1
|
Reta MA, Said HM, Maningi NE, Wubetu GY, Agonafir M, Fourie PB. Genetic diversity of Mycobacterium tuberculosis strains isolated from spiritual holy water site attendees in Northwest Ethiopia. A cross-sectional study. New Microbes New Infect 2024; 59:101235. [PMID: 38590765 PMCID: PMC11000200 DOI: 10.1016/j.nmni.2024.101235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024] Open
Abstract
Background The genetic diversity of Mycobacterium tuberculosis complex (MTBC) strains was characterized among isolates from individuals with pulmonary tuberculosis (PTB) symptoms attended holy water sites (HWSs) in the Amhara region, Ethiopia. Methods A cross-sectional study was done from June 2019 to March 2020 to describe the genetic diversity and drug-resistance profiles of MTBC isolates. Sputum specimens were collected and cultured in the Löwenstein-Jensen culture medium. Line Probe Assay, MTBDRplus VER 2.0, and MTBDRsl VER 2.0 were used to detect first-and second-line anti-TB drug-resistance patterns. A spoligotyping technique was utilized to characterize the genetic diversity. Statistical analysis was performed using STATA 15. Results Of 560 PTB-symptomatic participants, 122 (21.8%) were culture-positive cases. Spoligotyping of 116 isolates revealed diverse MTBC sublineages, with four major lineages: Euro-American (EA) (Lineage 4), East-African-Indian (EAI) (Lineage 3), Ethiopian (ETH) (Lineage 7), East Asian (EA) (Lineage 2). The majority (96.6%) of the isolates were EA (lineage 4) and EAI, with proportions of 54.3% and 42.2%, respectively. A total of 31 spoligotype patterns were identified, 26 of which were documented in the SITVIT2 database. Of these, there were 15 unique spoligotypes, while eleven were grouped with 2-17 isolates. SIT149/T3-ETH (n = 17), SIT26/CAS1-DELHI (n = 16), SIT25/CAS1-DELHI (n = 12), and SIT52/T2 (n = 11) spoligotypes were predominant. A rare spoligotype pattern: SIT41/Turkey and SIT1/Beijing, has also been identified in North Shewa. The overall clustering rate of sub-lineages with known SIT was 76.4%.Of the 122 culture-positive isolates tested, 16.4% were resistant to rifampicin (RIF) and/or isoniazid (INH). Multidrug-resistant TB (MDR-TB) was detected in 12.3% of isolates, five of which were fluoroquinolones (FLQs) resistant. SIT149/T3-ETH and SIT21/CAS1-KILI sublineages showed a higher proportion of drug resistance. Conclusions Diverse MTBC spoligotypes were identified, with the T and CAS families and EA (lineage 4) predominating. A high prevalence of drug-resistant TB, with SIT149/T3-ETH and CAS1-KILI sublineages comprising a greater share, was observed. A study with large sample size and a sequencing method with stronger discriminatory power is warranted to understand better the genetic diversity of circulating MTBC in this cohort of study, which would help to adopt targeted interventions.
Collapse
Affiliation(s)
- Melese Abate Reta
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Halima M. Said
- National Institute for Communicable Diseases (NICD), Centre for Tuberculosis, Johannesburg, South Africa
| | - Nontuthuko Excellent Maningi
- Department of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu Natal, Durban, South Africa
| | - Gizachew Yismaw Wubetu
- Amhara Public Health Institute (APHI), Bahir Dar, Ethiopia
- Centre for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mulualem Agonafir
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - P. Bernard Fourie
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Getahun M, Beyene D, Mollalign H, Diriba G, Tesfaye E, Yenew B, Taddess M, Sinshaw W, Ameni G. Population structure and spatial distribution of Mycobacterium tuberculosis in Ethiopia. Sci Rep 2024; 14:10455. [PMID: 38714745 PMCID: PMC11076284 DOI: 10.1038/s41598-024-59435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/10/2024] [Indexed: 05/10/2024] Open
Abstract
Ethiopia is one of the countries with a high tuberculosis (TB) burden, yet little is known about the spatial distribution of Mycobacterium tuberculosis (Mtb) lineages. This study identifies the spoligotyping of 1735 archived Mtb isolates from the National Drug Resistance Survey, collected between November 2011 and June 2013, to investigate Mtb population structure and spatial distribution. Spoligotype International Types (SITs) and lineages were retrieved from online databases. The distribution of lineages was evaluated using Fisher's exact test and logistic regression models. The Global Moran's Index and Getis-Ord Gi statistic were utilized to identify hotspot areas. Our results showed that spoligotypes could be interpreted and led to 4 lineages and 283 spoligotype patterns in 91% of the isolates, including 4% of those with multidrug/rifampicin resistance (MDR/RR) TB. The identified Mtb lineages were lineage 1 (1.8%), lineage 3 (25.9%), lineage 4 (70.6%) and lineage 7 (1.6%). The proportion of lineages 3 and 4 varied by regions, with lineage 3 being significantly greater than lineage 4 in reports from Gambella (AOR = 4.37, P < 0.001) and Tigray (AOR = 3.44, P = 0.001) and lineage 4 being significantly higher in Southern Nations Nationalities and Peoples Region (AOR = 1.97, P = 0.026) than lineage 3. Hotspots for lineage 1 were located in eastern Ethiopia, while a lineage 7 hotspot was identified in northern and western Ethiopia. The five prevalent spoligotypes, which were SIT149, SIT53, SIT25, SIT37 and SIT26 account for 42.8% of all isolates under investigation, while SIT149, SIT53 and SIT21 account for 52-57.8% of drug-resistant TB cases. TB and drug resistant TB are mainly caused by lineages 3 and 4, and significant proportions of the prevalent spoligotypes also influence drug-resistant TB and the total TB burden. Regional variations in lineages may result from both local and cross-border spread.
