1
|
Gates EG, Crook N. The biochemical mechanisms of plastic biodegradation. FEMS Microbiol Rev 2024; 48:fuae027. [PMID: 39500541 PMCID: PMC11644497 DOI: 10.1093/femsre/fuae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 10/23/2024] [Accepted: 11/02/2024] [Indexed: 12/15/2024] Open
Abstract
Since the invention of the first synthetic plastic, an estimated 12 billion metric tons of plastics have been manufactured, 70% of which was produced in the last 20 years. Plastic waste is placing new selective pressures on humans and the organisms we depend on, yet it also places new pressures on microorganisms as they compete to exploit this new and growing source of carbon. The limited efficacy of traditional recycling methods on plastic waste, which can leach into the environment at low purity and concentration, indicates the utility of this evolving metabolic activity. This review will categorize and discuss the probable metabolic routes for each industrially relevant plastic, rank the most effective biodegraders for each plastic by harmonizing and reinterpreting prior literature, and explain the experimental techniques most often used in plastic biodegradation research, thus providing a comprehensive resource for researchers investigating and engineering plastic biodegradation.
Collapse
Affiliation(s)
- Ethan G Gates
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, United States
| | - Nathan Crook
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, United States
| |
Collapse
|
2
|
Wu J, Wang J, Zeng Y, Sun X, Yuan Q, Liu L, Shen X. Biodegradation: the best solution to the world problem of discarded polymers. BIORESOUR BIOPROCESS 2024; 11:79. [PMID: 39110313 PMCID: PMC11306678 DOI: 10.1186/s40643-024-00793-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
The widespread use of polymers has made our lives increasingly convenient by offering a more convenient and dependable material. However, the challenge of efficiently decomposing these materials has resulted in a surge of polymer waste, posing environment and health risk. Currently, landfill and incineration treatment approaches have notable shortcomings, prompting a shift towards more eco-friendly and sustainable biodegradation approaches. Biodegradation primarily relies on microorganisms, with research focusing on both solitary bacterial strain and multi-strain communities for polymer biodegradation. Furthermore, directed evolution and rational design of enzyme have significantly contributed to the polymer biodegradation process. However, previous reviews often undervaluing the role of multi-strain communities. In this review, we assess the current state of these three significant fields of research, provide practical solutions to issues with polymer biodegradation, and outline potential future directions for the subject. Ultimately, biodegradation, whether facilitated by single bacteria, multi-strain communities, or engineered enzymes, now represents the most effective method for managing waste polymers.
Collapse
Affiliation(s)
- Jun Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yicheng Zeng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
3
|
Basik AA, Gibu N, Kawagiwa Y, Ng SM, Yeo TC, Sudesh K, Kasai D. Genomic insights into Dactylosporangium sp. AC04546, a rubber degrader with three latex clearing proteins. Front Microbiol 2024; 15:1378082. [PMID: 38873160 PMCID: PMC11169899 DOI: 10.3389/fmicb.2024.1378082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
With more than 100 rubber-degrading strains being reported, only 9 Lcp proteins isolated from Nocardia, Gordonia, Streptomyces, Rhodococcus, Actinoplanes, and Solimonas have been purified and biochemically characterized. A new strain, Dactylosporangium sp. AC04546 (strain JCM34239), isolated from soil samples collected in Sarawak Forest, was able to grow and utilize natural or synthetic rubber as the sole carbon source. Complete genome of Strain AC04546 was obtained from the hybrid assembly of PacBio Sequel II and Illumina MiSeq. Strain AC04546 has a large circular genome of 13.08 Mb with a G+C content of 72.1%. The genome contains 11,865 protein-coding sequences with 3 latex clearing protein (lcp) genes located on its chromosome. The genetic organization of the lcp gene cluster is similar to two other reported rubber-degrading strains-Actinoplanes sp. OR16 and Streptomyces sp. CFMR 7. All 3 Lcp from strain AC04546 were expressed in Escherichia coli and exhibited degrading activity against natural rubber. The distinctiveness of strain AC04546, along with other characterized rubber-degrading strains, is reported here.
Collapse
Affiliation(s)
| | - Namiko Gibu
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Yukimura Kawagiwa
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Siuk-Mun Ng
- Codon Genomics S/B, Seri Kembangan, Selangor, Malaysia
| | | | - Kumar Sudesh
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Daisuke Kasai
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| |
Collapse
|
4
|
Prakash T, Yadav SR, Bürger M, Jendrossek D. Cleavage of natural rubber by rubber oxygenases in Gram-negative bacteria. Appl Microbiol Biotechnol 2024; 108:191. [PMID: 38305904 PMCID: PMC10837239 DOI: 10.1007/s00253-023-12940-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 02/03/2024]
Abstract
Bacterial degradation of natural rubber (NR) in an oxic environment is initiated by oxidative cleavage of double bonds in the NR-carbon backbone and is catalyzed by extracellular haem-containing rubber oxygenases. NR-cleavage products of sufficiently low molecular mass are taken up by the cells and metabolized for energy and biomass formation. Gram-negative and Gram-positive NR-degrading bacteria (usually) employ different types of rubber oxygenases such as RoxA and/or RoxB (most Gram-negative NR-degraders) or latex clearing protein Lcp (most Gram-positive NR-degraders). In order to find novel orthologues of Rox proteins, we have revisited databases and provide an update of Rox-like proteins. We describe the putative evolution of rubber oxygenases and confirm the presence of a third subgroup of Rox-related proteins (RoxCs), the biological function of which remains, however, unclear. We summarize the knowledge on the taxonomic position of Steroidobacter cummioxidans 35Y and related species. Comparison of genomic and biochemical features of strain 35Y with other species of the genus Steroidobacter suggests that strain 35Y represents a species of a novel genus for which the designation Aurantibaculum gen. nov. is proposed. A short summary on the capabilities of NR-degrading consortia, that could be superior in biotechnological applications compared to pure cultures, is also provided. KEY POINTS: • Three types of rubber oxygenases exist predominantly in Gram-negative microbes • S. cummioxidans 35Y contains RoxA and RoxB which are superior in activity • S. cummioxidans 35Y represents a species of a novel genus.
