1
|
Kitazaki K, Oda K, Akazawa A, Iwahori R. Molecular genetics of cytoplasmic male sterility and restorer-of-fertility for the fine tuning of pollen production in crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:156. [PMID: 37330934 DOI: 10.1007/s00122-023-04398-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/01/2023] [Indexed: 06/20/2023]
Abstract
Cytoplasmic male sterility (CMS) is an increasingly important issue within the context of hybrid seed production. Its genetic framework is simple: S-cytoplasm for male sterility induction and dominant allele of the restorer-of-fertility gene (Rf) for suppression of S. However, breeders sometimes encounter a phenotype of CMS plants too complex to be explained via this simple model. The molecular basis of CMS provides clue to the mechanisms that underlie the expression of CMS. Mitochondria have been associated with S, and several unique ORFs to S-mitochondria are thought to be responsible for the induction of male sterility in various crops. Their functions are still the subject of debate, but they have been hypothesized to emit elements that trigger sterility. Rf suppresses the action of S by various mechanisms. Some Rfs, including those that encode the pentatricopeptide repeat (PPR) protein and other proteins, are now considered members of unique gene families that are specific to certain lineages. Additionally, they are thought to be complex loci in which several genes in a haplotype simultaneously counteract an S-cytoplasm and differences in the suite of genes in a haplotype can lead to multiple allelism including strong and weak Rf at phenotypic level. The stability of CMS is influenced by factors such as the environment, cytoplasm, and genetic background; the interaction of these factors is also important. In contrast, unstable CMS becomes inducible CMS if its expression can be controlled. CMS becomes environmentally sensitive in a genotype-dependent manner, suggesting the feasibility of controlling the expression of CMS.
Collapse
Affiliation(s)
- Kazuyoshi Kitazaki
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Kotoko Oda
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akiho Akazawa
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryoma Iwahori
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
2
|
Matsuhira H, Kitazaki K, Matsui K, Kubota K, Kuroda Y, Kubo T. Selection of nuclear genotypes associated with the thermo-sensitivity of Owen-type cytoplasmic male sterility in sugar beet (Beta vulgaris L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1457-1466. [PMID: 35147716 DOI: 10.1007/s00122-022-04046-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Cytoplasmic male sterility in sugar beet becomes thermo-sensitive when combined with specific genotypes, potentially offering a means to environmentally control pollination by this trait. The stability of cytoplasmic male sterility expression in several genetic backgrounds was investigated in sugar beet (Beta vulgaris L.). Nine genetically heterogenous plants from open-pollinated varieties were crossed with a cytoplasmic male sterile line to obtain 266 F1 plants. Based on marker analysis using a multiallelic DNA marker linked to restorer-of-fertility 1 (Rf1), we divided the F1 plants into 15 genotypes. We evaluated the phenotypes of the F1 plants under two environmental conditions: greenhouse rooms with or without daytime heating during the flowering season. Three phenotypic groups appeared: those consistently expressing male sterility, those consistently having restored pollen fertility, and those expressing male sterility in a thermo-sensitive manner. All plants in the consistently male sterile group inherited a specific Rf1 marker type named p4. We tested the potential for thermo-sensitive male sterile plants to serve as seed parents for hybrid seed production, and three genotypes were selected. Open pollination by a pollen parental line with a dominant trait of red-pigmented hypocotyls and leaf veins resulted in seed setting on thermo-sensitive male sterile plants, indicating that their female organs were functional. More than 99.9% of the progeny expressed the red pigmentation trait; hence, highly pure hybrids were obtained. We determined the nucleotide sequences of Rf1 from the three genotypes: One had a novel allele and two had known alleles, of which one was reported to have been selected previously as a non-restoring allele at a single U.S. breeding station but not at other stations in the U.S., or in Europe or Japan, suggesting environmental sensitivity.
