1
|
Zai X, Cordovez V, Zhu F, Zhao M, Diao X, Zhang F, Raaijmakers JM, Song C. C4 cereal and biofuel crop microbiomes. Trends Microbiol 2024:S0966-842X(24)00093-3. [PMID: 38772810 DOI: 10.1016/j.tim.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/23/2024]
Abstract
Microbiomes provide multiple life-support functions for plants, including nutrient acquisition and tolerance to abiotic and biotic stresses. Considering the importance of C4 cereal and biofuel crops for food security under climate change conditions, more attention has been given recently to C4 plant microbiome assembly and functions. Here, we review the current status of C4 cereal and biofuel crop microbiome research with a focus on beneficial microbial traits for crop growth and health. We highlight the importance of environmental factors and plant genetics in C4 crop microbiome assembly and pinpoint current knowledge gaps. Finally, we discuss the potential of foxtail millet as a C4 model species and outline future perspectives of C4 plant microbiome research.
Collapse
Affiliation(s)
- Xiaoyu Zai
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; National Academy of Agriculture Green Development, China Agricultural University, Beijing, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193 Beijing, China; National Observation and Research Station of Agriculture Green Development, 057250 Quzhou, Hebei, China
| | - Viviane Cordovez
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands.
| | - Feng Zhu
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 050021 Shijiazhuang, China
| | - Meicheng Zhao
- Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, 050021 Shijiazhuang, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Fusuo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; National Academy of Agriculture Green Development, China Agricultural University, Beijing, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193 Beijing, China; National Observation and Research Station of Agriculture Green Development, 057250 Quzhou, Hebei, China
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands; Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Chunxu Song
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China; National Academy of Agriculture Green Development, China Agricultural University, Beijing, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, 100193 Beijing, China; National Observation and Research Station of Agriculture Green Development, 057250 Quzhou, Hebei, China.
| |
Collapse
|
2
|
Weirich CE, Marques MR, de Castro AP, Assumpção Benitez B, Roque FDO, Marchetti CR, Rodrigues AD, de Lima DP, Dos Santos EDA. Impact of Iron Mining Activity on the Endophytic Fungal Community of Aspilia grazielae. J Fungi (Basel) 2023; 9:632. [PMID: 37367568 DOI: 10.3390/jof9060632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 06/28/2023] Open
Abstract
Aspilia grazielae (J. U. Santos) is an endemic plant species in Morro do Urucum in the Pantanal wetland (Brazil). A. grazielae is used for the restoration of areas impacted by iron mining activities. This study evaluates the diversity (composition, value and abundance) of endophytic fungal communities, considering parts of the plant and soil condition. The leaves and roots of A. grazielae were collected from native vegetation areas (NVA) and recovery areas (RCA) in Morro do Urucum. Illumina sequencing technology was used to investigate variation in endophytic fungal biodiversity. The operational taxonomic units detected in NVA ranged from 183 to 263 (leaf) and 115 to 285 (root), while RCA samples ranged from 200 to 282 (leaf) and 156 to 348 (root). Ascomycota phylum was the most common species among all plant samples. The most significant classes identified were Lecanoromycetes and Dothideomycetes that differed significantly (p ≤ 0.05) according to their plant hosts and soil stress. The relative abundance of Pestalotiopsis (Sordariomycetes class) and Stereocaulon (Lecanoromycetes class) genera was influenced by the iron mining activities according to the leaf samples analysed. However, the abundance and wealth of endophytic fungal communities in A. grazielae from RCA were evidence that could explain their high resilience to environmental disturbances and the source-sink dynamics of fungal propagules.