Collapse
Affiliation(s)
- Tulika Prakash
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT), Mandi, HP, 175005 , India.
| | - Sandhya R Yadav
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT), Mandi, HP, 175005 , India
| | - Marius Bürger
- Institute of Microbiology, University Stuttgart, Stuttgart, Germany
| | | |
Collapse
|
5
|
Cui C, Jiang M, Zhang C, Zhang N, Jin FJ, Li T, Lee HG, Jin L. Assembly strategies for rubber-degrading microbial consortia based on omics tools. Front Bioeng Biotechnol 2023; 11:1326395. [PMID: 38125306 PMCID: PMC10731047 DOI: 10.3389/fbioe.2023.1326395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Numerous microorganisms, including bacteria and fungus, have been identified as capable of degrading rubber. Rubber biodegradation is still understudied due to its high stability and the lack of well-defined pathways and efficient enzymes involved in microorganism metabolism. However, rubber products manufacture and usage cause substantial environmental issues, and present physical-chemical methods involve dangerous chemical solvents, massive energy, and trash with health hazards. Eco-friendly solutions are required in this context, and biotechnological rubber treatment offers considerable promise. The structural and functional enzymes involved in poly (cis-1,4-isoprene) rubber and their cleavage mechanisms have been extensively studied. Similarly, novel bacterial strains capable of degrading polymers have been investigated. In contrast, relatively few studies have been conducted to establish natural rubber (NR) degrading bacterial consortia based on metagenomics, considering process optimization, cost effective approaches and larger scale experiments seeking practical and realistic applications. In light of the obstacles encountered during the constructing NR-degrading consortia, this study proposes the utilization of multi-omics tools to discern the underlying mechanisms and metabolites of rubber degradation, as well as associated enzymes and effective synthesized microbial consortia. In addition, the utilization of omics tool-based methods is suggested as a primary research direction for the development of synthesized microbial consortia in the future.
Collapse
Affiliation(s)
- Chengda Cui
- Co-Innovation Centre for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Mengke Jiang
- Co-Innovation Centre for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Chengxiao Zhang
- Co-Innovation Centre for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Naxue Zhang
- Co-Innovation Centre for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Feng-Jie Jin
- Co-Innovation Centre for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Taihua Li
- Co-Innovation Centre for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Hyung-Gwan Lee
- Cell Factory Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Long Jin
- Co-Innovation Centre for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
6
|
Chow J, Perez‐Garcia P, Dierkes R, Streit WR. Microbial enzymes will offer limited solutions to the global plastic pollution crisis. Microb Biotechnol 2022; 16:195-217. [PMID: 36099200 PMCID: PMC9871534 DOI: 10.1111/1751-7915.14135] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/09/2022] [Accepted: 08/14/2022] [Indexed: 01/27/2023] Open
Abstract
Global economies depend on the use of fossil-fuel-based polymers with 360-400 million metric tons of synthetic polymers being produced per year. Unfortunately, an estimated 60% of the global production is disposed into the environment. Within this framework, microbiologists have tried to identify plastic-active enzymes over the past decade. Until now, this research has largely failed to deliver functional biocatalysts acting on the commodity polymers such as polyethylene (PE), polypropylene (PP), polyvinylchloride (PVC), ether-based polyurethane (PUR), polyamide (PA), polystyrene (PS) and synthetic rubber (SR). However, few enzymes are known to act on low-density and low-crystalline (amorphous) polyethylene terephthalate (PET) and ester-based PUR. These above-mentioned polymers represent >95% of all synthetic plastics produced. Therefore, the main challenge microbiologists are currently facing is in finding polymer-active enzymes targeting the majority of fossil-fuel-based plastics. However, identifying plastic-active enzymes either to implement them in biotechnological processes or to understand their potential role in nature is an emerging research field. The application of these enzymes is still in its infancy. Here, we summarize the current knowledge on microbial plastic-active enzymes, their global distribution and potential impact on plastic degradation in industrial processes and nature. We further outline major challenges in finding novel plastic-active enzymes, optimizing known ones by synthetic approaches and problems arising through falsely annotated and unfiltered use of database entries. Finally, we highlight potential biotechnological applications and possible re- and upcycling concepts using microorganisms.