Collapse
Affiliation(s)
- Muluwork Getahun
- Ethiopian Public Health Institute, P.O. Box 1242, Addis Ababa, Ethiopia.
| | - Dereje Beyene
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Hilina Mollalign
- Ethiopian Public Health Institute, P.O. Box 1242, Addis Ababa, Ethiopia
| | - Getu Diriba
- Ethiopian Public Health Institute, P.O. Box 1242, Addis Ababa, Ethiopia
| | - Ephrem Tesfaye
- Ethiopian Public Health Institute, P.O. Box 1242, Addis Ababa, Ethiopia
| | - Bazezew Yenew
- Ethiopian Public Health Institute, P.O. Box 1242, Addis Ababa, Ethiopia
| | - Mengistu Taddess
- Ethiopian Public Health Institute, P.O. Box 1242, Addis Ababa, Ethiopia
| | - Waganeh Sinshaw
- Ethiopian Public Health Institute, P.O. Box 1242, Addis Ababa, Ethiopia
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
3
|
Shamebo T, Gumi B, Zewude A, Gashaw F, Mohammed T, Girma M, Zerihun B, Getu M, Mekasha S, Getahun M, Wondale B, Petros B, Ameni G. Molecular epidemiology and drug sensitivity of Mycobacterium tuberculosis in homeless individuals in the Addis Ababa city, Ethiopia. Sci Rep 2023; 13:21370. [PMID: 38049519 PMCID: PMC10695943 DOI: 10.1038/s41598-023-48407-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 11/26/2023] [Indexed: 12/06/2023] Open
Abstract
Although homeless segment of the society could be the hotspots for tuberculosis (TB) transmission, there is little data on TB in homeless individuals in Ethiopia. The objective of this study was to investigate the molecular epidemiology and drug sensitivity of Mycobacterium tuberculosis (M. tuberculosis) isolated from homeless individuals in Addis Ababa, Ethiopia. The study was conducted on 59 M. tuberculosis isolates, which were recovered by the clinical screening of 5600 homeless individuals and bacteriological examination of 641 individuals with symptoms of pulmonary tuberculosis (PTB). Region of difference-9 (RD9) based polymerase-chain reaction (PCR), Spoligotyping and 24-loci Mycobacterial Interspersed Repetitive Unit-Variable Number Tandem Repeat (MIRU-VNTR) typing were used for genotyping of the isolates. In addition, drug sensitivity test was performed on the isolates using BD Bactec Mycobacterial Growth Inhibition Tube (MGIT) 960. Fifty-eight of the 59 isolates were positive by spoligotyping and spoligotyping International type (SIT) 53, SIT 37, and SIT 149 were the dominant spoligotypes; each consisting of 19%, 15.5%, and10.3% of the isolates, respectively. The majority of the isolates (89.7%) were members of the Euro-American (EA) major lineage. MIRU-VNTR identified Ethiopia_3, Delhi/CAS, Ethiopia_2, TUR, X-type, Ethiopia_H37Rv-like strain, Haarlem and Latin-American Mediterranean (LAM) sub lineages. The proportion of clustering was 77.6% (45/58) in spoligotyping while it was 39.7% (23/58) in 24-loci MIRU-VNTR typing. Furthermore, the proportion of clustering was significantly lowered to 10.3% (6/58) when a combination of spoligotyping and 24-loci MIRU-VNTRplus was used. The recent transmission index (RTI) recorded by spoligotyping, 24-loci MIRU-VNTR typing, and a combination of the two genotyping methods were 58.6%, 27.6% and 5.2%, respectively. Young age and living in groups were significantly associated with strain clustering (P < 0.05). The drug sensitivity test (DST) result showed 8.9% (4/58) of the isolates were resistant to one or more first line ant-TB drugs; but multidrug resistant isolate was not detected. Clustering and RTI could suggest the transmission of TB in the homeless individuals, which could suggest a similar pattern of transmission between homeless individuals and the general population. Hence, the TB control program should consider homeless individuals during the implementation of TB control program.