Collapse
Affiliation(s)
- Carlos Eduardo Weirich
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070-900, MS, Brazil
| | - Maria Rita Marques
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070-900, MS, Brazil
| | - Alinne Pereira de Castro
- Departamento de Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil
| | | | - Fabio de Oliveira Roque
- Programa de Pós-Graduação em Ecologia e Conservação, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
- Centre for Tropical Environmental and Sustainability Science (TESS), James Cook University, Cairns, QLD 4878, Australia
| | - Clarice Rossato Marchetti
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070-900, MS, Brazil
| | - Amanda Dal'Ongaro Rodrigues
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070-900, MS, Brazil
| | - Dênis Pires de Lima
- Laboratório de Pesquisa 4, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - Edson Dos Anjos Dos Santos
- Laboratório de Bioquímica Geral e de Microrganismos, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande 79070-900, MS, Brazil
| |
Collapse
|
3
|
Lu J, Wang J, Zhang J, Zhu Y, Qin L, Zhu B. Diversity of Culturable Endophytic Fungi in Crocus sativus and Their Correlation with Crocin Content. Curr Microbiol 2023; 80:73. [PMID: 36622432 DOI: 10.1007/s00284-023-03177-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/30/2022] [Indexed: 01/10/2023]
Abstract
The presence and diversity of endophytic fungi associated with host plants are important not just for host plant growth and defense, but also impact the production of medicinal secondary metabolites. However, the correlation between endophytic fungi and crocin production in Crocus sativus (CS) remains underexplored. Here, we explore the relationship between endophytic fungal diversity and crocin content among different CS tissues and field sites. Specifically, we isolated endophytic fungi from five different field sites (Shanghai, Jiande, Huzhou, Anhui, and Hebei) and five different tissues (corm, scape, leaf, petal, and stigma) and analyzed fungal community diversity, richness, and evenness. We identified a total of 32 endophytic fungal taxa, assigned to 7 orders within 4 classes (Eurotiomycetes, Agaricomycetes, Dothideomycetes, and Sordariomycetes). The most dominant order was Eurotiales, and the most dominant genera were Penicillium and Talaromyces. Species richness tended to be highest in belowgrown tissues, such as corm and scape. Additionally, several fungal taxa were found to be either site- or tissue-specific. Three genera in particular were correlated with crocin content: Penicillium, Sistotrema, and Bjerkandera. Given the fact that endophytic microorganisms can both promote the production of secondary metabolites in host plants and potentially produce secondary metabolites themselves, further study is required to understand the mechanistic relationship between these and other fungal genera and crocin production.
Collapse
Affiliation(s)
- Jiemiao Lu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiahao Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yichun Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lupin Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Bo Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
4
|
Akimbekov NS, Digel I, Tastambek KT, Marat AK, Turaliyeva MA, Kaiyrmanova GK. Biotechnology of Microorganisms from Coal Environments: From Environmental Remediation to Energy Production. BIOLOGY 2022; 11:biology11091306. [PMID: 36138784 PMCID: PMC9495453 DOI: 10.3390/biology11091306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022]
Abstract
Simple Summary Despite the wide perception that coal environments are extreme habitats, they harbor resident microbial communities. Coal-associated habitats, such as coal mine areas/drainages, spoil heaps, and coalbeds, are defined as complex ecosystems with indigenous microbial groups and native microecological networks. Resident microorganisms possess rich functional potentials and profoundly shape a range of biotechnological processes in the coal industry, from production to remediation. Abstract It was generally believed that coal sources are not favorable as live-in habitats for microorganisms due to their recalcitrant chemical nature and negligible decomposition. However, accumulating evidence has revealed the presence of diverse microbial groups in coal environments and their significant metabolic role in coal biogeochemical dynamics and ecosystem functioning. The high oxygen content, organic fractions, and lignin-like structures of lower-rank coals may provide effective means for microbial attack, still representing a greatly unexplored frontier in microbiology. Coal degradation/conversion technology by native bacterial and fungal species has great potential in agricultural development, chemical industry production, and environmental rehabilitation. Furthermore, native microalgal species can offer a sustainable energy source and an excellent bioremediation strategy applicable to coal spill/seam waters. Additionally, the measures of the fate of the microbial community would serve as an indicator of restoration progress on post-coal-mining sites. This review puts forward a comprehensive vision of coal biodegradation and bioprocessing by microorganisms native to coal environments for determining their biotechnological potential and possible applications.
