1
|
Noble JA. Fifty years of HLA-associated type 1 diabetes risk: history, current knowledge, and future directions. Front Immunol 2024; 15:1457213. [PMID: 39328411 PMCID: PMC11424550 DOI: 10.3389/fimmu.2024.1457213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024] Open
Abstract
More than 50 years have elapsed since the association of human leukocyte antigens (HLA) with type 1 diabetes (T1D) was first reported. Since then, methods for identification of HLA have progressed from cell based to DNA based, and the number of recognized HLA variants has grown from a few to tens of thousands. Current genotyping methodology allows for exact identification of all HLA-encoding genes in an individual's genome, with statistical analysis methods evolving to digest the enormous amount of data that can be produced at an astonishing rate. The HLA region of the genome has been repeatedly shown to be the most important genetic risk factor for T1D, and the original reported associations have been replicated, refined, and expanded. Even with the remarkable progress through 50 years and over 5,000 reports, a comprehensive understanding of all effects of HLA on T1D remains elusive. This report represents a summary of the field as it evolved and as it stands now, enumerating many past and present challenges, and suggests possible paradigm shifts for moving forward with future studies in hopes of finally understanding all the ways in which HLA influences the pathophysiology of T1D.
Collapse
Affiliation(s)
- Janelle A. Noble
- Children’s Hospital Oakland Research Institute,
Oakland, CA, United States
- University of California San Francisco, Oakland,
CA, United States
| |
Collapse
|
2
|
Dashti M, Nizam R, Jacob S, Al-Kandari H, Al Ozairi E, Thanaraj TA, Al-Mulla F. Association between alleles, haplotypes, and amino acid variations in HLA class II genes and type 1 diabetes in Kuwaiti children. Front Immunol 2023; 14:1238269. [PMID: 37638053 PMCID: PMC10457110 DOI: 10.3389/fimmu.2023.1238269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Type 1 diabetes (T1D) is a complex autoimmune disorder that is highly prevalent globally. The interactions between genetic and environmental factors may trigger T1D in susceptible individuals. HLA genes play a significant role in T1D pathogenesis, and specific haplotypes are associated with an increased risk of developing the disease. Identifying risk haplotypes can greatly improve the genetic scoring for early diagnosis of T1D in difficult to rank subgroups. This study employed next-generation sequencing to evaluate the association between HLA class II alleles, haplotypes, and amino acids and T1D, by recruiting 95 children with T1D and 150 controls in the Kuwaiti population. Significant associations were identified for alleles at the HLA-DRB1, HLA-DQA1, and HLA-DQB1 loci, including DRB1*03:01:01, DQA1*05:01:01, and DQB1*02:01:01, which conferred high risk, and DRB1*11:04:01, DQA1*05:05:01, and DQB1*03:01:01, which were protective. The DRB1*03:01:01~DQA1*05:01:01~DQB1*02:01:01 haplotype was most strongly associated with the risk of developing T1D, while DRB1*11:04-DQA1*05:05-DQB1*03:01 was the only haplotype that rendered protection against T1D. We also identified 66 amino acid positions across the HLA-DRB1, HLA-DQA1, and HLA-DQB1 genes that were significantly associated with T1D, including novel associations. These results validate and extend our knowledge on the associations between HLA genes and T1D in Kuwaiti children. The identified risk alleles, haplotypes, and amino acid variations may influence disease development through effects on HLA structure and function and may allow early intervention via population-based screening efforts.
Collapse
Affiliation(s)
- Mohammed Dashti
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheeba Nizam
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Sindhu Jacob
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Hessa Al-Kandari
- Department of Population Health, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Pediatrics, Farwaniya Hospital, Ministry of Health, Sabah Al Nasser, Kuwait
| | - Ebaa Al Ozairi
- Clinical Care Research and Trials, Dasman Diabetes Institute, Dasman, Kuwait
- Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | | | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
3
|
Al-Awadhi AM, Haider MZ, Sukumaran J, Mohammed AT, Hasan EAH, Bartella YA. Role of Protein Tyrosine Phosphatase (PTPN22) Gene [C1858T] Functional Variant in Genetic Susceptibility of Psoriatic Arthritis in Kuwaiti Arabs. Open Rheumatol J 2020. [DOI: 10.2174/1874312902014010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Psoriatic arthritis (PsA) is a chronic, systemic inflammatory arthritic disease characterized by joint inflammation that is associated with cutaneous psoriasis, and can lead to pain, swelling, or stiffness in one or more joints. It results from a complex interplay between genetic, immunologic and environmental factors. A functional variant [C1858T] in the protein tyrosine phosphatase (PTPN22) gene, which encoded Arg620Trp in the lymphoid protein tyrosine phosphatase (LYP) has been shown to be a negative regulator of T-cell activation.