Collapse
Affiliation(s)
- Hiroaki Matsuhira
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Memuro, Hokkaido, Japan.
| | - Kazuyoshi Kitazaki
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Katsunori Matsui
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Keisi Kubota
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yosuke Kuroda
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Memuro, Hokkaido, Japan
| | - Tomohiko Kubo
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
3
|
Karakotov SD, Apasov IV, Nalbandyan AA, Vasilchenko EN, Fedulova TP. Modern issues of sugar beet (Beta vulgaris L.) hybrid breeding. Vavilovskii Zhurnal Genet Selektsii 2022; 25:394-400. [PMID: 35088010 PMCID: PMC8765770 DOI: 10.18699/vj21.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 11/19/2022] Open
Abstract
High efficiency of the cultivation of unfertilized sugar beet ovules and preparation of haploid regenerants
(microclones) of pollinators – maintainers of О-type sterility and MS forms of the RMS 120 hybrid components has
been shown. A technological method that accelerates the creation of new uniform starting material is proposed.
It speeds up the breeding process two to threefold. The identification of haploid regenerants with sterile cytoplasm
in initial populations is of great theoretical and practical importance for breeding, as it facilitates the production of
homozygous lines with cytoplasmic male sterility and high-performance hybrids on sterile basis. As shown by molecular analysis, a single-nucleotide polymorphism never reported hitherto is present in the mitochondrial genome
of the haploid plant regenerants. It allows identification of microclones as fertile and sterile forms. It has been found
that DNA markers of the sugar beet mitochondrial genome belonging to the TR minisatellite family (TR1 and TR3)
enable reliable enough identification of haploid microclonal plants as MS- or O-type forms. Fragments of 1000 bp in
length have been detected in monogenic forms in the analysis of 11 sugar beet plants cultured in vitro by PCR with the
OP-S4 random RAPD primer. Testing of the OP-S4 marker’s being in the same linkage group as the genes responsible
for expression of the economically valuable trait monogermity demonstrates its relative reliability. By the proposed
method, dihaploid lines (DH) of the male-sterile form and the О-type sterility maintainer of the RMS 120 sugar beet
hybrid have been obtained in in vitro culture. These lines are highly uniform in biomorphological traits, as proven
under field conditions.
Collapse
Affiliation(s)
- S D Karakotov
- Shchelkovo Agrokhim Company, Shchelkovo, Moscow region, Russia
| | - I V Apasov
- The A.L. Mazlumov All-Russian Research Institute of Sugar Beet and Sugar, vil. VNIISS, Ramonsky district, Voronezh region, Russia
| | - A A Nalbandyan
- The A.L. Mazlumov All-Russian Research Institute of Sugar Beet and Sugar, vil. VNIISS, Ramonsky district, Voronezh region, Russia
| | - E N Vasilchenko
- The A.L. Mazlumov All-Russian Research Institute of Sugar Beet and Sugar, vil. VNIISS, Ramonsky district, Voronezh region, Russia
| | - T P Fedulova
- The A.L. Mazlumov All-Russian Research Institute of Sugar Beet and Sugar, vil. VNIISS, Ramonsky district, Voronezh region, Russia
| |
Collapse
|
4
|
Arrieta M, Willems G, DePessemier J, Colas I, Burkholz A, Darracq A, Vanstraelen S, Pacolet P, Barré C, Kempeneers P, Waugh R, Barnes S, Ramsay L. The effect of heat stress on sugar beet recombination. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:81-93. [PMID: 32990769 PMCID: PMC7813734 DOI: 10.1007/s00122-020-03683-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/09/2020] [Indexed: 05/10/2023]
Abstract
Meiotic recombination plays a crucial role in plant breeding through the creation of new allelic combinations. Therefore, lack of recombination in some genomic regions constitutes a constraint for breeding programmes. In sugar beet, one of the major crops in Europe, recombination occurs mainly in the distal portions of the chromosomes, and so the development of simple approaches to change this pattern is of considerable interest for future breeding and genetics. In the present study, the effect of heat stress on recombination in sugar beet was studied by treating F1 plants at 28 °C/25 °C (day/night) and genotyping the progeny. F1 plants were reciprocally backcrossed allowing the study of male and female meiosis separately. Genotypic data indicated an overall increase in crossover frequency of approximately one extra crossover per meiosis, with an associated increase in pericentromeric recombination under heat treatment. Our data indicate that the changes were mainly induced by alterations in female meiosis only, showing that heterochiasmy in sugar beet is reduced under heat stress. Overall, despite the associated decrease in fertility, these data support the potential use of heat stress to foster recombination in sugar beet breeding programmes.