Collapse
Affiliation(s)
- Nuraly S. Akimbekov
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
- Correspondence:
| | - Ilya Digel
- Institute for Bioengineering, FH Aachen University of Applied Sciences, 52428 Jülich, Germany
| | - Kuanysh T. Tastambek
- Department of Fundamental Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
- Department of Applied Biology, M. Kh. Dulaty Taraz Regional University, Taraz 080012, Kazakhstan
- Ecology Research Institute, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan 161200, Kazakhstan
| | - Adel K. Marat
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Moldir A. Turaliyeva
- Department of Biotechnology, M. Auezov South Kazakhstan University, Shymkent 160012, Kazakhstan
| | - Gulzhan K. Kaiyrmanova
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| |
Collapse
|
5
|
Hao Z, Wang Y, Ding N, Saha MC, Scheible WR, Craven K, Udvardi M, Nico PS, Firestone MK, Brodie EL. Spectroscopic analysis reveals that soil phosphorus availability and plant allocation strategies impact feedstock quality of nutrient-limited switchgrass. Commun Biol 2022; 5:227. [PMID: 35277578 PMCID: PMC8917137 DOI: 10.1038/s42003-022-03157-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 02/08/2022] [Indexed: 01/15/2023] Open
Abstract
The perennial native switchgrass adapts better than other plant species do to marginal soils with low plant-available nutrients, including those with low phosphorus (P) content. Switchgrass roots and their associated microorganisms can alter the pools of available P throughout the whole soil profile making predictions of P availability in situ challenging. Plant P homeostasis makes monitoring of P limitation via measurements of plant P content alone difficult to interpret. To address these challenges, we developed a machine-learning model trained with high accuracy using the leaf tissue chemical profile, rather than P content. By applying this learned model in field trials across two sites with contrasting extractable soil P, we observed that actual plant available P in soil was more similar than expected, suggesting that adaptations occurred to alleviate the apparent P constraint. These adaptations come at a metabolic cost to the plant that have consequences for feedstock chemical components and quality. We observed that other biochemical signatures of P limitation, such as decreased cellulose-to-lignin ratios, were apparent, indicating re-allocation of carbon resources may have contributed to increased P acquisition. Plant P allocation strategies also differed across sites, and these differences were correlated with the subsequent year's biomass yields.
Collapse
Affiliation(s)
- Zhao Hao
- Earth and Environment Sciences, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA.
| | - Yuan Wang
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Na Ding
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Malay C Saha
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | | | - Kelly Craven
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Michael Udvardi
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Peter S Nico
- Earth and Environment Sciences, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Mary K Firestone
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, 94720, USA
| | - Eoin L Brodie
- Earth and Environment Sciences, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA.
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
6
|
Shaaban M. New compounds from Sarcophyton glaucom-derived Penicillium sp. Z NATURFORSCH C 2021; 77:271-277. [PMID: 34905669 DOI: 10.1515/znc-2021-0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/20/2021] [Indexed: 11/15/2022]
Abstract
Further investigation of the residual bioactive compounds produced by the soft coral Sarcophyton glaucom-derived Penicillium sp. MMA afforded five new compounds assigned as 9-methoxy-penicyrone A (1), 9-methoxy-penicyrone B (2), 3-hydroxy-2,2,4-trimethyl-pentyl ester (3), 3-hydroxy-1-isopropyl-2,2-dimethyl-propyl ester (4), and 3-isobutyryloxy-2,2,4-trimethyl-pentyl linoleate (5). Additional six known compounds were isolated: penicyrones A-B (6, 7), 4-(2-hydroxy-3-butynoxy)benzoic acid (8), cyclopenol (9), aspermytin A (10), and aurantiomide A (11). Structures of the new compounds (1-5) were identified by 1D (1H & 13C) and 2 D (1H-1H COSY, HMBC and NOESY) NMR and HRESI-MS spectroscopic data. Biologically, the antimicrobial activities of the obtained compounds were studied as well.