Objective:
The objective of this study was to investigate an association between PTPN22 gene [C1858T] functional variant and PsA in Kuwaiti patients.
Methods:
We have investigated the association of PTPN22 gene functional variant in 102 Kuwaiti patients with psoriatic arthritis and compared it to that in 214 healthy controls. The genotypes for the PTPN22 gene [C1858T] variant were determined by using a PCR-RFLP method and confirmed by DNA sequence analysis.
Results:
The frequency of homozygous variant genotype (TT) was found to be significantly higher in PsA patients compared to that in the controls (p <0.0001). Collectively, the variant genotype was detected in homozygous and heterozygous combinations in 30% patients (p <0.0001) compared to 16% in the controls. The frequency of variant genotype was found to be highest in the early-onset PsA patients (age >25-34y). No correlation was detected between the variant genotype (TT) and gender in the Kuwaiti PsA patients.
Conclusion:
Our data show a significant association of PTPN22 gene functional variant [C1958T] with PsA in Kuwaiti patients and highlight its role in determining the genetic susceptibility along with other factors.
Collapse
|
4
|
Du W, Hu Z, Wang L, Li M, Zhao D, Li H, Wei J, Zhang R. ABCA1 Variants rs1800977 (C69T) and rs9282541 (R230C) Are Associated with Susceptibility to Type 2 Diabetes. Public Health Genomics 2020; 23:20-25. [PMID: 31982877 DOI: 10.1159/000505344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/22/2019] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Accumulated evidence suggests that ATP-binding cassette A1 transporter (ABCA1) contributes to secreting insulin in pancreatic β-cells and amyloid beta formation. This study aimed to investigate the association between three single nucleotide polymorphisms (SNPs) of ABCA1 and susceptibility to type 2 diabetes mellitus (T2DM) in a Han Chinese population. METHODS A total of 996 T2DM patients and 1,002 controls were included in the study. Three SNPs in the ABCA1 gene, i.e., rs2230806 (R219K), rs1800977 (C69T), and rs9282541 (R230C), were genotyped by SNaPshot. A genotype model, an allele model, a dominant model, and a recessive model were used to assess susceptibility to T2DM. RESULTS There were significant associations between rs1800977 and T2DM in different genetic models (TT vs. CC, OR = 0.591 [0.446-0.793], p < 0.001; T vs. C, OR = 0.835 [0.735-0.949], p = 0.006; recessive model, OR = 0.583 [0.449-0.756], p < 0.001). There were also significant associations between rs9282541 and T2DM in different genetic models (CT vs. CC, OR = 1.690 [0.807-1.005], p = 0.048; T vs. C, OR = 1.756 [0.694-1.060], p = 0.029; dominant model, OR = 1.735 [0.715-1.034], p = 0.037). CONCLUSION Our case-control study showed that the two SNPs rs1800977 and rs9282541 in the ABCA1 gene are significantly associated with susceptibility to T2DM in our Han Chinese population. Study of further mechanisms should be performed before application to clinical therapy.
Collapse
Affiliation(s)
- Weiping Du
- Department of Clinical Laboratory, Affiliated Hospital of Yan'an University, Yan'an, China
| | - Zhixi Hu
- Department of Clinical Laboratory, Affiliated Hospital of Yan'an University, Yan'an, China
| | - Li Wang
- Department of Clinical Laboratory, Affiliated Hospital of Yan'an University, Yan'an, China
| | - Miaomiao Li
- Department of Clinical Laboratory, Affiliated Hospital of Yan'an University, Yan'an, China
| | - Dong Zhao
- Department of Clinical Laboratory, Affiliated Hospital of Yan'an University, Yan'an, China
| | - Hui Li
- Department of Clinical Laboratory, Affiliated Hospital of Yan'an University, Yan'an, China
| | - Junsheng Wei
- Department of Clinical Laboratory, Affiliated Hospital of Yan'an University, Yan'an, China
| | - Rui Zhang
- Department of Clinical Laboratory, Affiliated Hospital of Yan'an University, Yan'an, China,
| |
Collapse
|
5
|
Human Leukocyte Antigen (HLA) and Islet Autoantibodies Are Tools to Characterize Type 1 Diabetes in Arab Countries: Emphasis on Kuwait. DISEASE MARKERS 2019; 2019:9786078. [PMID: 31827651 PMCID: PMC6886320 DOI: 10.1155/2019/9786078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/15/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022]
Abstract