Collapse
Affiliation(s)
- Jennifer Chow
- Department of Microbiology and BiotechnologyUniversity of HamburgHamburgGermany
| | - Pablo Perez‐Garcia
- Department of Microbiology and BiotechnologyUniversity of HamburgHamburgGermany
| | - Robert Dierkes
- Department of Microbiology and BiotechnologyUniversity of HamburgHamburgGermany
| | - Wolfgang R. Streit
- Department of Microbiology and BiotechnologyUniversity of HamburgHamburgGermany
| |
Collapse
|
7
|
Discovery of lignin-transforming bacteria and enzymes in thermophilic environments using stable isotope probing. THE ISME JOURNAL 2022; 16:1944-1956. [PMID: 35501417 PMCID: PMC9296663 DOI: 10.1038/s41396-022-01241-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/14/2022]
Abstract
Characterizing microorganisms and enzymes involved in lignin biodegradation in thermal ecosystems can identify thermostable biocatalysts. We integrated stable isotope probing (SIP), genome-resolved metagenomics, and enzyme characterization to investigate the degradation of high-molecular weight, 13C-ring-labeled synthetic lignin by microbial communities from moderately thermophilic hot spring sediment (52 °C) and a woody "hog fuel" pile (53 and 62 °C zones). 13C-Lignin degradation was monitored using IR-GCMS of 13CO2, and isotopic enrichment of DNA was measured with UHLPC-MS/MS. Assembly of 42 metagenomic libraries (72 Gb) yielded 344 contig bins, from which 125 draft genomes were produced. Fourteen genomes were significantly enriched with 13C from lignin, including genomes of Actinomycetes (Thermoleophilaceae, Solirubrobacteraceae, Rubrobacter sp.), Firmicutes (Kyrpidia sp., Alicyclobacillus sp.) and Gammaproteobacteria (Steroidobacteraceae). We employed multiple approaches to screen genomes for genes encoding putative ligninases and pathways for aromatic compound degradation. Our analysis identified several novel laccase-like multi-copper oxidase (LMCO) genes in 13C-enriched genomes. One of these LMCOs was heterologously expressed and shown to oxidize lignin model compounds and minimally transformed lignin. This study elucidated bacterial lignin depolymerization and mineralization in thermal ecosystems, establishing new possibilities for the efficient valorization of lignin at elevated temperature.
Collapse
|
8
|
Basik AA, Trakunjae C, Yeo TC, Sudesh K. Streptomyces sp. AC04842: Genomic Insights and Functional Expression of Its Latex Clearing Protein Genes (lcp1 and lcp2) When Cultivated With Natural and Vulcanized Rubber as the Sole Carbon Source. Front Microbiol 2022; 13:854427. [PMID: 35586859 PMCID: PMC9108482 DOI: 10.3389/fmicb.2022.854427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022] Open
Abstract
Rubber-degrading Actinobacteria have been discovered and investigated since 1985. Only recently, through the advancement of genomic sequencing and molecular techniques, genes and pathways involved in rubber degradation are being revealed; however, the complete degradation pathway remains unknown. Streptomyces sp. AC04842 (JCM 34241) was discovered by screening at a Culture Collection Centre in Sarawak for Actinomycetes forming a clear zone on natural rubber latex agar. Streptomyces is a dominant and well-studied soil bacterium playing an important role in soil ecology including carbon recycling and biodegradation. Streptomyces sp. AC04842 draft genome revealed the presence of 2 putative latex clearing protein (lcp) genes on its chromosome and is closely related to Streptomyces cellulosae. Under the Streptomyces genus, there are a total of 64 putative lcp genes deposited in the GenBank and UniProt database. Only 1 lcp gene from Streptomyces sp. K30 has been characterized. Unlike Streptomyces sp. K30 which contained 1 lcp gene on its chromosome, Streptomyces sp. AC04842 contained 2 lcp genes on its chromosome. Streptomyces sp. AC04842 lcp1 and lcp2 amino acid sequences showed 46.13 and 69.11%, respectively, similarity to lcp sequences of Streptomyces sp. K30. Most rubber degrading strains were known to harbor only 1 lcp gene, and only recently, 2–3 lcp homologs have been reported. Several studies have shown that lcp-homolog expression increased in the presence of rubber. To study the expression of lcp1 and lcp2 genes for Streptomyces sp. AC04842, the strain was incubated in different types of rubber as the sole carbon source. In general, the lcp1 gene was highly expressed, while the lcp2 gene expression was upregulated in the presence of vulcanized rubber. Mixtures of natural and vulcanized rubber did not further increase the expression of both lcp genes compared with the presence of a specific rubber type. In this study, we paved the way to the exploration of lcp homologs and their function in degrading different types of rubber.
Collapse
Affiliation(s)
- Ann Anni Basik
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
- Sarawak Biodiversity Centre, Kuching, Malaysia
| | - Chanaporn Trakunjae
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, Thailand
| | | | - Kumar Sudesh
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Malaysia
- *Correspondence: Kumar Sudesh,
| |
Collapse
|
9
|
Sarkar B, Gupta AM, Mandal S. Insights from the comparative genome analysis of natural rubber degrading Nocardia species. Bioinformation 2021; 17:880-890. [PMID: 35574501 PMCID: PMC9070631 DOI: 10.6026/97320630017880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 11/23/2022] Open
Abstract
Nocardia are known to be a facultative human pathogen and can cause infection in immune compromised patients. Though the details research on the virulence factors of Nocardia are scanty but numerous genes that code such factors were reported from different species of Nocardia. Despite of the presence of several virulence factors, species of this genus have been shown to have role in remediation of many toxic and hazardous materials from the environment. In this study, genome sequences of rubber degrading Nocardia sp. BSTN01 and N.nova SH22a have been analyzed to locate the potential virulence genes. Also, the genomes of facultative pathogenic Nocardia like, N.africana, N. brasiliensis, N. kruczakiae, N. transvalensis and N. veterana have been analyzed to find the gene encoding latex clearing protein (Lcp), a rubber oxygenase enzyme of Gram-positive action bacteria. The study provides an insight about the potentiality of rubberdegrading Nocardia species to emerge as future human pathogens and also the probability of a serious concern if the studied facultative pathogens of Nocardia like N. africana, N. brasiliensis, N. kruczakiae, N. transvalensis and N. veterana are capable of degrading rubber, a regularly used material in clinics. Moreover, use of such possible pathogenic strains for their known role in bioremediation of rubber waste from the environment might be deleterious.