Collapse
Affiliation(s)
- Tsegaye Shamebo
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, PO. Box 1176, Addis Ababa, Ethiopia
| | - Balako Gumi
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Po. Box 1176, Addis Ababa, Ethiopia
| | - Aboma Zewude
- Ethiopian National Tuberculosis Reference Laboratory, Ethipian Public Health Institute, PO. Box 1242 or 5654, Addis Ababa, Ethiopia
- Arba Minch University, Araba Minch, Ethiopia
| | - Fikru Gashaw
- Kotebe University of Education, Addis Ababa, Ethiopia
| | - Temesgen Mohammed
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
- Arba Minch University, Araba Minch, Ethiopia
| | - Muse Girma
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Po. Box 1176, Addis Ababa, Ethiopia
| | - Betselot Zerihun
- Ethiopian National Tuberculosis Reference Laboratory, Ethipian Public Health Institute, PO. Box 1242 or 5654, Addis Ababa, Ethiopia
| | - Melak Getu
- Ethiopian National Tuberculosis Reference Laboratory, Ethipian Public Health Institute, PO. Box 1242 or 5654, Addis Ababa, Ethiopia
| | - Sindew Mekasha
- Ethiopian National Tuberculosis Reference Laboratory, Ethipian Public Health Institute, PO. Box 1242 or 5654, Addis Ababa, Ethiopia
| | - Muluwork Getahun
- Ethiopian National Tuberculosis Reference Laboratory, Ethipian Public Health Institute, PO. Box 1242 or 5654, Addis Ababa, Ethiopia
| | | | - Beyene Petros
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, PO. Box 1176, Addis Ababa, Ethiopia
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Po. Box 1176, Addis Ababa, Ethiopia.
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
4
|
Agonafir M, Belay G, Maningi NE, Feleke A, Reta MA, Olifant SL, Hassen MS, Girma T, Fourie PB. Genetic diversity of Mycobacterium tuberculosis isolates from the central, eastern and southeastern Ethiopia. Heliyon 2023; 9:e22898. [PMID: 38125463 PMCID: PMC10731068 DOI: 10.1016/j.heliyon.2023.e22898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction The population structure of Mycobacterium tuberculosis complex (MTBC) in Ethiopia is diverse but dominated by Euro-American (Lineage 4) and East-African-Indian (Lineage 3) lineages. The objective of this study was to describe the genetic diversity of MTBC isolates in Central, Eastern and Southeastern Ethiopia. Methods A total of 223 MTBC culture isolates obtained from patients referred to Adama and Harar TB reference laboratories were spoligotyped. Demographic and clinical characteristics were collected. Results Six major lineages: Euro-American (Lineage 4), East-African-Indian (Lineage 3), East Asian (Lineage 2), Indo-Oceanic (Lineage 1), Mycobacterium africanum (Lineage 5 and Lineage 6) and Ethiopian (Lineage 7) were identified. The majority (94.6 %) of the isolates were Euro-American and East-African-Indian, with proportions of 75.3 % and 19.3 %, respectively. Overall, 77 different spoligotype patterns were identified of which 42 were registered in the SITVIT2 database. Of these, 27 spoligotypes were unique, while 15 were clustered with 2-49 isolates. SIT149/T3_ETH (n = 49), SIT53/T1 (n = 33), SIT21/CAS1_Kili (n = 24) and SIT41/Turkey (n = 11) were the dominant spoligotypes. A rare Beijing spoligotype pattern, SIT541, has also been identified in Eastern Ethiopia. The overall clustering rate of sub-lineages with known SIT was 71.3 %. Age group (25-34) was significantly associated with clustering. Conclusion We found a heterogeneous population structure of MTBC dominated by T and CAS families, and the Euro-American lineage. The identification of the Beijing strain, particularly the rare SIT541 spoligotype in Eastern Ethiopia, warrants a heightened surveillance plan, as little is known about this genotype. A large-scale investigation utilizing a tool with superior discriminatory power, such as whole genome sequencing, is necessary to gain a thorough understanding of the genetic diversity of MTBC in the nation, which would help direct the overall control efforts.
