1
|
Fisher ES, Chen Y, Sifuentes MM, Stubblefield JJ, Lozano D, Holstein DM, Ren J, Davenport M, DeRosa N, Chen TP, Nickel G, Liston TE, Lechleiter JD. Adenosine A1R/A3R agonist AST-004 reduces brain infarction in mouse and rat models of acute ischemic stroke. FRONTIERS IN STROKE 2022; 1:1010928. [PMID: 38348128 PMCID: PMC10861240 DOI: 10.3389/fstro.2022.1010928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Acute ischemic stroke (AIS) is the second leading cause of death globally. No Food and Drug Administration (FDA) approved therapies exist that target cerebroprotection following stroke. Our group recently reported significant cerebroprotection with the adenosine A1/A3 receptor agonist, AST-004, in a transient stroke model in non-human primates (NHP) and in a preclinical mouse model of traumatic brain injury (TBI). However, the specific receptor pathway activated was only inferred based on in vitro binding studies. The current study investigated the underlying mechanism of AST-004 cerebroprotection in two independent models of AIS: permanent photothrombotic stroke in mice and transient middle cerebral artery occlusion (MCAO) in rats. AST-004 treatments across a range of doses were cerebroprotective and efficacy could be blocked by A3R antagonism, indicating a mechanism of action that does not require A1R agonism. The high affinity A3R agonist MRS5698 was also cerebroprotective following stroke, but not the A3R agonist Cl-IB-MECA under our experimental conditions. AST-004 efficacy was blocked by the astrocyte specific mitochondrial toxin fluoroacetate, confirming an underlying mechanism of cerebroprotection that was dependent on astrocyte mitochondrial metabolism. An increase in A3R mRNA levels following stroke suggested an intrinsic cerebroprotective response that was mediated by A3R signaling. Together, these studies confirm that certain A3R agonists, such as AST-004, may be exciting new therapeutic avenues to develop for AIS.
Collapse
Affiliation(s)
- Elizabeth S. Fisher
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Yanan Chen
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Mikaela M. Sifuentes
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Jeremy J. Stubblefield
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Damian Lozano
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Deborah M. Holstein
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - JingMei Ren
- NeuroVasc Preclinical Services, Inc., Lexington, MA, United States
| | | | - Nicholas DeRosa
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Tsung-pei Chen
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | - Gerard Nickel
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| | | | - James D. Lechleiter
- Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, United States
| |
Collapse
|
2
|
Soliño M, Larrayoz IM, López EM, Rey-Funes M, Bareiro M, Loidl CF, Girardi E, Caltana L, Brusco A, Martínez A, López-Costa JJ. CB1 Cannabinoid Receptor is a Target for Neuroprotection in Light Induced Retinal Degeneration. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10734. [PMID: 38390616 PMCID: PMC10880786 DOI: 10.3389/adar.2022.10734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/23/2022] [Indexed: 02/24/2024]
Abstract
In the last few years, an increasing interest in the neuroprotective effect of cannabinoids has taken place. The aim of the present work was to study the effects of modulating cannabinoid receptor 1 (CB1) in the context of light induced retinal degeneration (LIRD), using an animal model that resembles many characteristics of human age-related macular degeneration (AMD) and other degenerative diseases of the outer retina. Sprague Dawley rats (n = 28) were intravitreally injected in the right eye with either a CB1 agonist (ACEA), or an antagonist (AM251). Contralateral eyes were injected with respective vehicles as controls. Then, rats were subjected to continuous illumination (12,000 lux) for 24 h. Retinas from 28 animals were processed by GFAP-immunohistochemistry (IHC), TUNEL technique, Western blotting (WB), or qRT-PCR. ACEA-treated retinas showed a significantly lower number of apoptotic nuclei in the outer nuclear layer (ONL), lower levels of activated Caspase-3 by WB, and lower levels of glial reactivity by both GFAP-IHC and WB. qRT-PCR revealed that ACEA significantly decreased the expression of Bcl-2 and CYP1A1. Conversely, AM251-treated retinas showed a higher number of apoptotic nuclei in the ONL, higher levels of activated Caspase-3 by WB, and higher levels of glial reactivity as determined by GFAP-IHC and WB. AM251 increased the expression of Bcl-2, Bad, Bax, Aryl hydrocarbon Receptor (AhR), GFAP, and TNFα. In summary, the stimulation of the CB1 receptor, previous to the start of the pathogenic process, improved the survival of photoreceptors exposed to LIRD. The modulation of CB1 activity may be used as a neuroprotective strategy in retinal degeneration and deserves further studies.