Collapse
Affiliation(s)
- Mohamed Shaaban
- Chemistry of Natural Compounds Department, Division of Pharmaceutical Industries, National Research Centre, El-Behoos St. 33, Dokki, Cairo 12622, Egypt
- University of Göttingen, Institute of Organic and Biomolecular Chemistry, Tammannstrasse 2, D-37077, Göttingen, Germany
| |
Collapse
|
7
|
Shaaban M, Magdy El-Metwally M, Mekawey AAI, Abdelwahab AB, Soltan MM. Monascin and monascinol, azaphilonoid pigments from Mortierella polycephala AM1: in silico and in vitro targeting of the angiogenic VEGFR2 kinase. ACTA ACUST UNITED AC 2021; 77:11-19. [PMID: 34265877 DOI: 10.1515/znc-2021-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/15/2021] [Indexed: 11/15/2022]
Abstract
The fungus, Mortierella polycephala is one of the most productive sources of anticancer bioactive compounds namely those of pigment nature. During our investigation of the produced bioactive metabolites by the terrestrial M. polycephala AM1 isolated from Egyptian poultry feather waste, two main azaphilonoid pigments, monascin (1) and monascinol (2) were obtained as major products; their structures were identified by 1D (1H&13C) and 2D (1H-1H COSY, HMBC) NMR and HRESI-MS spectroscopic data. Biologically, cytotoxic activities of these compounds were broadly studied compared with the fungal extract. To predict the biological target for the presumed antitumor activity, an in silico study was run toward three proteins, topoisomerase IIα, topoisomerase IIβ, and VEGFR2 kinase. Monascinol (2) was expected to be moderately active against VEGFR2 kinase without any anticipated inhibition toward topo II isoforms. The in vitro study confirmed the docked investigation consistently and introduced monascinol (2) rather than its counterpart (1) as a potent inhibitor to the tested VEGFR2 kinase. Taxonomically, the fungus was identified using morphological and genetic assessments.
Collapse
Affiliation(s)
- Mohamed Shaaban
- Chemistry of Natural Compounds Department, Division of Pharmaceutical Industries, National Research Centre, El-Behoos St. 33, Dokki, Cairo, 12622, Egypt.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs, Lyngby, Denmark
| | | | - Amal A I Mekawey
- Fungal Identification Unit, The Regional Center of Mycology and Biotechnology, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed B Abdelwahab
- Plant Advanced Technologies, 19 Avenue de la Forêt de Haye, 54500, Vandoeuvre-lès-Nancy, France
| | - Maha M Soltan
- Biology Unit, Central Laboratory for Pharmaceutical and Drug Industries Research Division, Chemistry of Medicinal Plants Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
8
|
Wang Y, Dong W, Saha MC, Udvardi MK, Kang Y. Improved node culture methods for rapid vegetative propagation of switchgrass (Panicum virgatum L.). BMC PLANT BIOLOGY 2021; 21:128. [PMID: 33663376 PMCID: PMC7931530 DOI: 10.1186/s12870-021-02903-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/25/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Switchgrass (Panicum virgatum L.) is an important bioenergy and forage crop. The outcrossing nature of switchgrass makes it infeasible to maintain a genotype through sexual propagation. Current asexual propagation protocols in switchgrass have various limitations. An easy and highly-efficient vegetative propagation method is needed to propagate large natural collections of switchgrass genotypes for genome-wide association studies (GWAS). RESULTS Micropropagation by node culture was found to be a rapid method for vegetative propagation of switchgrass. Bacterial and fungal contamination during node culture is a major cause for cultural failure. Adding the biocide, Plant Preservative Mixture (PPM, 0.2%), and the fungicide, Benomyl (5 mg/l), in the incubation solution after surface sterilization and in the culture medium significantly decreased bacterial and fungal contamination. In addition, "shoot trimming" before subculture had a positive effect on shoot multiplication for most genotypes tested. Using the optimized node culture procedure, we successfully propagated 330 genotypes from a switchgrass GWAS panel in three separate experiments. Large variations in shoot induction efficiency and shoot growth were observed among genotypes. Separately, we developed an in planta node culture method by stimulating the growth of aerial axillary buds into shoots directly on the parent plants, through which rooted plants can be generated within 6 weeks. By circumventing the tissue culture step and avoiding application of exterior hormones, the in planta node culture method is labor- and cost-efficient, easy to master, and has a high success rate. Plants generated by the in planta node culture method are similar to seedlings and can be used directly for various experiments. CONCLUSIONS In this study, we optimized a switchgrass node culture protocol by minimizing bacterial and fungal contamination and increasing shoot multiplication. With this improved protocol, we successfully propagated three quarters of the genotypes in a diverse switchgrass GWAS panel. Furthermore, we established a novel and high-throughput in planta node culture method. Together, these methods provide better options for researchers to accelerate vegetative propagation of switchgrass.