Collapse
Affiliation(s)
- Mulualem Agonafir
- Department of Microbial, Cellular and Molecular Biology, College of Natural Sciences, Addis Ababa University, Ethiopia
| | - Gurja Belay
- Department of Microbial, Cellular and Molecular Biology, College of Natural Sciences, Addis Ababa University, Ethiopia
| | - Nontuthuko E. Maningi
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Adey Feleke
- Department of Microbial, Cellular and Molecular Biology, College of Natural Sciences, Addis Ababa University, Ethiopia
| | - Melese Abate Reta
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Medical Laboratory Sciences, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Sharon L. Olifant
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Tewodros Girma
- Harar Health Research and Regional Laboratory, Harar, Ethiopia
| | - P. Bernard Fourie
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
5
|
Worku G, Gumi B, Mohammedbirhan B, Girma M, Sileshi H, Hailu M, Wondimu A, Ashagre W, Tschopp R, Carruth L, Ameni G. Molecular epidemiology of tuberculosis in the Somali region, eastern Ethiopia. Front Med (Lausanne) 2022; 9:960590. [PMID: 36313999 PMCID: PMC9614095 DOI: 10.3389/fmed.2022.960590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Background Tuberculosis (TB) is one of the leading causes of morbidity and mortality in low-income countries like Ethiopia. However, because of the limited laboratory infrastructure there is a shortage of comprehensive data on the genotypes of clinical isolates of Mycobacterium tuberculosis (M. tuberculosis) complex (MTBC) in peripheral regions of Ethiopia. The objective of this study was to characterize MTBC isolates in the Somali region of eastern Ethiopia. Methods A cross-sectional study was conducted in three health institutions between October 2018 and December 2019 in the capital of Somali region. A total of 323 MTBC isolates (249 from pulmonary TB and 74 from extrapulmonary TB) were analyzed using regions of difference 9 (RD 9)-based polymerase chain reaction (PCR) and spoligotyping. Results Of the 323 MTBC isolates, 99.7% (95% CI: 99.1–100%) were M. tuberculosis while the remaining one isolate was M. bovis based on RD 9-based PCR. Spoligotyping identified 71 spoligotype patterns; 61 shared types and 10 orphans. A majority of the isolates were grouped in shared types while the remaining grouped in orphans. The M. tuberculosis lineages identified in this study were lineage 1, 2, 3, 4, and 7 with the percentages of 7.4, 2.2, 28.2, 60.4, and 0.6%, respectively. Most (87.9%) of the isolates were classified in clustered spoligotypes while the remaining 12.1% isolates were singletons. The predominant clustered spoligotypes identified were SIT 149, SIT 21, SIT 26, SIT 53, and SIT 52, each consisting of 17.6, 13.3, 8.4, 7.4, and 5%, respectively. Lineage 3 and lineage 4, as well as the age group (15–24), were associated significantly with clustering. Conclusion The MTBC isolated from TB patients in Somali region were highly diverse, with considerable spoligotype clustering which suggests active TB transmission. In addition, the Beijing spoligotype was isolated in relatively higher frequency than the frequencies of its isolation from the other regions of Ethiopia warranting the attention of the TB Control Program of the Somali region.
Collapse
Affiliation(s)
- Getnet Worku
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Jigjiga University, Jigjiga, Ethiopia,Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Balako Gumi
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Binyam Mohammedbirhan
- Department of Pathology, College of Medicine and Health Sciences, Jigjiga University, Jigjiga, Ethiopia
| | - Musse Girma
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Henok Sileshi
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Jigjiga University, Jigjiga, Ethiopia
| | - Michael Hailu
- National Tuberculosis Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Amanuel Wondimu
- National Tuberculosis Reference Laboratory, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Wondimu Ashagre
- One-Health Unit, Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Rea Tschopp
- One-Health Unit, Armauer Hansen Research Institute, Addis Ababa, Ethiopia,Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Lauren Carruth
- School of International Studies, American University, Washington, DC, United States
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia,Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates,*Correspondence: Gobena Ameni
| |
Collapse
|
6
|
Molecular Epidemiology of Mycobacterium tuberculosis Complex Strains in Urban and Slum Settings of Nairobi, Kenya. Genes (Basel) 2022; 13:genes13030475. [PMID: 35328028 PMCID: PMC8953814 DOI: 10.3390/genes13030475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 12/28/2022] Open
Abstract
Kenya is a country with a high tuberculosis (TB) burden. However, knowledge on the genetic diversity of Mycobacterium tuberculosis complex (MTBC) strains and their transmission dynamics is sparsely available. Hence, we used whole-genome sequencing (WGS) to depict the genetic diversity, molecular markers of drug resistance, and possible transmission clusters among MTBC strains in urban and slum settings of Nairobi. We analyzed 385 clinical MTBC isolates collected between 2010 and 2015 in combination with patients’ demographics. We showed that the MTBC population mainly comprises strains of four lineages (L1–L4). The two dominating lineages were L4 with 55.8% (n = 215) and L3 with 25.7% (n = 99) of all strains, respectively. Genome-based cluster analysis showed that 30.4% (117/385) of the strains were clustered using a ≤5 single-nucleotide polymorphism (SNP) threshold as a surrogate marker for direct patient-to-patient MTBC transmission. Moreover, 5.2% (20/385) of the strains were multidrug-resistant (MDR), and 50.0% (n = 10) were part of a genome-based cluster (i.e., direct MDR MTBC transmission). Notably, 30.0% (6/20) of the MDR strains were resistant to all first-line drugs and are part of one molecular cluster. Moreover, TB patients in urban living setting had 3.8 times the odds of being infected with a drug-resistant strain as compared to patients from slums (p-value = 0.002). Our results show that L4 strains are the main causative agent of TB in Nairobi and MDR strain transmission is an emerging concern in urban settings. This emphasizes the need for more focused infection control measures and contact tracing of patients with MDR TB to break the transmission chains.