Collapse
Affiliation(s)
- Manuel Soliño
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Ignacio M Larrayoz
- Biomarkers and Molecular Signaling Group, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Ester María López
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Manuel Rey-Funes
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Mariana Bareiro
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Cesar Fabián Loidl
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Elena Girardi
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Laura Caltana
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Alicia Brusco
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Alfredo Martínez
- Angiogenesis Study Group, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Juan José López-Costa
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
3
|
Soliño M, Larrayoz IM, López EM, Rey-Funes M, Bareiro M, Loidl CF, Girardi E, Martínez A, López-Costa JJ. Adenosine A2A Receptor: A New Neuroprotective Target in Light-Induced Retinal Degeneration. Front Pharmacol 2022; 13:840134. [PMID: 35387355 PMCID: PMC8977837 DOI: 10.3389/fphar.2022.840134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/14/2022] [Indexed: 11/24/2022] Open
Abstract
Continuous illumination induces the degeneration of photoreceptors. This animal model of light-induced retinal degeneration resembles many characteristics of human degenerative diseases of the outer retina, such as age-related macular degeneration. This work aimed to evaluate the potential neuroprotective effect of the modulation of adenosine A2A receptor in the model of light-induced retinal degeneration. Sprague-Dawley rats were intravitreally injected in the right eye with either CGS 21680, an adenosine A2A receptor agonist, or SCH 58261, an adenosine A2A receptor antagonist. Contralateral eyes were injected with respective vehicles as control. Then, rats were subjected to continuous illumination (12,000 lux) for 24 h. Retinas were processed by glial fibrillary acidic protein (GFAP) immunohistochemistry, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) technique, Western blotting (WB), and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Another group of rats was subjected to functional studies by electroretinography. Animals treated with CGS21680 showed a significant increase of apoptotic nuclei in the outer nuclear layer and a significant increase of GFAP immunoreactive area of the retinas but did not alter WB nor electroretinography results. qRT-PCR showed that CGS 21680 significantly increased the expression of interleukin-1β. On the opposite, SCH 58261 significantly decreased apoptotic nuclei in the outer nuclear layer and GFAP immunoreactive area of the retinas. It also significantly decreased GFAP and activated caspase-3 levels as measured by WB and preserved retinal function, as treated eyes showed significantly greater amplitudes of a- and b-waves and oscillatory potentials. qRT-PCR revealed that SCH 58261 significantly decreased the expression of tumor necrosis factor-α. These results show that the blockade of the A2A receptor before the start of the pathogenic process is neuroprotective, as it prevents light-induced retinal damage. The use of A2A receptor antagonists deserves to be evaluated in retinal degenerative diseases.