Collapse
Affiliation(s)
- Biraj Sarkar
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Aayatti Mallick Gupta
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata-700 106, India
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| |
Collapse
|
10
|
Huang RR, Ge XF, Chen XK, Yang SR, Zhen C, Wen ZQ, Li YN, Liu WZ. Steroidobacter gossypii sp. nov., isolated from cotton field soil. Int J Syst Evol Microbiol 2021; 71. [PMID: 34343063 DOI: 10.1099/ijsem.0.004935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative bacterium, designated S1-65T, was isolated from soil samples collected from a cotton field located in the Xinjiang region of PR China. Results of 16S rRNA gene sequence analysis revealed that strain S1-65T was affiliated to the genus Steroidobacter with its closest phylogenetic relatives being 'Steroidobacter cummioxidans' 35Y (98.4 %), 'Steroidobacter agaridevorans' SA29-B (98.3 %) and Steroidobacter agariperforans KA5-BT (98.3 %). 16S rRNA-directed phylogenetic analysis showed that strain S1-65T formed a unique phylogenetic subclade next to 'S. agaridevorans' SA29-B and S. agariperforans KA5-BT, suggesting that strain S1-65T should be identified as a member of the genus Steroidobacter. Further, substantial differences between the genotypic properties of strain S1-65T and the members of the genus Steroidobacter, including average nucleotide identity and digital DNA-DNA hybridization, resolved the taxonomic position of strain S1-65T and suggested its positioning as representing a novel species of the genus Steroidobacter. The DNA G+C content of strain S1-65T was 62.5 mol%, based on its draft genome sequence. The predominant respiratory quinone was ubiquinone-8. The main fatty acids were identified as summed feature 3 (C16:1ω6c/C16:1ω7c), C16 : 0 and iso-C15 : 0. In addition, its polar lipid profile was composed of aminophospholipid, diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. Here, we propose a novel species of the genus Steroidobacter: Steroidobacter gossypii sp. nov. with the type strain S1-65T (=JCM 34287T=CGMCC 1.18736T).
Collapse
Affiliation(s)
- Rui-Rui Huang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Xian-Feng Ge
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Xin-Kai Chen
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Shen-Rong Yang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Cheng Zhen
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Zhi-Qiang Wen
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Ya-Nan Li
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Wen-Zheng Liu
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| |
Collapse
|
11
|
Basik AA, Sanglier JJ, Yeo CT, Sudesh K. Microbial Degradation of Rubber: Actinobacteria. Polymers (Basel) 2021; 13:polym13121989. [PMID: 34204568 PMCID: PMC8235351 DOI: 10.3390/polym13121989] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 01/25/2023] Open
Abstract
Rubber is an essential part of our daily lives with thousands of rubber-based products being made and used. Natural rubber undergoes chemical processes and structural modifications, while synthetic rubber, mainly synthetized from petroleum by-products are difficult to degrade safely and sustainably. The most prominent group of biological rubber degraders are Actinobacteria. Rubber degrading Actinobacteria contain rubber degrading genes or rubber oxygenase known as latex clearing protein (lcp). Rubber is a polymer consisting of isoprene, each containing one double bond. The degradation of rubber first takes place when lcp enzyme cleaves the isoprene double bond, breaking them down into the sole carbon and energy source to be utilized by the bacteria. Actinobacteria grow in diverse environments, and lcp gene containing strains have been detected from various sources including soil, water, human, animal, and plant samples. This review entails the occurrence, physiology, biochemistry, and molecular characteristics of Actinobacteria with respect to its rubber degrading ability, and discusses possible technological applications based on the activity of Actinobacteria for treating rubber waste in a more environmentally responsible manner.
Collapse
Affiliation(s)
- Ann Anni Basik
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia;
- Sarawak Biodiversity Centre, Km. 20 Jalan Borneo Heights, Semengoh, Kuching, Sarawak 93250, Malaysia; (J.-J.S.); (C.T.Y.)
| | - Jean-Jacques Sanglier
- Sarawak Biodiversity Centre, Km. 20 Jalan Borneo Heights, Semengoh, Kuching, Sarawak 93250, Malaysia; (J.-J.S.); (C.T.Y.)
| | - Chia Tiong Yeo
- Sarawak Biodiversity Centre, Km. 20 Jalan Borneo Heights, Semengoh, Kuching, Sarawak 93250, Malaysia; (J.-J.S.); (C.T.Y.)
| | - Kumar Sudesh
- Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia;
- Correspondence: ; Tel.: +60-4-6534367; Fax: +60-4-6565125
| |
Collapse
|
12
|
Ikenaga M, Kataoka M, Yin X, Murouchi A, Sakai M. Characterization and Distribution of Agar-degrading Steroidobacter agaridevorans sp. nov., Isolated from Rhizosphere Soils. Microbes Environ 2021; 36:ME20136. [PMID: 33716238 PMCID: PMC7966939 DOI: 10.1264/jsme2.me20136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/30/2021] [Indexed: 11/25/2022] Open
Abstract
The environment of plant rhizosphere soil differs from that of non-rhizosphere soil due to the secretion of mucilage polysaccharides from the roots. This environment is regarded as one of the preferential habitats for agar-degrading bacteria. In a previous study, agar-degrading Steroidobacter agariperforans KA5-BT was isolated from agar-enriched agricultural soil using diffusible metabolites from Rhizobiales bacteria. Based on the hypothesis that similar characteristic bacteria still exist in the rhizosphere, isolation was performed using rhizosphere soils. Agar-degrading SA29-BT and YU21-B were isolated from onion and soybean rhizosphere soils. The 16S rRNA genes of these strains showed ≥98.7% identities with the most closely related strain KA5-BT. However, differences were noted in polysaccharide utilization, and average nucleotide identities were <95-96% against strain KA5-BT, indicating that they are different species from S. agariperforans KA5-BT. To investigate the distribution of bacterial sequences affiliated with novel strains, a primer set was designed and a meta-analysis of the 16S rRNA gene was performed. Sequences were widely distributed in rhizospheres throughout Japan, but varied in plant- and region-dependent manners. Regarding phenotypic characterization, distinguishable features were observed in growth temperatures, pH, and dominant fatty acids. SA29-BT and YU21-B grew at 15-40°C and pH 6.0-12 and contained C16:0 as the dominant cell fatty acid, whereas KA5-BT showed no growth at 40°C and pH 12 and contained a moderate amount of C16:0. Based on these characteristics, SA29-BT (JCM 333368T=KCTC 72223T) and YU21-B (JCM 333367=KCTC 72222) represent novel species in the genus Steroidobacter, for which the name Steroidobacter agaridevorans sp. nov. is proposed.