Collapse
Affiliation(s)
- Yongqin Wang
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Weihong Dong
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Malay C Saha
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | | | - Yun Kang
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA.
| |
Collapse
|
9
|
Yang X, Jin H, Xu L, Cui H, Xin A, Liu H, Qin B. Diversity and Functions of Endophytic Fungi Associated with Roots and Leaves of Stipa purpurea in an Alpine Steppe at Qinghai-Tibet Plateau. J Microbiol Biotechnol 2020; 30:1027-1036. [PMID: 32325547 PMCID: PMC9728210 DOI: 10.4014/jmb.2002.02056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
Stipa purpurea is a unique and dominant herbaceous plant species in the alpine steppe and meadows on the Qinghai-Tibet Plateau (QTP). In this work, we analyzed the composition and diversity of the culturable endophytic fungi in S. purpurea according to morphological and molecular identification. Then, we investigated the bioactivities of these fungi against plant pathogenic fungi and 1- aminocyclopropane-1-carboxylate deaminase (ACCD) deaminase activities. A total of 323 fungal isolates were first isolated from S. purpurea, and 33 fungal taxa were identified by internal transcribed spacer primers and grouped into Ascomycota. The diversity of endophytic fungi in S. purpurea was significantly higher in roots as compared to leaves. In addition, more than 40% of the endophytic fungi carried the gene encoding for the ACCD gene. The antibiosis assay demonstrated that 29, 35, 28, 37 and 34 isolates (43.9, 53.1, 42.4, 56.1, and 51.5%) were antagonistic to five plant pathogenic fungi, respectively. Our study provided the first assessment of the diversity of culturedepending endophytic fungi of S. purpurea, demonstrated the potential application of ACCD activity and antifungal activities with potential benefits to the host plant, and contributed to high biomass production and adaptation of S. purpurea to an adverse environment.
Collapse
Affiliation(s)
- Xiaoyan Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China
| | - Hui Jin
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China,Corresponding authors H.J. Phone: +86-931-4968372 Fax: +86-931-8277088 E-mail: B.Q. E-mail: bqin@ licp.cas.cn
| | - Lihong Xu
- Qilihe District Agricultural Technology Extension Station of Lanzhou, Lanzhou 730000, P.R. China
| | - Haiyan Cui
- School of Forensic Medicine, Shanxi Medical University, Taiyuan 030001, P.R. China,China Institute for Radiation Protection, Taiyuan 030006, P.R. China
| | - Aiyi Xin
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China
| | - Haoyue Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China
| | - Bo Qin
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China,Corresponding authors H.J. Phone: +86-931-4968372 Fax: +86-931-8277088 E-mail: B.Q. E-mail: bqin@ licp.cas.cn
| |
Collapse
|
10
|
De Filippis A, Nocera FP, Tafuri S, Ciani F, Staropoli A, Comite E, Bottiglieri A, Gioia L, Lorito M, Woo SL, Vinale F, De Martino L. Antimicrobial activity of harzianic acid against Staphylococcus pseudintermedius. Nat Prod Res 2020; 35:5440-5445. [PMID: 32538678 DOI: 10.1080/14786419.2020.1779714] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The emerging concern about the increase of antibiotic resistance has encouraged research efforts to develop effective alternatives to counteract bacterial infections. Herein, we studied a new perspective to therapeutic treatment against Staphylococcus pseudintermedius, an opportunistic pathogen documented as the major cause of skin, ear, and post-operative bacterial infections in dogs and cats. Antimicrobial activity of secondary metabolites produced by selected microbial strains belonging to Trichoderma, Talaromyces, Clonostachys and Coniothyrium fungal genera has been tested against S. pseudintermedius. Several extracts, particularly those obtained from Trichoderma harzianum E45 and ET45, showed a significant antimicrobial activity towards S. pseudintermedius methicillin-resistant (MRSP) and methicillin-susceptible (MSSP) strains. Bioassay-guided fractionation of E45 and ET45 extracts allowed to isolate harzianic acid as the major compound responsible for biological activities (e.g. antimicrobial, antibiofilm formation and biofilm disaggregation).