Collapse
Affiliation(s)
- Manuel Soliño
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ignacio M Larrayoz
- Biomarkers and Molecular Signaling Group, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Ester María López
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Manuel Rey-Funes
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariana Bareiro
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Cesar Fabián Loidl
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Elena Girardi
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alfredo Martínez
- Angiogenesis Study Group, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Juan José López-Costa
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
4
|
Losenkova K, Takeda A, Ragauskas S, Cerrada-Gimenez M, Vähätupa M, Kaja S, Paul ML, Schmies CC, Rolshoven G, Müller CE, Sandholm J, Jalkanen S, Kalesnykas G, Yegutkin GG. CD73 controls ocular adenosine levels and protects retina from light-induced phototoxicity. Cell Mol Life Sci 2022; 79:152. [PMID: 35212809 PMCID: PMC8881442 DOI: 10.1007/s00018-022-04187-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 01/03/2023]
Abstract
ATP and adenosine have emerged as important signaling molecules involved in vascular remodeling, retinal functioning and neurovascular coupling in the mammalian eye. However, little is known about the regulatory mechanisms of purinergic signaling in the eye. Here, we used three-dimensional multiplexed imaging, in situ enzyme histochemistry, flow cytometric analysis, and single cell transcriptomics to characterize the whole pattern of purine metabolism in mouse and human eyes. This study identified ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1/CD39), NTPDase2, and ecto-5′-nucleotidase/CD73 as major ocular ecto-nucleotidases, which are selectively expressed in the photoreceptor layer (CD73), optic nerve head, retinal vasculature and microglia (CD39), as well as in neuronal processes and cornea (CD39, NTPDase2). Specifically, microglial cells can create a spatially arranged network in the retinal parenchyma by extending and retracting their branched CD39high/CD73low processes and forming local “purinergic junctions” with CD39low/CD73− neuronal cell bodies and CD39high/CD73− retinal blood vessels. The relevance of the CD73–adenosine pathway was confirmed by flash electroretinography showing that pharmacological inhibition of adenosine production by injection of highly selective CD73 inhibitor PSB-12489 in the vitreous cavity of dark-adapted mouse eyes rendered the animals hypersensitive to prolonged bright light, manifested as decreased a-wave and b-wave amplitudes. The impaired electrical responses of retinal cells in PSB-12489-treated mice were not accompanied by decrease in total thickness of the retina or death of photoreceptors and retinal ganglion cells. Our study thus defines ocular adenosine metabolism as a complex and spatially integrated network and further characterizes the critical role of CD73 in maintaining the functional activity of retinal cells.
Collapse
Affiliation(s)
- Karolina Losenkova
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Tykistökatu 6A, 20520, Turku, Finland
| | - Akira Takeda
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Tykistökatu 6A, 20520, Turku, Finland
| | | | | | | | - Simon Kaja
- Experimentica Ltd., Kuopio, Finland.,Department of Ophthalmology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Marius L Paul
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Tykistökatu 6A, 20520, Turku, Finland.,Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Constanze C Schmies
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Georg Rolshoven
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Christa E Müller
- Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Jouko Sandholm
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Sirpa Jalkanen
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Tykistökatu 6A, 20520, Turku, Finland
| | | | - Gennady G Yegutkin
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Tykistökatu 6A, 20520, Turku, Finland.
| |
Collapse
|
5
|
Agarwal P, Agarwal R. Tackling retinal ganglion cell apoptosis in glaucoma: role of adenosine receptors. Expert Opin Ther Targets 2021; 25:585-596. [PMID: 34402357 DOI: 10.1080/14728222.2021.1969362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The role of adenosine receptors as therapeutic targets for neuroprotection is now widely recognized. Their role, however, in protection against retinal ganglion cell (RGC) apoptosis in glaucoma needs further investigation. Hence, in this review, we look into the possibility of adenosine receptors as potential therapeutic targets by exploring their role in modulating various pathophysiological mechanisms underlying glaucomatous RGC loss. AREAS COVERED This review presents a summary of the adenosine receptor distribution in retina and the cellular functions mediated by them. The major pathophysiological mechanisms such as excitotoxicity, vascular dysregulation, loss of neurotrophic signaling, and inflammatory responses involved in glaucomatous RGC loss are discussed. The literature showing the role of adenosine receptors in modulating these pathophysiological mechanisms is discussed. The literature search was conducted using Pubmed search engine using key words such as 'RGC apoptosis,' 'adenosine,' adenosine receptors' 'retina' 'excitotoxicity,' 'neurotrophins,' 'ischemia', and 'cytokines' individually and in various combinations. EXPERT OPINION Use of adenosine receptor agonists and antagonists, for preservation of the RGCs in glaucomatous eyes independent of the level of intraocular pressure seems a very useful strategy. Future application of this strategy would require appropriate designing of drug formulation for tissue and disease-specific receptor targeting. Furthermore, the modulation of physiological functions and potential adverse effects need further investigations.