Collapse
|
7
|
Mudliar SKR, Kulsum U, Rufai SB, Umpo M, Nyori M, Singh S. Snapshot of Mycobacterium tuberculosis Phylogenetics from an Indian State of Arunachal Pradesh Bordering China. Genes (Basel) 2022. [DOI: https://doi.org/10.3390/genes13020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Uncontrolled transmission of Mycobacterium tuberculosis (M. tuberculosis, MTB) drug resistant strains is a challenge to control efforts of the global tuberculosis program. Due to increasing multi-drug resistant (MDR) cases in Arunachal Pradesh, a northeastern state of India, the tracking and tracing of these resistant MTB strains is crucial for infection control and spread of drug resistance. This study aims to correlate the phenotypic DST, genomic DST (gDST) and phylogenetic analysis of MDR-MTB strains in the region. Of the total 200 samples 22 (11%) patients suspected of MDR-TB and 160 (80%) previously treated MDR-TB cases, 125 (62.5%) were identified as MTB. MGIT-960 SIRE DST detected 71/125 (56.8%) isolates as MDR/RR-MTB of which 22 (30.9%) were detected resistant to second-line drugs. Whole-genome sequencing of 65 isolates and their gDST found Ser315Thr mutation in katG (35/45; 77.8%) and Ser531Leu mutation in rpoB (21/41; 51.2%) associated with drug resistance. SNP barcoding categorized the dataset with Lineage2 (41; 63.1%) being predominant followed by Lineage3 (10; 15.4%), Lineage1 (8; 12.3%) and Lineage4 (6; 9.2%) respectively. Phylogenetic assignment by cgMLST gave insights of two Beijing sub-lineages viz; 2.2.1 (SNP difference < 19) and 2.2.1.2 (SNP difference < 9) associated with recent ongoing transmission in Arunachal Pradesh. This study provides insights in identifying two virulent Beijing sub-lineages (sub-lineage 2.2.1 and 2.2.1.2) with ongoing transmission of TB drug resistance in Arunachal Pradesh.
Collapse
|
8
|
Mudliar SKR, Kulsum U, Rufai SB, Umpo M, Nyori M, Singh S. Snapshot of Mycobacterium tuberculosis Phylogenetics from an Indian State of Arunachal Pradesh Bordering China. Genes (Basel) 2022. [DOI: https:/doi.org/10.3390/genes13020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Uncontrolled transmission of Mycobacterium tuberculosis (M. tuberculosis, MTB) drug resistant strains is a challenge to control efforts of the global tuberculosis program. Due to increasing multi-drug resistant (MDR) cases in Arunachal Pradesh, a northeastern state of India, the tracking and tracing of these resistant MTB strains is crucial for infection control and spread of drug resistance. This study aims to correlate the phenotypic DST, genomic DST (gDST) and phylogenetic analysis of MDR-MTB strains in the region. Of the total 200 samples 22 (11%) patients suspected of MDR-TB and 160 (80%) previously treated MDR-TB cases, 125 (62.5%) were identified as MTB. MGIT-960 SIRE DST detected 71/125 (56.8%) isolates as MDR/RR-MTB of which 22 (30.9%) were detected resistant to second-line drugs. Whole-genome sequencing of 65 isolates and their gDST found Ser315Thr mutation in katG (35/45; 77.8%) and Ser531Leu mutation in rpoB (21/41; 51.2%) associated with drug resistance. SNP barcoding categorized the dataset with Lineage2 (41; 63.1%) being predominant followed by Lineage3 (10; 15.4%), Lineage1 (8; 12.3%) and Lineage4 (6; 9.2%) respectively. Phylogenetic assignment by cgMLST gave insights of two Beijing sub-lineages viz; 2.2.1 (SNP difference < 19) and 2.2.1.2 (SNP difference < 9) associated with recent ongoing transmission in Arunachal Pradesh. This study provides insights in identifying two virulent Beijing sub-lineages (sub-lineage 2.2.1 and 2.2.1.2) with ongoing transmission of TB drug resistance in Arunachal Pradesh.