Collapse
Affiliation(s)
- Makoto Ikenaga
- Research Field in Agriculture, Agriculture Fisheries and Veterinary Medicine Area, Kagoshima University, 1–21–24, Korimoto, Kagoshima, 890–0065, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1–21–24, Korimoto, Kagoshima, 890–0065, Japan
| | - Machi Kataoka
- Faculty of Agriculture, Kagoshima University, 1–21–24, Korimoto, Kagoshima, 890–0065, Japan
| | - Xuan Yin
- Faculty of Agriculture, Kagoshima University, 1–21–24, Korimoto, Kagoshima, 890–0065, Japan
| | - Aya Murouchi
- Graduate School of Agriculture, Kagoshima University, 1–21–24, Korimoto, Kagoshima, 890–0065, Japan
| | - Masao Sakai
- Research Field in Agriculture, Agriculture Fisheries and Veterinary Medicine Area, Kagoshima University, 1–21–24, Korimoto, Kagoshima, 890–0065, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1–21–24, Korimoto, Kagoshima, 890–0065, Japan
| |
Collapse
|
13
|
Sharma V, Mobeen F, Prakash T. In silico functional and evolutionary analyses of rubber oxygenases (RoxA and RoxB). 3 Biotech 2020; 10:376. [PMID: 32802718 PMCID: PMC7406594 DOI: 10.1007/s13205-020-02371-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 07/28/2020] [Indexed: 12/01/2022] Open
Abstract
The study presents an in silico identification of poly (cis-1,4-isoprene) cleaving enzymes, viz., RoxA and RoxB in bacteria, followed by their functional and evolutionary exploration using comparative genomics. The orthologs of these proteins were found to be restricted to Gram-negative beta-, gamma-, and delta-proteobacteria. Toward the evolutionary propagation, the RoxA and RoxB genes were predicted to have evolved via a common interclass route of horizontal gene transfer in the phylum Proteobacteria (delta → gamma → beta). Besides, recombination, mutation, and gene conversion were also detected in both the genes leading to their diversification. Further, the differential selective pressure is predicted to be operating on entire RoxA and RoxB genes such that the former is diversifying further, whereas the latter is evolving to reduce its genetic diversity. However, the structurally and functionally important sites/residues of these genes were found to be preventing changes implying their evolutionary conservation. Further, the phylogenetic analysis demonstrated a sharp split between the RoxA and RoxB orthologs and indicated the emergence of their variant as another type of putative rubber oxygenase (RoxC) in the class Gammaproteobacteria. A detailed in silico analysis of the signature motifs and residues of Rox sequences exhibited important differences as well as similarities among the RoxA, RoxB, and putative RoxC sequences. Although RoxC appears to be a hybrid of RoxA and RoxB, the signature motifs and residues of RoxC are more similar to RoxB.
Collapse
Affiliation(s)
- Vikas Sharma
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, 175005 Himachal Pradesh India
| | - Fauzul Mobeen
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, 175005 Himachal Pradesh India
| | - Tulika Prakash
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, 175005 Himachal Pradesh India
| |
Collapse
|
14
|
Gibu N, Arata T, Kuboki S, Linh DV, Fukuda M, Steinbüchel A, Kasai D. Characterization of the genes responsible for rubber degradation in Actinoplanes sp. strain OR16. Appl Microbiol Biotechnol 2020; 104:7367-7376. [PMID: 32681242 PMCID: PMC7413915 DOI: 10.1007/s00253-020-10700-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 10/25/2022]
Abstract
A Gram-positive rubber-degrading bacterium, Actinoplanes sp. strain OR16 (strain NBRC 114529), is able to grow on agar plates containing natural and synthetic rubber as the sole sources of carbon and energy. When this strain was grown on natural rubber latex overlay agar plates, translucent halos around the cells were observed. To identify the natural rubber degradation genes and other features of its metabolism, its complete genome sequence was determined. The genome of OR16 consists of 9,293,892 bp and comprises one circular chromosome (GenBank accession number AP019371.1) with a G + C content of 70.3%. The genome contains 8238 protein-coding and 18 rRNA genes. A homology search of the genome sequence revealed that three genes (lcp1, lcp2, and lcp3) are homologous to an extracellular latex-clearing protein (Lcp) of Streptomyces sp. K30. RT-PCR analysis revealed that lcp1 and lcp2 seem to constitute an operon. Purified lcp gene products have oxygen consumption activity toward natural rubber latex, suggesting that all these genes encode rubber-degrading enzymes in OR16. Quantitative reverse transcription-PCR analysis indicated that the transcription of these genes is induced during the growth of OR16 on natural rubber. The genes located adjacent to lcp1 and lcp3, which code for a TetR/AcrR-type transcriptional regulator, can bind to the promoter regions of these lcp genes. It is suggested that the putative regulators play a role in regulating the transcription of the lcp genes. These results strongly suggested that three lcp genes are required for the utilization of natural rubber in strain OR16. Key Points • The complete genome sequence of Actinoplanes sp. strain OR16 was determined. • Three lcp genes which are involved in the natural rubber degradation in OR16 were identified. • Transcription of these lcp genes is induced during utilization of rubber in OR16. • Two regulators, which bind to the promoter regions of lcp, were determined.
