until now) can cause transcriptional changes, also reveal the safety of the electroporating pulses used in biomedical applications and open up the possibility to further therapeutic applications of this technology.
Collapse
Affiliation(s)
- Claudia Consales
- Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Caterina Merla
- Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Barbara Benassi
- Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Tomás Garcia-Sanchez
- Institut Gustave Roussy, CNRS, Metabolic and Systemic Aspects of the Oncogenesis (METSY), Université Paris-Saclay, Villejuif, France.,Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Adeline Muscat
- Institut Gustave Roussy, CNRS, Metabolic and Systemic Aspects of the Oncogenesis (METSY), Université Paris-Saclay, Villejuif, France
| | - Franck M André
- Institut Gustave Roussy, CNRS, Metabolic and Systemic Aspects of the Oncogenesis (METSY), Université Paris-Saclay, Villejuif, France
| | - Carmela Marino
- Division of Health Protection Technologies, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Lluis M Mir
- Institut Gustave Roussy, CNRS, Metabolic and Systemic Aspects of the Oncogenesis (METSY), Université Paris-Saclay, Villejuif, France
| |
Collapse
|
9
|
Lv Y, Tang X, Peng W, Cheng X, Chen S, Yao C. Analysis on reversible/irreversible electroporation region in lung adenocarcinoma cell model in vitro with electric pulses delivered by needle electrodes. Phys Med Biol 2020; 65:225001. [PMID: 33053520 DOI: 10.1088/1361-6560/abc12e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Irreversible electroporation (IRE) is a minimally invasive tumor therapy using pulsed electric field with high intensity while the important tissues such as blood vessel, bile duct, and nerve are preserved. In addition to ablation area, reversible electroporation (RE) region is also generated using needle electrodes for pulse delivery. The goal of this work is to study the generation of RE region and ablation region on a 2D lung adenocarcinoma cell model in vitro. The tumor model is exposed to electric pulses with various number. The calcium AM and propidium iodide (PI) are examined to detect the ablation area and electroporation area, respectively. The results show that electroporation area firstly tends to plateau after approximately 50 pulses, while the ablation area continues to increase. The percentage of IRE area in total electroporation area increases with additional pulses, which means that RE region could be gradually turned into ablation area with increased pulse number. However, the percentage of IRE area only achieves to 54% for 200 pulses, which indicates that RE region still cannot be completely removed. RE and IRE thresholds appear to converge as the number of pulses increases. An equation between pulse number and the electric field threshold of ablation including the electric field threshold of RE is also provided for lung adenocarcinoma cell ablation. This work may have the value for the optimization of IRE protocols on tumor ablation.
Collapse
Affiliation(s)
- Yanpeng Lv
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China. Author to whom any correspondance should be addressed
| | | | | | | | | | | |
Collapse
|
10
|
Zhang Z, Zheng T, Zhu R. Single-cell individualized electroporation with real-time impedance monitoring using a microelectrode array chip. MICROSYSTEMS & NANOENGINEERING 2020; 6:81. [PMID: 34567691 PMCID: PMC8433324 DOI: 10.1038/s41378-020-00196-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/31/2020] [Accepted: 06/28/2020] [Indexed: 05/12/2023]
Abstract
The ability to precisely deliver molecules into single cells while maintaining good cell viability is of great importance to applications in therapeutics, diagnostics, and drug delivery as it is an advancement toward the promise of personalized medicine. This paper reports a single-cell individualized electroporation method with real-time impedance monitoring to improve cell perforation efficiency and cell viability using a microelectrode array chip. The microchip contains a plurality of sextupole-electrode units patterned in an array, which are used to perform in situ electroporation and real-time impedance monitoring on single cells. The dynamic recovery processes of single cells under electroporation are tracked in real time via impedance measurement, which provide detailed transient cell states and facilitate understanding the whole recovery process at the level of single cells. We define single-cell impedance indicators to characterize cell perforation efficiency and cell viability, which are used to optimize electroporation. By applying the proposed electroporation method to different cell lines, including human cancer cell lines and normal human cell lines individually, optimum stimuli are determined for these cells, by which high transfection levels of enhanced green fluorescent protein (EGFP) plasmid into cells are achieved. The results validate the effectiveness of the proposed single-cell individualized electroporation/transfection method and demonstrate promising potential in applications of cell reprogramming, induced pluripotent stem cells, adoptive cell therapy, and intracellular drug delivery technology.
Collapse
Affiliation(s)
- Zhizhong Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084 China
| | - Tianyang Zheng
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084 China
| | - Rong Zhu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084 China
| |
Collapse
|