Collapse
Affiliation(s)
- Puneet Agarwal
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Renu Agarwal
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Ye SS, Tang Y, Song JT. ATP and Adenosine in the Retina and Retinal Diseases. Front Pharmacol 2021; 12:654445. [PMID: 34211393 PMCID: PMC8239296 DOI: 10.3389/fphar.2021.654445] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular ATP and its ultimate degradation product adenosine are potent extracellular signaling molecules that elicit a variety of pathophysiological pathways in retina through the activation of P2 and P1 purinoceptors, respectively. Excessive build-up of extracellular ATP accelerates pathologic responses in retinal diseases, whereas accumulation of adenosine protects retinal cells against degeneration or inflammation. This mini-review focuses on the roles of ATP and adenosine in three types of blinding diseases including age-related macular degeneration (AMD), glaucoma, and diabetic retinopathy (DR). Several agonists and antagonists of ATP receptors and adenosine receptors (ARs) have been developed for the potential treatment of glaucoma, DR and AMD: antagonists of P2X7 receptor (P2X7R) (BBG, MRS2540) prevent ATP-induced neuronal apoptosis in glaucoma, DR, and AMD; A1 receptor (A1R) agonists (INO-8875) lower intraocular pressure in glaucoma; A2A receptor (A2AR) agonists (CGS21680) or antagonists (SCH58261, ZM241385) reduce neuroinflammation in glaucoma, DR, and AMD; A3 receptor (A3R) agonists (2-Cl-lB-MECA, MRS3558) protect retinal ganglion cells (RGCs) from apoptosis in glaucoma.
Collapse
Affiliation(s)
- Shan-Shan Ye
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Tang
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Jian-Tao Song
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Harsing LG, Szénási G, Zelles T, Köles L. Purinergic-Glycinergic Interaction in Neurodegenerative and Neuroinflammatory Disorders of the Retina. Int J Mol Sci 2021; 22:ijms22126209. [PMID: 34201404 PMCID: PMC8228622 DOI: 10.3390/ijms22126209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/26/2022] Open
Abstract
Neurodegenerative–neuroinflammatory disorders of the retina seriously hamper human vision. In searching for key factors that contribute to the development of these pathologies, we considered potential interactions among purinergic neuromodulation, glycinergic neurotransmission, and microglia activity in the retina. Energy deprivation at cellular levels is mainly due to impaired blood circulation leading to increased release of ATP and adenosine as well as glutamate and glycine. Interactions between these modulators and neurotransmitters are manifold. First, P2Y purinoceptor agonists facilitate reuptake of glycine by glycine transporter 1, while its inhibitors reduce reverse-mode operation; these events may lower extracellular glycine levels. The consequential changes in extracellular glycine concentration can lead to parallel changes in the activity of NR1/NR2B type NMDA receptors of which glycine is a mandatory agonist, and thereby may reduce neurodegenerative events in the retina. Second, P2Y purinoceptor agonists and glycine transporter 1 inhibitors may indirectly inhibit microglia activity by decreasing neuronal or glial glycine release in energy-compromised retina. These inhibitions may have a role in microglia activation, which is present during development and progression of neurodegenerative disorders such as glaucomatous and diabetic retinopathies and age-related macular degeneration or loss of retinal neurons caused by thromboembolic events. We have hypothesized that glycine transporter 1 inhibitors and P2Y purinoceptor agonists may have therapeutic importance in neurodegenerative–neuroinflammatory disorders of the retina by decreasing NR1/NR2B NMDA receptor activity and production and release of a series of proinflammatory cytokines from microglial cells.
Collapse
Affiliation(s)
- Laszlo G. Harsing
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (T.Z.); (L.K.)
- Correspondence: ; Tel.: +36-1-210-4416
| | - Gábor Szénási
- Institute of Translational Medicine, Semmelweis University, H-1089 Budapest, Hungary;
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (T.Z.); (L.K.)