Collapse
Affiliation(s)
- Anna De Filippis
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Francesca Paola Nocera
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Simona Tafuri
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Francesca Ciani
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Alessia Staropoli
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.,Institute for Sustainable Plant Protection, National Research Council, Portici, Italy
| | - Ernesto Comite
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Assunta Bottiglieri
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Laura Gioia
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Matteo Lorito
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.,Institute for Sustainable Plant Protection, National Research Council, Portici, Italy
| | - Sheridan Lois Woo
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.,Institute for Sustainable Plant Protection, National Research Council, Portici, Italy
| | - Francesco Vinale
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy.,Institute for Sustainable Plant Protection, National Research Council, Portici, Italy
| | - Luisa De Martino
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
11
|
Kaaniche F, Hamed A, Abdel-Razek AS, Wibberg D, Abdissa N, El Euch IZ, Allouche N, Mellouli L, Shaaban M, Sewald N. Bioactive secondary metabolites from new endophytic fungus Curvularia. sp isolated from Rauwolfia macrophylla. PLoS One 2019; 14:e0217627. [PMID: 31247016 PMCID: PMC6597039 DOI: 10.1371/journal.pone.0217627] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
Over the last decades, endophytic fungi represent a new source of pharmacologically active secondary metabolites based on the underlying assumption that they live symbiotically within their plant host. In the present study, a new endophytic fungus was isolated from Rauwolfia macrophylla, a medicinal plant from Cameroon. The fungus showed a highest homology to Curvularia sp. based on complete nucleotide sequence data generated from the internal transcribed spacer (ITS) of ribosomal DNA region. Large scale fermentation, working-up and separation of the strain extract using different chromatographic techniques afforded three bioactive compounds: 2'-deoxyribolactone (1), hexylitaconic acid (2) and ergosterol (3). The chemical structures of compounds 1–3 were confirmed by 1 and 2D NMR spectroscopy and mass spectrometry, and comparison with corresponding literature data. Biologically, the antimicrobial, antioxidant activities and the acetylcholinesterase inhibitory of the isolated compounds were studied.