Collapse
|
9
|
Mudliar SKR, Kulsum U, Rufai SB, Umpo M, Nyori M, Singh S. Snapshot of Mycobacterium tuberculosis Phylogenetics from an Indian State of Arunachal Pradesh Bordering China. Genes (Basel) 2022; 13:genes13020263. [PMID: 35205308 PMCID: PMC8872330 DOI: 10.3390/genes13020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/07/2023] Open
Abstract
Uncontrolled transmission of Mycobacterium tuberculosis (M. tuberculosis, MTB) drug resistant strains is a challenge to control efforts of the global tuberculosis program. Due to increasing multi-drug resistant (MDR) cases in Arunachal Pradesh, a northeastern state of India, the tracking and tracing of these resistant MTB strains is crucial for infection control and spread of drug resistance. This study aims to correlate the phenotypic DST, genomic DST (gDST) and phylogenetic analysis of MDR-MTB strains in the region. Of the total 200 samples 22 (11%) patients suspected of MDR-TB and 160 (80%) previously treated MDR-TB cases, 125 (62.5%) were identified as MTB. MGIT-960 SIRE DST detected 71/125 (56.8%) isolates as MDR/RR-MTB of which 22 (30.9%) were detected resistant to second-line drugs. Whole-genome sequencing of 65 isolates and their gDST found Ser315Thr mutation in katG (35/45; 77.8%) and Ser531Leu mutation in rpoB (21/41; 51.2%) associated with drug resistance. SNP barcoding categorized the dataset with Lineage2 (41; 63.1%) being predominant followed by Lineage3 (10; 15.4%), Lineage1 (8; 12.3%) and Lineage4 (6; 9.2%) respectively. Phylogenetic assignment by cgMLST gave insights of two Beijing sub-lineages viz; 2.2.1 (SNP difference < 19) and 2.2.1.2 (SNP difference < 9) associated with recent ongoing transmission in Arunachal Pradesh. This study provides insights in identifying two virulent Beijing sub-lineages (sub-lineage 2.2.1 and 2.2.1.2) with ongoing transmission of TB drug resistance in Arunachal Pradesh.
Collapse
Affiliation(s)
- Shiv kumar Rashmi Mudliar
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal 462020, Madhya Pradesh, India; (S.k.R.M.); (U.K.)
| | - Umay Kulsum
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal 462020, Madhya Pradesh, India; (S.k.R.M.); (U.K.)
| | - Syed Beenish Rufai
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada;
- McGill International TB Center, Montreal, QC H4A 3J1, Canada
| | - Mika Umpo
- Tomo Riba Institute of Health & Medical Sciences, Naharlagun 791110, Arunachal Pradesh, India;
| | - Moi Nyori
- State TB Cell, Naharlagun 791110, Arunachal Pradesh, India;
| | - Sarman Singh
- Department of Microbiology, All India Institute of Medical Sciences, Bhopal 462020, Madhya Pradesh, India; (S.k.R.M.); (U.K.)
- Correspondence: ; Tel.: +91-9810813435
| |
Collapse
|
10
|
Epidemiology of Mycobacterium tuberculosis lineages and strain clustering within urban and peri-urban settings in Ethiopia. PLoS One 2021; 16:e0253480. [PMID: 34252107 PMCID: PMC8274931 DOI: 10.1371/journal.pone.0253480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/06/2021] [Indexed: 11/25/2022] Open
Abstract
Background Previous work has shown differential predominance of certain Mycobacterium tuberculosis (M. tb) lineages and sub-lineages among different human populations in diverse geographic regions of Ethiopia. Nevertheless, how strain diversity is evolving under the ongoing rapid socio-economic and environmental changes is poorly understood. The present study investigated factors associated with M. tb lineage predominance and rate of strain clustering within urban and peri-urban settings in Ethiopia. Methods Pulmonary Tuberculosis (PTB) and Cervical tuberculous lymphadenitis (TBLN) patients who visited selected health facilities were recruited in the years of 2016 and 2017. A total of 258 M. tb isolates identified from 163 sputa and 95 fine-needle aspirates (FNA) were characterized by spoligotyping and compared with international M.tb spoligotyping patterns registered at the SITVIT2 databases. The molecular data were linked with clinical and demographic data of the patients for further statistical analysis. Results From a total of 258 M. tb isolates, 84 distinct spoligotype patterns that included 58 known Shared International Type (SIT) patterns and 26 new or orphan patterns were identified. The majority of strains belonged to two major M. tb lineages, L3 (35.7%) and L4 (61.6%). The observed high percentage of isolates with shared patterns (n = 200/258) suggested a substantial rate of overall clustering (77.5%). After adjusting for the effect of geographical variations, clustering rate was significantly lower among individuals co-infected with HIV and other concomitant chronic disease. Compared to L4, the adjusted odds ratio and 95% confidence interval (AOR; 95% CI) indicated that infections with L3 M. tb strains were more likely to be associated with TBLN [3.47 (1.45, 8.29)] and TB-HIV co-infection [2.84 (1.61, 5.55)]. Conclusion Despite the observed difference in strain diversity and geographical distribution of M. tb lineages, compared to earlier studies in Ethiopia, the overall rate of strain clustering suggests higher transmission and warrant more detailed investigations into the molecular epidemiology of TB and related factors.