Collapse
Affiliation(s)
- Namiko Gibu
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Tomoka Arata
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Saya Kuboki
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Dao Viet Linh
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan.,Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Masao Fukuda
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan.,Department of Biological Chemistry, Chubu University, Kasugai, Aichi, 487-8501, Japan
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany.,Environmental Science Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Daisuke Kasai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan.
| |
Collapse
|
15
|
Kasai D. Poly( cis-1,4-isoprene)-cleavage enzymes from natural rubber-utilizing bacteria. Biosci Biotechnol Biochem 2020; 84:1089-1097. [PMID: 32114907 DOI: 10.1080/09168451.2020.1733927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Natural rubber and synthetic poly(cis-1,4-isoprene) are used industrially in the world. Microbial utilization for the isoprene rubbers has been reported in gram-positive and gram-negative bacteria. Poly(cis-1,4-isoprene)-cleavage enzymes that are secreted by rubber-utilizing bacteria cleave the poly(cis-1,4-isoprene) chain to generate low-molecular-weight oligo(cis-1,4-isoprene) derivatives containing aldehyde and ketone groups. The resulting products are converted to the compounds including carboxyl groups, which could then be further catabolized through β-oxidation pathway. One of poly(cis-1,4-isoprene)-cleavage enzymes is latex-clearing protein (Lcp) that was found in gram-positive rubber degraders including Streptomyces, Gordonia, Rhodococcus, and Nocardia species. The other one is rubber oxygenase A and B (RoxA/RoxB) which have been identified from gram-negative rubber degraders such as Steroidobacter cummioxidans and Rhizobacter gummiphilus. Recently, the transcriptional regulation mechanisms for Lcp-coding genes in gram-positive bacteria have been characterized. Here, the current knowledge of genes and enzymes for the isoprene rubber catabolism were summarized.
Collapse
Affiliation(s)
- Daisuke Kasai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| |
Collapse
|
16
|
High yield production of the latex clearing protein from Gordonia polyisoprenivorans VH2 in fed batch fermentations using a recombinant strain of Escherichia coli. J Biotechnol 2019; 309:92-99. [PMID: 31881242 DOI: 10.1016/j.jbiotec.2019.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/23/2019] [Accepted: 12/18/2019] [Indexed: 11/22/2022]
Abstract
The enzymatic degradation of rubber with the latex clearing protein (Lcp1VH2) from Gordonia polyisoprenivorans VH2, is a promising option as an environmentally friendly and economical solution to treat the enormous amount of rubber waste. Here we present a fed batch fermentation process on a 10 L scale, using E.coli C41 pET23a(+)::Hislcp1VH2 and a modified defined mineral salt medium, designed for high cell densities, for a proper synthesis of Lcp1VH2. Particularly, providing complex media components, as well as hemin, as precursor of the essential heme b cofactor, resulted in a 2.9-fold higher yield of active Lcp1VH2 with increased specific activity, due to a better occupancy of the enzyme with the cofactor. Based on this optimization, the fed batch fermentation with an initial glucose feed, followed by a lactose-glycerol feed, finally gained a cell dry weight of 60 g L-1 and a yield of 223 mg L-1 of soluble, active Lcp1VH2. Compared to a recently published fermentation process, which used a complex auto-induction medium, we significantly increased the biomass up to nearly 10-fold and the total Lcp1VH2 yield up to 3.7-fold. Thereby we reduced the costs for the medium by 75 %, taking the next step towards industrial production of rubber degrading enzymes.
Collapse
|
17
|
Schmitt G, Birke J, Jendrossek D. Towards the understanding of the enzymatic cleavage of polyisoprene by the dihaem-dioxygenase RoxA. AMB Express 2019; 9:166. [PMID: 31624946 PMCID: PMC6797691 DOI: 10.1186/s13568-019-0888-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 09/28/2019] [Indexed: 12/27/2022] Open
Abstract
Utilization of polyisoprene (natural rubber) as a carbon source by Steroidobacter cummioxidans 35Y (previously Xanthomonas sp. strain 35Y) depends on the formation and secretion of rubber oxygenase A (RoxA). RoxA is a dioxygenase that cleaves polyisoprene to 12-oxo-4,8-dimethyl-trideca-4,8-diene-1-al (ODTD), a suitable growth substrate for S. cummioxidans. RoxA harbours two non-equivalent, spectroscopically distinguishable haem centres. A dioxygen molecule is bound to the N-terminal haem of RoxA and identifies this haem as the active site. In this study, we provide insights into the nature of this unusually stable dioxygen-haem coordination of RoxA by a re-evaluation of previously published together with newly obtained biophysical data on the cleavage of polyisoprene by RoxA. In combination with the meanwhile available structure of RoxA we are now able to explain several uncommon and previously not fully understood features of RoxA, the prototype of rubber oxygenases in Gram-negative rubber-degrading bacteria.
