1
|
Soteros BM, Sia GM. Complement and microglia dependent synapse elimination in brain development. WIREs Mech Dis 2021; 14:e1545. [PMID: 34738335 PMCID: PMC9066608 DOI: 10.1002/wsbm.1545] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 01/31/2023]
Abstract
Synapse elimination, also known as synaptic pruning, is a critical step in the maturation of neural circuits during brain development. Mounting evidence indicates that the complement cascade of the innate immune system plays an important role in synapse elimination. Studies indicate that excess synapses during development are opsonized by complement proteins and subsequently phagocytosed by microglia which expresses complement receptors. The process is regulated by diverse molecular signals, including complement inhibitors that affect the activation of complement, as well as signals that affect microglial recruitment and activation. These signals may promote or inhibit the removal of specific sets of synapses during development. The complement-microglia system has also been implicated in the pathogenesis of several developmental brain disorders, suggesting that the dysregulation of mechanisms of synapse pruning may underlie the specific circuitry defects in these diseases. Here, we review the latest evidence on the molecular and cellular mechanisms of complement-dependent and microglia-dependent synapse elimination during brain development, and highlight the potential of this system as a therapeutic target for developmental brain disorders. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology Neurological Diseases > Stem Cells and Development Immune System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Breeanne M Soteros
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Gek Ming Sia
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
2
|
Tak AS, Satapathy J, Jana M, Sinha A, Jat KR, Bagri NK. Monogenic lupus with homozygous C4A deficiency presenting as bronchiectasis and immune-mediated thrombocytopenia. Rheumatol Int 2021; 42:1477-1482. [PMID: 34287686 DOI: 10.1007/s00296-021-04943-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/01/2021] [Indexed: 02/05/2023]
Abstract
Monogenic lupus is a subset of lupus caused by single-gene disorders, integrating the paradoxical combination of autoimmunity and immunodeficiency. Pulmonary manifestations with recurrent pneumonia and bronchiectasis have rarely been described as the predominant presentation of juvenile lupus and may suggest an alternate differential like primary immunodeficiency, especially in early childhood. We describe a case of 10-year girl who presented with a history of recurrent pneumonia, arthritis, alopecia, and poor weight gain for the past 2 years. On examination, she had respiratory distress, bilateral diffuse crackles and arthritis of the small joints of hands. Lab investigations showed pancytopenia, low complement levels and high titers of ANA and anti-dsDNA antibodies. The patient was diagnosed with juvenile lupus. Imaging studies revealed evidence of multiple lobar collapse and consolidation with bronchiectasis. She was started on steroids, HCQ and supportive measures for bronchiectasis. The child reported relief in initial symptoms of lupus on follow-up but developed recurrent thrombocytopenia requiring IVIG and escalating the doses of oral steroids. The young age and atypical presentation prompted a screening for monogenic lupus, and clinical exome sequencing revealed a novel homozygous missense variation in exon 20 of the C4Agene with clinically reduced C4 levels, consistent with the diagnosis of C4A deficiency.
Collapse
Affiliation(s)
- Asma S Tak
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | | | - Manisha Jana
- Department of Radio Diagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - Aditi Sinha
- Division of Pediatric Nephrology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Kana Ram Jat
- Division of Pediatric Pulmonology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Narendra K Bagri
- Division of Pediatric Rheumatology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
3
|
Wang H, Liu M. Complement C4, Infections, and Autoimmune Diseases. Front Immunol 2021; 12:694928. [PMID: 34335607 PMCID: PMC8317844 DOI: 10.3389/fimmu.2021.694928] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/21/2021] [Indexed: 02/05/2023] Open
Abstract
Complement C4, a key molecule in the complement system that is one of chief constituents of innate immunity for immediate recognition and elimination of invading microbes, plays an essential role for the functions of both classical (CP) and lectin (LP) complement pathways. Complement C4 is the most polymorphic protein in complement system. A plethora of research data demonstrated that individuals with C4 deficiency are prone to microbial infections and autoimmune disorders. In this review, we will discuss the diversity of complement C4 proteins and its genetic structures. In addition, the current development of the regulation of complement C4 activation and its activation derivatives will be reviewed. Moreover, the review will provide the updates on the molecule interactions of complement C4 under the circumstances of bacterial and viral infections, as well as autoimmune diseases. Lastly, more evidence will be presented to support the paradigm that links microbial infections and autoimmune disorders under the condition of the deficiency of complement C4. We provide such an updated overview that would shed light on current research of complement C4. The newly identified targets of molecular interaction will not only lead to novel hypotheses on the study of complement C4 but also assist to propose new strategies for targeting microbial infections, as well as autoimmune disorders.