Collapse
|
11
|
Gashaw F, Erko B, Mekonnen Y, Yenew B, Amare M, Gumi B, Ameni G. Phenotypic and genotypic drug sensitivity profiles of Mycobacterium tuberculosis infection and associated factors in northeastern Ethiopia. BMC Infect Dis 2021; 21:261. [PMID: 33711936 PMCID: PMC7953820 DOI: 10.1186/s12879-021-05961-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/02/2021] [Indexed: 11/21/2022] Open
Abstract
Background Tuberculosis is a devastating and a deadly disease despite the novel advances in its diagnostic tools and drug therapy. Drug resistant Mycobacterium contributes a great share to tuberculosis mortality. Status of drug resistance and patients’ awareness toward the disease is unknown in northeastern Ethiopia. Thus, the aim of this study was to determine the phenotypic and genotypic drug sensitivity patterns and associated factors in Oromia Special Zone and Dessie Town, northeastern Ethiopia. Methods In a cross-sectional study, 384 smear positive tuberculosis cases were recruited and Löwenstein-Jensen culture was done. The performance of GenoTypic MTBDRplus assay using the conventional BACTEC MGIT 960 as a “gold standard” was determined. Drug resistant strains were identified using spoligotyping. Pearson Chi-square test was used to determine the association of drug sensitivity test and tuberculosis type, lineages, dominant strains and clustering of the isolates. Results The 384 smear positive Mycobacterium samples were cultured on LJ media of which 29.2% (112/384) as culture positive. A fair agreement was found between MTBDRplus assay and the conventional MGIT test in detecting the Mycobacterium tuberculosis with sensitivity, specificity, positive and negative predictive value of 94.2, 30.2, 68.4 and 76.5%, respectively. Among LJ culture positive samples 95 of them gave valid result for MTBDRplus assay and 16.8% (16/95) as drug resistant. Similarly, MGIT subculture was made for the 112 isolates and 69 of them gave positive result with 15.9% (11/69) as drug resistant. Cohen’s kappa value showed almost a perfect agreement between the two testing methods in detecting rifampicin (sensitivity 100% and specificity 98.3%) and multi-drug resistance (sensitivity 83.3% and specificity 100%). Spoligotyping identified 76.5% (13/17) of the drug resistant isolates as Euro-American and family 33 as the predominant family. Significant association was observed between drug resistant isolates and the dominant strains (χ2: 34.861; p = 0.040) of the Mycobacterium. Conclusion Higher magnitude of drug resistance was found in the study area. The GenoTypic MDRTBplus assay had an acceptable drug sensitivity testing performance.
Collapse
Affiliation(s)
- Fikru Gashaw
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia. .,Department of Microbial, Cellular and Molecular Biology, College of Natural Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia. .,Department of Biology, College of Natural and Computational Sciences, Kotebe Metropolitan University, P.O. Box 31248, Addis Ababa, Ethiopia.
| | - Berhanu Erko
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Yalemtsehay Mekonnen
- Department of Microbial, Cellular and Molecular Biology, College of Natural Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Bazezew Yenew
- Ethiopian Public Health Institute, P.O. Box 1242, Addis Ababa, Ethiopia
| | - Misikir Amare
- Ethiopian Public Health Institute, P.O. Box 1242, Addis Ababa, Ethiopia
| | - Balako Gumi
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.,Department of Veterinary Medicine, College of Food and Agriculture, United Arab Emirates University, Al Ain, P.O. Box 15551, Abu Dhabi, United Arab Emirates
| |
Collapse
|
12
|
Guan Q, Zhan L, Liu ZH, Pan Q, Chen XL, Xiao Z, Qin C, Zhang XL. Identification of pyrvinium pamoate as an anti-tuberculosis agent in vitro and in vivo by SOSA approach amongst known drugs. Emerg Microbes Infect 2020; 9:302-312. [PMID: 32013776 PMCID: PMC7034053 DOI: 10.1080/22221751.2020.1720527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb) bacteria, is a leading infectious cause of mortality worldwide. The emergence of drug-resistant M. tb has made control of TB more difficult. The selective optimization of side activities (SOSA) approach uses old drugs for new pharmacological targets. In the present study by using SOSA approach, we have successfully identified pyrvinium pamoate (PP) which is capable of inhibiting the growth of mycobacteria, including M. tb H37Rv, Mycobacterium smegmatis, Bacille Calmette-Guérin (BCG), M. tb H37Ra, and drug-resistant M. tb clinical isolates in vitro from 1280 known drugs library. The MIC99 of PP, the minimum inhibitory concentration that inhibits more than 99% of M. tb H37Rv and the drug-resistant M. tb clinical isolates, ranges from 1.55 to 4.8 µg/mL. Importantly, PP could reduce the bacterial colony-forming units (CFUs) in lung, spleen and liver tissues, and effectively inhibit inflammatory response in M. tb H37Rv, multidrug-resistant (MDR) M. tb and extensively drug-resistant (XDR) M.tb-infected mice. Our results clearly show that the PP has the potential application for treatment of TB.