The incidence rate of type 1 diabetes in Kuwait had been increasing exponentially and has doubled in children ≤ 14 years old within almost two decades. Therefore, there is a dire need for a careful systematic familial cohort study. Several immunogenetic factors affect the pathogenesis of the disease. The human leukocyte antigen (HLA) accounts for the major genetic susceptibility to the disease. The triggering agents initiate disease onset by type 1 destruction of pancreatic β-cells. Both HLA and anti-islet antibodies can be used to characterize, predict susceptibility to the disease, innovate, or delay the β-cell destruction. Evidence from prospective longitudinal studies suggested that the underlying disease process represents a continuum that begins before the symptoms are clinically evident. Autoimmunity of the functional pancreatic β-cells results in symptomatic type 1 diabetes and lifelong insulin dependence. The autoantibodies against glutamic acid decarboxylase (GADA), insulinoma antigen-2 (IA-2A), insulin (IAA), and zinc transporter-8 (ZnT-8A) comprise the most reliable biomarkers for type 1 diabetes in both children and adults. Although Kuwait is the second among the top 10 countries with a high incidence rate of type 1 diabetes, there have been no proper diagnostic and prediction tools as per the World Health Organization. The Kuwaiti Type 1 Diabetes Study (KADS) was initiated to understand the disease pathogenesis as well as the HLA and anti-islet autoantibody profile of type 1 diabetes in Kuwait. Understanding the disease sequela in a homogenous gene pool and highly consanguineous population of Kuwaitis could help solve the challenges and pathogenesis, as well as hasten the prevention, of type 1 diabetes.
Collapse
|
6
|
Rasoul MA, Haider MZ, Al-Mahdi M, Al-Kandari H, Dhaunsi GS. Relationship of four vitamin D receptor gene polymorphisms with type 1 diabetes mellitus susceptibility in Kuwaiti children. BMC Pediatr 2019; 19:71. [PMID: 30845908 PMCID: PMC6404350 DOI: 10.1186/s12887-019-1448-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/01/2019] [Indexed: 12/17/2022] Open
Abstract
Background The incidence of type 1 diabetes mellitus (T1DM) in Kuwait is amongst the highest in the world. Vitamin D is considered to be involved in immune modulation and its deficiency contribute to autoimmune destruction of insulin producing beta cells in T1DM patients. Vitamin D has been shown to exert its effects via a nuclear vitamin D receptor (VDR) and therefore, VDR gene may be considered a candidate for T1DM susceptibility. Methods The genotypes of four VDR gene polymorphisms were determined in 253 Kuwaiti Arab T1DM patients and 214 healthy controls by PCR-RFLP analysis. Serum concentrations of three autoantibodies i.e. ICA (Islet cell autoantibody), GADA (Glutamic acid decarboxylase) and INS (Insulin autoantibody) were determined by radio-immunoassays. Results Statistically significant differences were detected between the genotypes of two VDR gene polymorphisms (FokI, C > T, rs10735810 and TaqI, C > T, rs731236) between T1DM patients and controls (P < 0.0001). In both, the frequency of variant alleles was considerably high in T1DM than in the controls. In contrast, the VDR gene ApaI (G > T, rs7975232) and BsmI (A > G, rs1544410) polymorphisms did not show association with T1DM. The homozygous variant genotypes of FokI, ApaI and TaqI polymorphisms show significant differences between various age-of-onset subgroups while no such association was detected in the case of BsmI polymorphism. Significant differences were also noted between heterozygous genotypes of all four polymorphisms especially between 4-6y and > 6y age-of-onset subgroups of T1DM patients. Three autoantibodies, ICA (Islet cell), GADA (glutamate decarboxylase) and INS (insulin) were positively associated to, varying degrees, with T1DM in Kuwaiti Arabs harboring different VDR gene polymorphism genotypes. Conclusions Our results demonstrate a significant effect of two VDR gene polymorphisms (FokI and TaqI) and three autoantibodies on genetic susceptibility of T1DM in Kuwaiti Arabs along with other factors.
Collapse
Affiliation(s)
- Majedah A Rasoul
- Department of Pediatrics, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat-13110, Jabriya, Kuwait.,Department of Pediatrics, Adan Hospital, Al-Adan, Kuwait
| | - Mohammad Z Haider
- Department of Pediatrics, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat-13110, Jabriya, Kuwait.
| | - Maria Al-Mahdi
- Department of Pediatrics, Adan Hospital, Al-Adan, Kuwait
| | - Hessa Al-Kandari
- Department of Pediatrics, Farwania Hospital, Farwania, Kuwait.,Family Medicine and Pediatric Unit, Dasman Diabetes Institute, Dasman, Kuwait
| | - Gursev S Dhaunsi
- Department of Pediatrics, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat-13110, Jabriya, Kuwait.,Medical Laboratories, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| |
Collapse
|