Collapse
Affiliation(s)
- Mikel Arrieta
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | | | | - Isabelle Colas
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | | - Aude Darracq
- SESVanderHave, Soldatenplein 15, 3300, Tienen, Belgium
| | | | | | - Camille Barré
- SESVanderHave, Soldatenplein 15, 3300, Tienen, Belgium
| | | | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Division of Plant Sciences, University of Dundee at The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Steve Barnes
- SESVanderHave, Soldatenplein 15, 3300, Tienen, Belgium
| | - Luke Ramsay
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| |
Collapse
|
5
|
Arakawa T, Kagami H, Katsuyama T, Kitazaki K, Kubo T. A Lineage-Specific Paralog of Oma1 Evolved into a Gene Family from Which a Suppressor of Male Sterility-Inducing Mitochondria Emerged in Plants. Genome Biol Evol 2020; 12:2314-2327. [PMID: 32853350 PMCID: PMC7846149 DOI: 10.1093/gbe/evaa186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 12/31/2022] Open
Abstract
Cytoplasmic male sterility (MS) in plants is caused by MS-inducing mitochondria, which have emerged frequently during plant evolution. Nuclear restorer-of-fertility (Rf)genes can suppress their cognate MS-inducing mitochondria. Whereas many Rfs encode a class of RNA-binding protein, the sugar beet (Caryophyllales) Rf encodes a protein resembling Oma1, which is involved in the quality control of mitochondria. In this study, we investigated the molecular evolution of Oma1 homologs in plants. We analyzed 37 plant genomes and concluded that a single copy is the ancestral state in Caryophyllales. Among the sugar beet Oma1 homologs, the orthologous copy is located in a syntenic region that is preserved in Arabidopsis thaliana. The sugar beet Rf is a complex locus consisting of a small Oma1 homolog family (RF-Oma1 family) unique to sugar beet. The gene arrangement in the vicinity of the locus is seen in some but not all Caryophyllalean plants and is absent from Ar. thaliana. This suggests a segmental duplication rather than a whole-genome duplication as the mechanism of RF-Oma1 evolution. Of thirty-seven positively selected codons in RF-Oma1, twenty-six of these sites are located in predicted transmembrane helices. Phylogenetic network analysis indicated that homologous recombination among the RF-Oma1 members played an important role to generate protein activity related to suppression. Together, our data illustrate how an evolutionarily young Rf has emerged from a lineage-specific paralog. Interestingly, several evolutionary features are shared with the RNA-binding protein type Rfs. Hence, the evolution of the sugar beet Rf is representative of Rf evolution in general.
Collapse
Affiliation(s)
- Takumi Arakawa
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan.,Gifu Prefectural Research Institute for Agricultural Technology in Hilly and Mountainous Areas, Nakatsugawa, Gifu, Japan
| | - Hiroyo Kagami
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Takaya Katsuyama
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Kazuyoshi Kitazaki
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Tomohiko Kubo
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan
| |
Collapse
|
6
|
Arakawa T, Matsunaga M, Matsui K, Itoh K, Kuroda Y, Matsuhira H, Kitazaki K, Kubo T. The molecular basis for allelic differences suggests Restorer-of-fertility 1 is a complex locus in sugar beet (Beta vulgaris L.). BMC PLANT BIOLOGY 2020; 20:503. [PMID: 33143645 PMCID: PMC7607634 DOI: 10.1186/s12870-020-02721-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/26/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Cytoplasmic male sterility (CMS) is a widely used trait for hybrid seed production in many crops. Sugar beet CMS is associated with a unique mitochondrial protein named preSATP6 that forms a 250-kDa complex. Restorer-of-fertility 1 (Rf1) is a nuclear gene that suppresses CMS and is, hence, one of the targets of sugar beet breeding. Rf1 has dominant, semi-dominant and recessive alleles, suggesting that it may be a multi-allelic locus; however, the molecular basis for differences in genetic action is obscure. Molecular cloning of Rf1 revealed a gene (orf20) whose protein products produced in transgenics can bind with preSATP6 to generate a novel 200-kDa complex. The complex is also detected in fertility-restored anthers concomitant with a decrease in the amount of the 250-kDa complex. Molecular diversity of the Rf1 locus involves organizational diversity of a gene cluster composed of orf20-like genes (RF-Oma1s). We examined the possibility that members of the clustered RF-Oma1 in this locus could be associated with fertility restoration. RESULTS Six yet uncharacterized RF-Oma1s from dominant and recessive alleles were examined to determine whether they could generate the 200-kDa complex. Analyses of transgenic calli revealed that three RF-Oma1s from a dominant allele could generate the 200-kDa complex, suggesting that clustered RF-Oma1s in the dominant allele can participate in fertility restoration. None of the three copies from two recessive alleles was 200-kDa generative. The absence of this ability was confirmed by analyzing mitochondrial complexes in anthers of plants having these recessive alleles. Together with our previous data, we designed a set of PCR primers specific to the 200-kDa generative RF-Oma1s. The amount of mRNA measured by this primer set inversely correlated with the amount of the 250-kDa complex in anthers and positively correlated with the strength of the Rf1 alleles. CONCLUSIONS Fertility restoration by sugar beet Rf1 can involve multiple RF-Oma1s clustered in the locus, implying that stacking 200-kDa generative copies in the locus strengthens the efficacy, whereas the absence of 200-kDa generative copies in the locus makes the allele recessive irrespective of the copy number. We propose that sugar beet Rf1 is a complex locus.