Collapse
Affiliation(s)
- Fatma Kaaniche
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Bielefeld, Germany
- Laboratory of Organic Chemistry, Natural Substances Team, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
- Laboratory of Microorganisms and Biomolecules of the Centre of Biotechnology of Sfax-Tunisia, Sfax, Tunisia
| | - Abdelaaty Hamed
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Bielefeld, Germany
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City-Cairo, Egypt
| | - Ahmed S. Abdel-Razek
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Bielefeld, Germany
- Microbial Chemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Dokki-Giza, Egypt
| | - Daniel Wibberg
- Center of Biotechnology(CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Negera Abdissa
- Department of Chemistry, Jimma University, Jimma, Ethiopia
| | - Imene Zendah El Euch
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Bielefeld, Germany
| | - Noureddine Allouche
- Laboratory of Organic Chemistry, Natural Substances Team, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Lotfi Mellouli
- Laboratory of Microorganisms and Biomolecules of the Centre of Biotechnology of Sfax-Tunisia, Sfax, Tunisia
| | - Mohamed Shaaban
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Bielefeld, Germany
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki-Cairo, Egypt
| | - Nobert Sewald
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Bielefeld, Germany
- * E-mail:
| |
Collapse
|
12
|
Improved Draft Genome Sequence of Pseudomonas poae A2-S9, a Strain with Plant Growth-Promoting Activity. Microbiol Resour Announc 2019; 8:8/15/e00275-19. [PMID: 30975811 PMCID: PMC6460034 DOI: 10.1128/mra.00275-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here the improved draft genome sequence of Pseudomonas poae strain A2-S9, a bacterium that was originally isolated from switchgrass plants and exhibited the capacity for plant growth promotion. Its genome has a size of 6.68 Mbp and a GC content of 61.3%. We report here the improved draft genome sequence of Pseudomonas poae strain A2-S9, a bacterium that was originally isolated from switchgrass plants and exhibited the capacity for plant growth promotion. Its genome has a size of 6.68 Mbp and a GC content of 61.3%. The genome encodes 6,022 predicted protein-coding genes.
Collapse
|
13
|
Improved Draft Genome Sequence of Bacillus sp. Strain YF23, Which Has Plant Growth-Promoting Activity. Microbiol Resour Announc 2019; 8:8/15/e00099-19. [PMID: 30975803 PMCID: PMC6460026 DOI: 10.1128/mra.00099-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
We report here the improved draft genome sequence of Bacillus sp. strain YF23, a bacterium originally isolated from switchgrass (Panicum virgatum) plants and shown to exhibit plant growth-promoting activity. The genome comprised 5.82 Mbp, containing 5,933 genes, with 193 as RNA genes, and a GC content of 35.10%. We report here the improved draft genome sequence of Bacillus sp. strain YF23, a bacterium originally isolated from switchgrass (Panicum virgatum) plants and shown to exhibit plant growth-promoting activity. The genome comprised 5.82 Mbp, containing 5,933 genes, with 193 as RNA genes, and a GC content of 35.10%.
Collapse
|
14
|
Huschek D, Witzel K. Rapid dereplication of microbial isolates using matrix-assisted laser desorption ionization time-of-flight mass spectrometry: A mini-review. J Adv Res 2019; 19:99-104. [PMID: 31341675 PMCID: PMC6629721 DOI: 10.1016/j.jare.2019.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023] Open
Abstract
MALDI-TOF MS is applicable as high-resolution and high-throughput tool. The classification and characterization of cultivable microorganisms is targeted. Advantageous are its simple sample preparation and short measurement time. It accelerates the dereplication of isolates from large-scale screening campaigns. Applications for studying microbial diversity and future trends are discussed.
Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) has become one of the most popular methods for the rapid, cost-effective and accurate classification and characterization of cultivable microorganisms. Due to its simple sample preparation and short measurement time, MALDI-TOF MS is an excellent choice for the high-throughput study of microbial isolates from rhizospheres or plants grown under diverse environmental conditions. While clinical isolates have a higher identification rate than environmental isolates due to the focus of commercial mass spectral libraries on the former, no identification is necessary in the dereplication step of large environmental studies. The grouping of large sets of isolates according to their intact protein profiles can be performed without knowledge of their taxonomy. Thus, this method is easily applicable to environmental samples containing microorganisms from yet undescribed phylogenetic origins. The main strategies applied to achieve effective dereplication are, first, expanding existing mass spectral libraries and, second, using an additional statistical analysis step to group measured mass spectra and identify unique isolates. In this review, these aspects are addressed. It closes with a prospective view on how MALDI-TOF MS-based microbial characterisation can accelerate the exploitation of plant-associated microbiota.