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary
| | - László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (T.Z.); (L.K.)
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary
| |
Collapse
|
8
|
Soliño M, Larrayoz IM, López EM, Vacotto M, Martignone N, Rey-Funes M, Martínez A, Girardi E, López-Costa JJ. The expression of adenosine receptors changes throughout light induced retinal degeneration in the rat. Neurosci Lett 2018; 687:259-267. [PMID: 30291879 DOI: 10.1016/j.neulet.2018.09.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 01/24/2023]
Abstract
The modulation of adenosine receptors, A1 (A1R) and A2A (A2AR), is neuroprotective in different models of retinal injury. In order to understand the processes underlying retinal degeneration, we studied the expression of adenosine receptors in the retinas of control and continuously illuminated (CI) rats by qRT-PCR, Western blot (WB) and immunohistochemistry (IHC). Significant increases of A1R, A2AR, and A2BR mRNAs at 1, 5, and 7 days of CI (P < 0.0001) were observed by qRT-PCR. Also, a significant increase of A3R mRNA was detected after 5 and 7 days of CI. WB studies showed a significant rise of A1R on day 1 of CI and on days 5 and 7 (P < 0.0001), while A2AR increase was seen from 2 days of CI on (P < 0.001). After 1 day of CI, A1R immunoreactivity (A1R-IR) increased in ganglion cell layer, inner nuclear layer, and in both the outer and inner plexiform layers. After 2 days of CI, the A1R-IR went back to control levels. After 5 days of CI, a second rise in A1R, which persisted until 7 days of CI, was measured (P < 0.0001). A significant rise of A2aR immunoreactivity was also observed at day 2 of CI at GCL and INL and subsided at days 5 and 7 (P < 0.0001). The observed up-regulation of A1R after 1 day of CI, corresponds with the peak of oxidative stress; while the rise of A2aR at day 2 of CI, coincides with the massive apoptosis of photoreceptors. We postulate that an early modulation of adenosine receptors could delay or prevent the degeneration of photoreceptors.
Collapse
Affiliation(s)
- Manuel Soliño
- Universidad de Buenos Aires, Facultad de Medicina, Dpto. de Biología Celular, Histología, Embriología y Genética, Ciudad Autónoma de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis¨ (IBCN), Ciudad Autónoma de Buenos Aires, Argentina
| | - Ignacio M Larrayoz
- Biomarkers and Molecular Signaling Group, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Ester M López
- Universidad de Buenos Aires, Facultad de Medicina, Dpto. de Biología Celular, Histología, Embriología y Genética, Ciudad Autónoma de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis¨ (IBCN), Ciudad Autónoma de Buenos Aires, Argentina
| | - Marina Vacotto
- Universidad de Buenos Aires, Facultad de Medicina, Dpto. de Biología Celular, Histología, Embriología y Genética, Ciudad Autónoma de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis¨ (IBCN), Ciudad Autónoma de Buenos Aires, Argentina
| | - Noelí Martignone
- Universidad de Buenos Aires, Facultad de Medicina, Dpto. de Biología Celular, Histología, Embriología y Genética, Ciudad Autónoma de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis¨ (IBCN), Ciudad Autónoma de Buenos Aires, Argentina
| | - Manuel Rey-Funes
- Universidad de Buenos Aires, Facultad de Medicina, Dpto. de Biología Celular, Histología, Embriología y Genética, Ciudad Autónoma de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis¨ (IBCN), Ciudad Autónoma de Buenos Aires, Argentina
| | - Alfredo Martínez
- Angiogenesis Study Group, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Elena Girardi
- Universidad de Buenos Aires, Facultad de Medicina, Dpto. de Biología Celular, Histología, Embriología y Genética, Ciudad Autónoma de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis¨ (IBCN), Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan J López-Costa
- Universidad de Buenos Aires, Facultad de Medicina, Dpto. de Biología Celular, Histología, Embriología y Genética, Ciudad Autónoma de Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis¨ (IBCN), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|