Collapse
Affiliation(s)
- Takumi Arakawa
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo, 060-8589, Japan
- Gifu Prefectural Research Institute for Agricultural Technology in Hilly and Mountainous Areas, Nakatsugawa, 508-0203, Japan
| | - Muneyuki Matsunaga
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Katsunori Matsui
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Kanna Itoh
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Yosuke Kuroda
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Shinsei Minami 9-4, Memuro, 082-0081, Japan
| | - Hiroaki Matsuhira
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Shinsei Minami 9-4, Memuro, 082-0081, Japan
| | - Kazuyoshi Kitazaki
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Tomohiko Kubo
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo, 060-8589, Japan.
| |
Collapse
|
7
|
What Does the Molecular Genetics of Different Types of Restorer-of-Fertility Genes Imply? PLANTS 2020; 9:plants9030361. [PMID: 32182978 PMCID: PMC7154926 DOI: 10.3390/plants9030361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022]
Abstract
Cytoplasmic male sterility (CMS) is a widely used trait for hybrid seed production. Although male sterility is caused by S cytoplasm (male-sterility inducing mitochondria), the action of S cytoplasm is suppressed by restorer-of-fertility (Rf), a nuclear gene. Hence, the genetics of Rf has attained particular interest among plant breeders. The genetic model posits Rf diversity in which an Rf specifically suppresses the cognate S cytoplasm. Molecular analysis of Rf loci in plants has identified various genes; however, pentatricopeptide repeat (PPR) protein (a specific type of RNA-binding protein) is so prominent as the Rf-gene product that Rfs have been categorized into two classes, PPR and non-PPR. In contrast, several shared features between PPR- and some non-PPR Rfs are apparent, suggesting the possibility of another grouping. Our present focus is to group Rfs by molecular genetic classes other than the presence of PPRs. We propose three categories that define partially overlapping groups of Rfs: association with post-transcriptional regulation of mitochondrial gene expression, resistance gene-like copy number variation at the locus, and lack of a direct link to S-orf (a mitochondrial ORF associated with CMS). These groups appear to reflect their own evolutionary background and their mechanism of conferring S cytoplasm specificity.
Collapse
|
8
|
Arakawa T, Sugaya H, Katsuyama T, Honma Y, Matsui K, Matsuhira H, Kuroda Y, Kitazaki K, Kubo T. How did a duplicated gene copy evolve into a restorer-of-fertility gene in a plant? The case of Oma1. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190853. [PMID: 31827833 PMCID: PMC6894571 DOI: 10.1098/rsos.190853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/08/2019] [Indexed: 05/24/2023]
Abstract
Restorer-of-fertility (Rf) is a suppressor of cytoplasmic male sterility (CMS), a mitochondrion-encoded trait that has been reported in many plant species. The occurrence of CMS is considered to be independent in each lineage; hence, the question of how Rf evolved was raised. Sugar beet Rf resembles Oma1, a gene for quality control of the mitochondrial inner membrane. Oma1 homologues comprise a small gene family in the sugar beet genome, unlike Arabidopsis and other eukaryotes. The sugar beet sequence that best matched Arabidopsis atOma1 was named bvOma1; sugar beet Rf (RF1-Oma1) was another member. During anther development, atOma1 mRNA was detected from the tetrad to the microspore stages, whereas bvOma1 mRNA was detected at the microspore stage and RF1-Oma1 mRNA was detected during the meiosis and tetrad stages. A transgenic study revealed that, whereas RF1-Oma1 can bind to a CMS-specific protein and alter the higher-order structure of the CMS-specific protein complex, neither bvOma1 nor atOma1 show such activity. We favour the hypothesis that an ancestral Oma1 gene duplicated to form a small gene family, and that one of the copies evolved and acquired a novel expression pattern and protein function as an Rf, i.e. RF1-Oma1 evolved via neofunctionalization.
