1
|
Application of poxvirus K3 ortholog as a positive selection marker for constructing recombinant vaccinia viruses with modified host range. MethodsX 2020; 7:100918. [PMID: 32509537 PMCID: PMC7264055 DOI: 10.1016/j.mex.2020.100918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/05/2020] [Indexed: 01/29/2023] Open
Abstract
Vaccinia virus is capable of replicating in a wide range of vertebrate animal cells. However, deletion of the two virus host range genes, E3L and K3L, would render replication of the virus abortive in all the cell types tested, except the cells with defective PKR and RNase L activity. By expressing different poxvirus K3 ortholog proteins in the E3L and K3L double knockout vaccinia virus, we can construct a mutant vaccinia virus with modified host range. Here, using poxvirus K3 ortholog as a positive selection marker, we developed a proof-of-concept protocol to construct recombinant vaccinia viruses expressing foreign proteins. Such a recombinant virus has a modified host range in comparison to wild-type vaccinia virus. This protocol offers the following advantages:Cheap: no additional selection reagent is required. Highly efficient: nearly all recombinant virus plaques picked would be the stable recombinant virus expressing the protein of interest. Rapid: starting from transfection with the recombinant DNA vector, a purified recombinant virus expressing the protein of interest could be obtained within a week.
Collapse
|
2
|
Andonov A, Robbins M, Borlang J, Cao J, Hatchette T, Stueck A, Deschambault Y, Murnaghan K, Varga J, Johnston L. Rat Hepatitis E Virus Linked to Severe Acute Hepatitis in an Immunocompetent Patient. J Infect Dis 2020; 220:951-955. [PMID: 30649379 DOI: 10.1093/infdis/jiz025] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus (HEV) is a major public health concern in developing countries where the primary transmission is via contaminated water. Zoonotic HEV cases have been increasingly described in Europe, Japan, and the United States, with pigs representing the main animal reservoir of infection. We report an unusual acute hepatitis infection in a previously healthy man caused by a rat HEV with a considerably divergent genomic sequence compared with other rat HEV strains. It is possible that rat HEV is an underrecognized cause of hepatitis infection, and further studies are necessary to elucidate its potential risk and mode of transmission.
Collapse
Affiliation(s)
- Anton Andonov
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba
| | - Mark Robbins
- Division of Infectious Diseases, Nova Scotia, Canada
| | - Jamie Borlang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba
| | - Jingxin Cao
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba
| | - Todd Hatchette
- Department of Pathology and Laboratory Medicine, Nova Scotia, Canada.,Department of Pathology, Dalhousie University, Nova Scotia, Canada
| | - Ashley Stueck
- Department of Pathology and Laboratory Medicine, Nova Scotia, Canada.,Department of Pathology, Dalhousie University, Nova Scotia, Canada
| | - Yvon Deschambault
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba
| | - Kyle Murnaghan
- Department of Medicine, Halifax, Nova Scotia Health Authority, Nova Scotia, Canada
| | - Jessy Varga
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba
| | - Lynn Johnston
- Department of Medicine, Halifax, Nova Scotia Health Authority, Nova Scotia, Canada
| |
Collapse
|
3
|
Motavalli R, Etemadi J, Kahroba H, Mehdizadeh A, Yousefi M. Immune system-mediated cellular and molecular mechanisms in idiopathic membranous nephropathy pathogenesis and possible therapeutic targets. Life Sci 2019; 238:116923. [DOI: 10.1016/j.lfs.2019.116923] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/16/2019] [Accepted: 09/29/2019] [Indexed: 12/21/2022]
|
4
|
Muralidharan A, Larocque L, Russell M, Creskey M, Li C, Chen W, Van Domselaar G, Cao J, Cyr T, Rosu-Myles M, Wang L, Li X. PD-1 of Sigmodon hispidus: Gene identification, characterization and preliminary evaluation of expression in inactivated RSV vaccine-induced enhanced respiratory disease. Sci Rep 2019; 9:11638. [PMID: 31406266 PMCID: PMC6690999 DOI: 10.1038/s41598-019-48225-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 07/29/2019] [Indexed: 12/03/2022] Open
Abstract
Sigmodon hispidus or cotton rat is an excellent animal model for studying human infections of respiratory viruses including respiratory syncytial virus (RSV), which is the leading cause of hospitalization in infants and causes high rates of infection in the elderly and immunocompromised patient populations. Despite several decades of research, no vaccine has been licensed whereas inactivated vaccines have been shown to induce severe adverse reaction in a clinical trial, with other forms of RSV vaccine also found to induce enhanced disease in preclinical animal studies. While arguably the cotton rat is the best small animal model for evaluation of RSV vaccines and antivirals, many important genes of the immune system remain to be isolated. Programmed cell death-1 (PD-1) plays an integral role in regulating many aspects of immunity by inducing suppressive signals. In this study, we report the isolation of mRNA encoding the cotton rat PD-1 (crPD-1) and characterization of the PD-1 protein. crPD-1 bound to its cognate ligand on dendritic cells and effectively suppressed cytokine secretion. Moreover, using the newly acquired gene sequence, we observed a decreased level of crPD-1 levels in cotton rats with enhanced respiratory disease induced by inactivated RSV vaccine, unraveling a new facet of vaccine-induced disease.
Collapse
MESH Headings
- Animals
- Cytokines/immunology
- Cytokines/metabolism
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Disease Models, Animal
- Gene Expression Regulation/immunology
- HEK293 Cells
- Humans
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/immunology
- Programmed Cell Death 1 Receptor/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/isolation & purification
- RNA, Viral/genetics
- RNA, Viral/isolation & purification
- Respiratory Syncytial Virus Infections/blood
- Respiratory Syncytial Virus Infections/immunology
- Respiratory Syncytial Virus Infections/virology
- Respiratory Syncytial Virus Vaccines/administration & dosage
- Respiratory Syncytial Virus Vaccines/adverse effects
- Respiratory Syncytial Virus Vaccines/immunology
- Respiratory Syncytial Virus, Human/immunology
- Sequence Analysis, RNA
- Sigmodontinae/genetics
- Sigmodontinae/immunology
- Vaccination/adverse effects
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/adverse effects
- Vaccines, Inactivated/immunology
Collapse
Affiliation(s)
- Abenaya Muralidharan
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Louise Larocque
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Marsha Russell
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Marybeth Creskey
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Changgui Li
- National Institute for Food and Drug Control and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Wangxue Chen
- Human Therapeutics Portfolio, National Research Council of Canada, Ottawa, ON, Canada
| | - Gary Van Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Jingxin Cao
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Terry Cyr
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Michael Rosu-Myles
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|