Collapse
Affiliation(s)
- Georg Schmitt
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Jakob Birke
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Strasse 35, 88400, Biberach, Germany
| | - Dieter Jendrossek
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
18
|
Birke J, Jendrossek D. Solimonas fluminis has an active latex-clearing protein. Appl Microbiol Biotechnol 2019; 103:8229-8239. [PMID: 31485689 DOI: 10.1007/s00253-019-10085-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 11/26/2022]
Abstract
The utilization of rubber (poly (cis-1,4-isoprene)) by rubber-degrading bacteria depends on the synthesis of rubber oxygenases that cleave the polymer extracellularly to low molecular weight products that can be taken up and used as a carbon source. All so far described Gram-negative rubber-degrading species use two related ≈ 70 kDa rubber oxygenases (RoxA and RoxB) for the primary attack of rubber while all described Gram-positive rubber-degrading strains use RoxA/RoxB-unrelated latex-clearing proteins (Lcps, ≈ 40 kDa) as rubber oxygenase(s). In this study, we identified an lcp orthologue in a Gram-negative species (Solimonas fluminis). We cloned and heterologously expressed the lcp gene of S. fluminis HR-BB, purified the corresponding Lcp protein (LcpHR-BB) from recombinant Escherichia coli, and biochemically characterised the LcpHR-BB activity. LcpHR-BB cleaved polyisoprene to a mixture of C20 and higher oligoisoprenoids at a specific activity of 1.5 U/mg. Furthermore, spectroscopic investigation identified LcpHR-BB as a b-haem-containing protein with an oxidised, fivefold coordinated (open) haem centre. To the best of our knowledge, this is the first report that Gram-negative bacteria can have an active rubber oxygenase of the Lcp type.
Collapse
Affiliation(s)
- Jakob Birke
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Strasse 35, 88400, Biberach, Germany
| | - Dieter Jendrossek
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
19
|
First report of cis-1,4-polyisoprene degradation by Gordonia paraffinivorans. Braz J Microbiol 2019; 50:1051-1062. [PMID: 31440991 DOI: 10.1007/s42770-019-00143-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 08/14/2019] [Indexed: 12/25/2022] Open
Abstract
The use of rubber has increased over the years, leading to a series of environmental problems due to its indefinite decomposition time. Bioremediation employing microorganisms have drawn an increasing interest and originated several studies of microbial rubber degradation. Genome sequencing and in silico analysis demonstrated that G. paraffinivorans MTZ041 isolate encodes the lcp gene (Latex Clearing Protein), responsible for expressing an enzyme that performs the first step in the assimilation of synthetic and natural rubber. Growth curves and scanning electron microscopy (SEM) were conducted for MTZ041 in natural (NR) and synthetic rubber (IR) as sole carbon source during 11 weeks. After 80 days, robust growth was observed and SEM analysis revealed the presence of bacilli and the formation of biofilm-like structures on natural and synthetic rubber. This is the first report of a G. paraffinivorans rubber degrader. Given the complexity of this substrate and the relative small number of microorganisms with this ability, the description and characterization of MTZ041 is of great importance on bioremediation processes of rubber products.
Collapse
|
20
|
Coenen A, Oetermann S, Steinbüchel A. Identification of LcpRB A3(2), a novel regulator of lcp expression in Streptomyces coelicolor A3(2). Appl Microbiol Biotechnol 2019; 103:5715-5726. [PMID: 31119350 DOI: 10.1007/s00253-019-09896-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 10/26/2022]
Abstract
Streptomyces coelicolor A3(2) is a rubber-degrading actinomycete that harbors one gene coding for a latex clearing protein (lcpA3(2)). Within the genome of S. coelicolor A3(2), we identified a gene coding for a novel protein of the TetR family (LcpRBA3(2)) downstream of lcpA3(2) and demonstrated its binding upstream of lcpA3(2). This indicates a role of LcpRBA3(2) in the regulation of lcp expression. LcpRBA3(2) shows no homology to LcpRVH2, a putative regulator of lcp expression in Gordonia polyisoprenivorans VH2. Additionally, LcpRVH2 homologs did not occur in the genome of S. coelicolor A3(2). Reverse transcriptase (RT) experiments showed that the expression of lcpA3(2) and lcpRBA3(2) is induced with poly(cis-1,4-isoprene) as sole carbon source. For further experiments, we heterologously expressed lcpRBA3(2) in Escherichia coli, purified the protein, and subsequently verified a binding of LcpRBA3(2) upstream of lcpA3(2). The operator site was examined by a DNase I footprinting assay: it comprises 31 bp and exhibits an inverted repeat of nine bases for the putative binding region. Interestingly, two N-terminal DNA-binding HTH domains of the TetR-type (PF00440) were identified within the sequence of LcpRBA3(2). The native molecular weight of LcpRBA3(2) was determined as 44 kDa by size exclusion chromatography which correlates to the molecular weight of a monomer. Normally, proteins of the TetR family occur as dimers so that the monomeric state is a novelty. Furthermore, LcpRBA3(2) homologs were identified in silico in several Lcp-containing actinomycetes, suspecting a conserved regulation mechanism. Apparently, the expression of lcps is regulated either by an LcpRB or by an LcpR.
Collapse
Affiliation(s)
- Anna Coenen
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Sylvia Oetermann
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany. .,Department of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
21
|
Linh DV, Gibu N, Tabata M, Imai S, Hosoyama A, Yamazoe A, Kasai D, Fukuda M. Complete genome sequence of natural rubber-degrading, gram-negative bacterium, Rhizobacter gummiphilus strain NS21 T. ACTA ACUST UNITED AC 2019; 22:e00332. [PMID: 31011550 PMCID: PMC6460296 DOI: 10.1016/j.btre.2019.e00332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/14/2019] [Accepted: 03/29/2019] [Indexed: 11/29/2022]
Abstract
The genome sequence of rubber-degrading Rhizobacter gummiphilus NS21T was determined. An alternative rubber-degrading gene (latA2) was identified. β-oxidation pathway genes which is involved in the rubber degradation were predicted.