Collapse
Affiliation(s)
- Doreen Huschek
- German Rheumatism Research Centre - A Leibniz Institute, Charitéplatz 1, 10117 Berlin, Germany
| | - Katja Witzel
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| |
Collapse
|
15
|
Distinct endophytes are used by diverse plants for adaptation to karst regions. Sci Rep 2019; 9:5246. [PMID: 30918319 PMCID: PMC6437200 DOI: 10.1038/s41598-019-41802-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/18/2019] [Indexed: 01/24/2023] Open
Abstract
The present study aimed at systematically investigating the endophytic communities of dominant plants in the karst ecosystem. Soil and plant materials were collected and after sequencing of the 16 s RNA, the diversity and abundance of the endophytic community structures in leaves were examined. Our results showed that abundant and diverse endogenous bacteria were associated with the leaves of common dominant plants living in the karst ecological environment. Notably, common traits and significant differences in the endophytic community structures were recorded among different plant species with different leaf grown in soils with different calcium contents. These observations implied that plants may adopt different strategies to adapt to the karst ecological environment. In addition, the endophytic bacteria associated with the leaves may be involved in different physiological strategies used by the plants to adapt to the karst ecological environment. These findings provide new avenues for developing microbial agents that could be suitable for the karst ecological environment and will provide sustainable solutions for improving the ability of plants to adapt to karst special adversities, and thus for karst geomorphological environmental protection and agricultural development.
Collapse
|
16
|
Leaf-Associated Shifts in Bacterial and Fungal Communities in Response to Chicken Rearing Under Moso Bamboo Forests in Subtropical China. FORESTS 2019. [DOI: 10.3390/f10030216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Integrated bamboo-chicken farming (BCF) systems are a traditional agroforestry pattern with large economic benefits in subtropical China. However, little is known regarding the effect of this integration on the bamboo leaf-associated microbiome, which can be very important for disease control and nutrient turnover. In the present study, we compared the leaf-associated bacterial and fungal communities of moso bamboo (Phyllostachys edulis) in a BCF system and an adjacent moso bamboo forest (MBF). The results showed that Cyanobacteria and Ascomycota were the predominant microbial phyla associated with bamboo leaves. Chicken farming under the bamboo forest significantly increased the bacterial and fungal alpha diversity (observed operational taxonomic units (OTUs) and Simpson’s index) associated with bamboo leaves. Principal components analysis (PCoA) further confirmed the shifts in the bacterial and fungal communities caused by chicken farming. Based on the observed relative abundances, the phyla Bacteroidetes, Actinobacteria, TM7, and Basidiomycota were significantly increased on BCF-associated leaves compared with MBF leaves, while Acidobacteria and Ascomycota were significantly decreased. An ecological function prediction analysis based on metabolic processes indicated that BCF could accelerate nutrient (C, N, and S) cycling but may increase the risk of fungal-associated diseases. Our findings suggest that shifts in leaf-associated bacterial and fungal communities can be important indicators for the scientific management of BCF systems.
Collapse
|
17
|
Culturable endophytic fungal communities associated with plants in organic and conventional farming systems and their effects on plant growth. Sci Rep 2019; 9:1669. [PMID: 30737459 PMCID: PMC6368545 DOI: 10.1038/s41598-018-38230-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 12/16/2018] [Indexed: 01/03/2023] Open
Abstract
As compared to organic farming system, conventional farming system relies on higher inputs of synthetic agrochemicals, which may reduce the abundance, diversity, and beneficial effects of plant endophytic fungal communities. This study compares the diversity and abundance of culturable endophytic fungal communities associated with four plant species –corn, tomato, pepper, and watermelon grown in separate organic and conventional fields. In all, 740 fungal isolates were identified, of which 550 were from the organic fields and 190 from the conventional ones. These fungal isolates were grouped into eight orders and 22 species, with the two most abundant species being Trichoderma sp. and Pichia guilliermondi. The fungal species diversity and abundance were both significantly higher in the organic than in the conventional fields. All the isolated endophytic fungi improved tomato plants’ shoot growth and biomass significantly, as compared with the water control. Six fungal isolates also exhibited activity that enhanced tomato fruit yields. These results suggest that these endophytic fungi might be a considerable boost to sustainable agricultural production, while also reducing the agricultural application of chemicals and thus benefiting the environment and human health.
Collapse
|