Collapse
Affiliation(s)
- Qing Guan
- Hubei Province Key Laboratory of Allergy and Immunology and Allergy Department of Zhongnan Hospital, Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, People’s Republic of China,Department of Laboratory Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, People’s Republic of China
| | - Lingjun Zhan
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious; Tuberculosis (TB) Center, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Zhi-Hao Liu
- Hubei Province Key Laboratory of Allergy and Immunology and Allergy Department of Zhongnan Hospital, Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, People’s Republic of China
| | - Qin Pan
- Hubei Province Key Laboratory of Allergy and Immunology and Allergy Department of Zhongnan Hospital, Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, People’s Republic of China
| | - Xu-Lin Chen
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Zhen Xiao
- Hubei Province Key Laboratory of Allergy and Immunology and Allergy Department of Zhongnan Hospital, Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, People’s Republic of China
| | - Chuan Qin
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS), Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious; Tuberculosis (TB) Center, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China,Chuan Qin Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS); Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious; Tuberculosis (TB) Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology and Allergy Department of Zhongnan Hospital, Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, People’s Republic of China,State Key Laboratory of Virology, Medical Research Institute Wuhan University School of Medicine, Wuhan, People’s Republic of China, Xiao-Lian Zhang Department of Immunology, Wuhan University School of Basic Medical Sciences, Donghu Road 185#, Wuhan430071, Hubei Province, P. R. China;
| |
Collapse
|
13
|
Mekonnen D, Derbie A, Chanie A, Shumet A, Biadglegne F, Kassahun Y, Bobosha K, Mihret A, Wassie L, Munshea A, Nibret E, Yimer SA, Tønjum T, Aseffa A. Molecular epidemiology of M. tuberculosis in Ethiopia: A systematic review and meta-analysis. Tuberculosis (Edinb) 2019; 118:101858. [PMID: 31430694 PMCID: PMC6817397 DOI: 10.1016/j.tube.2019.101858] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/12/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
The molecular epidemiology of Mycobacterium tuberculosis (M. tuberculosis, Mtb) is poorly documented in Ethiopia. The data that exists has not yet been collected in an overview metadata form. Thus, this review summarizes available literature on the genomic diversity, geospatial distribution and transmission patterns of Mtb lineages (L) and sublineages in Ethiopia. Spoligotyping and Mycobacterial Interspersed Repetitive Units-Variable Number Tandem Repeats (MIRU-VNTR) based articles were identified from MEDLINE via PubMed and Scopus. The last date of article search was done on 12th February 2019. Articles were selected following the PRISMA flow diagram. The proportion of (sub)lineages was summarized at national level and further disaggregated by region. Clustering and recent transmission index (RTI) were determined using metan command and random effect meta-analysis model. The meta-analysis was computed using Stata 14 (Stata Corp. College Station, TX, USA). Among 4371 clinical isolates, 99.5% were Mtb and 0.5% were M. bovis. Proportionally, L4, L3, L1 and L7 made up 62.3%, 21.7%, 7.9% and 3.4% of the total isolates, respectively. Among sublineages, L4.2. ETH/SIT149, L4.10/SIT53, L3. ETH1/SIT25 and L4.6/SIT37 were the leading clustered isolates accounting for 14.4%, 9.7%, 7.2% and 5.5%, respectively. Based on MIRU-VNTR, the rate of clustering was 41% and the secondary case rate from a single source case was estimated at 29%. Clustering and recent transmission index was higher in eastern and southwestern Ethiopia compared with the northwestern part of the country. High level of genetic diversity with a high rate of clustering was noted which collectively mirrored the phenomena of micro-epidemics and super-spreading. The largest set of clustered strains deserves special attention and further characterization using whole genome sequencing (WGS) to better understand the evolution, genomic diversity and transmission dynamics of Mtb.
Collapse
Affiliation(s)
- Daniel Mekonnen
- Department of Medical Microbiology, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia; Biotechnology Research Institute, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Awoke Derbie
- Department of Medical Microbiology, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia; The Centre for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, Addis Ababa, Ethiopia.
| | - Asmamaw Chanie
- Institute of Land Administration, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Abebe Shumet
- Felege Hiwot Referral Hospital, Bahir Dar, Ethiopia.
| | - Fantahun Biadglegne
- Department of Medical Microbiology, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Yonas Kassahun
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia.
| | - Kidist Bobosha
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia.
| | - Adane Mihret
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia; Department of Medical Microbiology, Immunology and Parasitology, College of Medicine and Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Liya Wassie
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia.
| | - Abaineh Munshea
- Biotechnology Research Institute, Bahir Dar University, Bahir Dar, Ethiopia; Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Endalkachew Nibret
- Biotechnology Research Institute, Bahir Dar University, Bahir Dar, Ethiopia; Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Solomon Abebe Yimer
- Department of Microbiology, University of Oslo, PO Box 4950, Nydalen, NO-0424, Oslo, Norway; Coalition for Epidemic Preparedness Innovations, CEPI, P.O. Box 123, Torshov 0412, Oslo, Norway.
| | - Tone Tønjum
- Department of Microbiology, University of Oslo, PO Box 4950, Nydalen, NO-0424, Oslo, Norway.
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia.
| |
Collapse
|