Gram-negative natural rubber-degrader, Rhizobacter gummiphilus NS21T, which was isolated from soil in the botanical garden in Japan, is a newly proposed species of genus of Rhizobacter. It has been reported that the latA1 gene is involved in the natural rubber degradation in this strain. To gain novel insights into natural rubber degradation pathway, the complete genome sequence of this strain was determined. The genome of strain NS21T consists of 6,398,096 bp of circular chromosome (GenBank accession number CP015118.1) with G + C content of 69.72%. The genome contains 5687 protein-coding and 68 RNA genes. Among the predicted genes, 4810 genes were categorized as functional COGs. Homology search revealed that existence of latA1 homologous gene (latA2) in this genome. Quantitative reverse-transcription-PCR and deletion analyses indicated that natural rubber degradation of this strain requires latA2 as well as latA1.
Collapse
Affiliation(s)
- Dao Viet Linh
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Namiko Gibu
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Michiro Tabata
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Shunsuke Imai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| | - Akira Hosoyama
- Biological Resource Center, National Institute of Technology and Evaluation, Kisarazu, Chiba, 292-0818, Japan
| | - Atsushi Yamazoe
- Biological Resource Center, National Institute of Technology and Evaluation, Kisarazu, Chiba, 292-0818, Japan
| | - Daisuke Kasai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
- Corresponding author.
| | - Masao Fukuda
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, 940-2188, Japan
| |
Collapse
|
22
|
Jendrossek D, Birke J. Rubber oxygenases. Appl Microbiol Biotechnol 2019; 103:125-142. [PMID: 30377752 PMCID: PMC6311187 DOI: 10.1007/s00253-018-9453-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 11/11/2022]
Abstract
Natural rubber (NR), poly(cis-1,4-isoprene), is used in an industrial scale for more than 100 years. Most of the NR-derived materials are released to the environment as waste or by abrasion of small particles from our tires. Furthermore, compounds with isoprene units in their molecular structures are part of many biomolecules such as terpenoids and carotenoids. Therefore, it is not surprising that NR-degrading bacteria are widespread in nature. NR has one carbon-carbon double bond per isoprene unit and this functional group is the primary target of NR-cleaving enzymes, so-called rubber oxygenases. Rubber oxygenases are secreted by rubber-degrading bacteria to initiate the break-down of the polymer and to use the generated cleavage products as a carbon source. Three main types of rubber oxygenases have been described so far. One is rubber oxygenase RoxA that was first isolated from Xanthomonas sp. 35Y but was later also identified in other Gram-negative rubber-degrading species. The second type of rubber oxygenase is the latex clearing protein (Lcp) that has been regularly found in Gram-positive rubber degraders. Recently, a third type of rubber oxygenase (RoxB) with distant relationship to RoxAs was identified in Gram-negative bacteria. All rubber oxygenases described so far are haem-containing enzymes and oxidatively cleave polyisoprene to low molecular weight oligoisoprenoids with terminal CHO and CO-CH3 functions between a variable number of intact isoprene units, depending on the type of rubber oxygenase. This contribution summarises the properties of RoxAs, RoxBs and Lcps.
Collapse
Affiliation(s)
- Dieter Jendrossek
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70550, Stuttgart, Germany.
| | - Jakob Birke
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70550, Stuttgart, Germany
| |
Collapse
|
23
|
Birke J, Röther W, Jendrossek D. Rhizobacter gummiphilus NS21 has two rubber oxygenases (RoxA and RoxB) acting synergistically in rubber utilisation. Appl Microbiol Biotechnol 2018; 102:10245-10257. [PMID: 30215127 DOI: 10.1007/s00253-018-9341-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 11/27/2022]
Abstract
Biodegradation of poly(cis-1,4-isoprene) (rubber) by Gram-negative bacteria has been investigated on the enzymatic level only in Steroidobacter cummioxidans 35Y (previously Xanthomonas sp. 35Y). This species produces two kinds of rubber oxygenases, RoxA35Y and RoxB35Y, one of which (RoxB35Y) cleaves polyisoprene to a mixture of C20- and higher oligoisoprenoids while the other (RoxA35Y) cleaves polyisoprene and RoxB35Y-derived oligoisoprenoids to the C15-oligoisoprenoid 12-oxo-4,8-dimethyltrideca-4,8-diene-1-al (ODTD). ODTD can be taken up by S. cummioxidans and used as a carbon source. Gram-positive rubber-degrading bacteria employ another type of rubber oxygenase, latex clearing protein (Lcp), for the initial oxidative attack of the polyisoprene molecule. In this contribution, we examined which type of rubber oxygenase is present in the only other well-documented Gram-negative rubber-degrading species, Rhizobacter gummiphilus NS21. No homologue for an Lcp protein but homologues for a putative RoxA and a RoxB protein (the latter identical to a previously postulated LatA-denominated rubber cleaving enzyme) were identified in the genome of strain NS21. The roxANS21 and roxBNS21 genes were separately expressed in a ∆roxA35Y/∆roxB35Y background of S. cummioxidans 35Y and restored the ability of the mutant to produce oligoisoprenoids. The RoxANS21 and RoxBNS21 proteins were each purified and biochemically characterised. The results-in combination with in silico analysis of databases-indicate that Gram-negative rubber-degrading bacteria generally utilise two synergistically acting rubber oxygenases (RoxA/RoxB) for efficient cleavage of polyisoprene to ODTD.
Collapse
Affiliation(s)
- Jakob Birke
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Wolf Röther
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
- Novartis Pharma Stein AG, Stein, Switzerland
| | - Dieter Jendrossek
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
24
|
Sharma V, Siedenburg G, Birke J, Mobeen F, Jendrossek D, Prakash T. Correction: Metabolic and taxonomic insights into the Gram-negative natural rubber degrading bacterium Steroidobacter cummioxidans sp. nov., strain 35Y. PLoS One 2018; 13:e0200399. [PMID: 29985947 PMCID: PMC6037385 DOI: 10.1371/journal.pone.0200399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|