Collapse
Affiliation(s)
- Takumi Arakawa
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Hajime Sugaya
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Takaya Katsuyama
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Yujiro Honma
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
- Department of Biotechnology and Environmental Chemistry, Kitami Institute of Technology, Kitami, Hokkaido 090-8507, Japan
| | - Katsunori Matsui
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Hiroaki Matsuhira
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Memuro, Hokkaido 082-0081, Japan
| | - Yosuke Kuroda
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Memuro, Hokkaido 082-0081, Japan
| | - Kazuyoshi Kitazaki
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| | - Tomohiko Kubo
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan
| |
Collapse
|
9
|
Arakawa T, Ue S, Sano C, Matsunaga M, Kagami H, Yoshida Y, Kuroda Y, Taguchi K, Kitazaki K, Kubo T. Identification and characterization of a semi-dominant restorer-of-fertility 1 allele in sugar beet (Beta vulgaris). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:227-240. [PMID: 30341492 DOI: 10.1007/s00122-018-3211-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/11/2018] [Indexed: 05/05/2023]
Abstract
The sugar beet Rf1 locus has a number of molecular variants. We found that one of the molecular variants is a weak allele of a previously identified allele. Male sterility (MS) caused by nuclear-mitochondrial interaction is called cytoplasmic male sterility (CMS) in which MS-inducing mitochondria are suppressed by a nuclear gene, restorer-of-fertility. Rf and rf are the suppressing and non-suppressing alleles, respectively. This dichotomic view, however, seems somewhat unsatisfactory to explain the recently discovered molecular diversity of Rf loci. In the present study, we first identified sugar beet line NK-305 as a new source of Rf1. Our crossing experiment revealed that NK-305 Rf1 is likely a semi-dominant allele that restores partial fertility when heterozygous but full fertility when homozygous, whereas Rf1 from another sugar beet line appeared to be a dominant allele. Proper degeneration of anther tapetum is a prerequisite for pollen development; thus, we compared tapetal degeneration in the NK-305 Rf1 heterozygote and the homozygote. Degeneration occurred in both genotypes but to a lesser extent in the heterozygote, suggesting an association between NK-305 Rf1 dose and incompleteness of tapetal degeneration leading to partial fertility. Our protein analyses revealed a quantitative correlation between NK-305 Rf1 dose and a reduction in the accumulation of a 250 kDa mitochondrial protein complex consisting of a CMS-specific mitochondrial protein encoded by MS-inducing mitochondria. The abundance of Rf1 transcripts correlated with NK-305 Rf1 dose. The molecular organization of NK-305 Rf1 suggested that this allele evolved through intergenic recombination. We propose that the sugar beet Rf1 locus has a series of multiple alleles that differ in their ability to restore fertility and are reflective of the complexity of Rf evolution.
Collapse
Affiliation(s)
- Takumi Arakawa
- Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Sachiyo Ue
- Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Chihiro Sano
- Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Muneyuki Matsunaga
- Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Hiroyo Kagami
- Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Yu Yoshida
- Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Yosuke Kuroda
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Shinsei Minami 9-4, Memuro, 082-0081, Japan
| | - Kazunori Taguchi
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Shinsei Minami 9-4, Memuro, 082-0081, Japan
| | - Kazuyoshi Kitazaki
- Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo, 060-8589, Japan
| | - Tomohiko Kubo
- Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo, 060-8589, Japan.
| |
Collapse
|