Collapse
Affiliation(s)
- Hongbin Wang
- Master Program of Pharmaceutical Sciences College of Graduate Studies, California Northstate University, Elk Grove, CA, United States.,Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, California Northstate University, Elk Grove, CA, United States.,Department of Basic Science College of Medicine, California Northstate University, Elk Grove, CA, United States
| | - Mengyao Liu
- Master Program of Pharmaceutical Sciences College of Graduate Studies, California Northstate University, Elk Grove, CA, United States
| |
Collapse
|
4
|
Bergersen KV, Barnes A, Worth D, David C, Wilson EH. Targeted Transcriptomic Analysis of C57BL/6 and BALB/c Mice During Progressive Chronic Toxoplasma gondii Infection Reveals Changes in Host and Parasite Gene Expression Relating to Neuropathology and Resolution. Front Cell Infect Microbiol 2021; 11:645778. [PMID: 33816350 PMCID: PMC8012756 DOI: 10.3389/fcimb.2021.645778] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Toxoplasma gondii is a resilient parasite that infects a multitude of warm-blooded hosts and results in a lifelong chronic infection requiring continuous responses by the host. Chronic infection is characterized by a balanced immune response and neuropathology that are driven by changes in gene expression. Previous research pertaining to these processes has been conducted in various mouse models, and much knowledge of infection-induced gene expression changes has been acquired through the use of high throughput sequencing techniques in different mouse strains and post-mortem human studies. However, lack of infection time course data poses a prominent missing link in the understanding of chronic infection, and there is still much that is unknown regarding changes in genes specifically relating to neuropathology and resulting repair mechanisms as infection progresses throughout the different stages of chronicity. In this paper, we present a targeted approach to gene expression analysis during T. gondii infection through the use of NanoString nCounter gene expression assays. Wild type C57BL/6 and BALB/c background mice were infected, and transcriptional changes in the brain were evaluated at 14, 28, and 56 days post infection. Results demonstrate a dramatic shift in both previously demonstrated and novel gene expression relating to neuropathology and resolution in C57BL/6 mice. In addition, comparison between BALB/c and C57BL/6 mice demonstrate initial differences in gene expression that evolve over the course of infection and indicate decreased neuropathology and enhanced repair in BALB/c mice. In conclusion, these studies provide a targeted approach to gene expression analysis in the brain during infection and provide elaboration on previously identified transcriptional changes and also offer insights into further understanding the complexities of chronic T. gondii infection.
Collapse
Affiliation(s)
- Kristina V Bergersen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Ashli Barnes
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Danielle Worth
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Clement David
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States.,NanoString Technologies, Seattle, WA, United States
| | - Emma H Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
5
|
Proper SP, Lavery WJ, Bernstein JA. Definition and classification of hereditary angioedema. Allergy Asthma Proc 2020; 41:S03-S07. [PMID: 33109317 DOI: 10.2500/aap.2020.41.200040] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hereditary angioedema (HAE) is defined as a rare genetic disease with recurrent episodes of localized bradykinin-mediated swelling of the deep tissues of the skin, respiratory, and gastrointestinal tracts that can be life threatening. Classification of HAE has evolved over time with our further understanding of clinical phenotypes, underlying causes, and available testing. In most cases, HAE is caused by a deficiency of C1-esterase inhibitor (C1-INH) on the Serpin Family G Member 1 (SERPING1) gene, either through decreased amounts of C1-INH protein (C1-INH-HAE, type 1) or decreased function of C1-INH (C1-INH-HAE, type 2). HAE with normal C1-INH levels and function are divided into unknown cause or into non-C1-INH-HAE forms, which include known mutational defects in factor XII (called FXII-HAE in the Hereditary Angioedema International Working Group consensus), angiopoietin-1, plasminogen, and kininogen 1 genes. It is possible that, after an initial workup, a patient without a family history of HAE could be classified with an acquired form of angioedema (nonhereditary) that may later prove to be HAE due to a de-novo SERPING1 mutation. Because there are forms of nonhistaminergic (H1-antihistamine unresponsive) angioedema that appear clinically very similar to HAE, it is essential that the patient undergoes a thorough clinical history and diagnostic evaluation to ensure that he or she is properly diagnosed and classified.
Collapse
Affiliation(s)
- Steven P. Proper
- From the Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - William J. Lavery
- From the Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Jonathan A. Bernstein
- Division of Immunology/Allergy Section, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio; and
| |
Collapse
|
6
|
Bordron A, Bagacean C, Tempescul A, Berthou C, Bettacchioli E, Hillion S, Renaudineau Y. Complement System: a Neglected Pathway in Immunotherapy. Clin Rev Allergy Immunol 2020; 58:155-171. [PMID: 31144209 DOI: 10.1007/s12016-019-08741-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Approved for the treatment of autoimmune diseases, hematological malignancies, and solid cancers, several monoclonal antibodies (mAb) make use of complement in their mechanism of action. Such an assessment is based on comprehensive investigations that used mouse models, in vitro studies, and analyses from patients at initiation (basal level to highlight deficiencies) and after treatment initiation (mAb impact on complement), which have further provided key insights into the importance of the complement activation and/or complement deficiencies in mAb activity. Accordingly, new approaches can now be developed with the final objective of increasing the clinical efficacy of mAb. These improvements include (i) the concurrent administration of fresh frozen plasma during mAb therapy; (ii) mAb modifications such as immunoglobulin G subclass switching, Fc mutation, or IgG hexamerization to improve the fixation and activation of C1q; (iii) optimization of the target recognition to induce a higher complement-dependent cytotoxicity (CDC) and/or complement-dependant cellular cytotoxicity (CDCC); and (iv) the control of soluble and cellular complement inhibitors.
Collapse
Affiliation(s)
- Anne Bordron
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France
| | - Cristina Bagacean
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France.,Service d'Hématologie, CHU de Brest, Brest, France
| | - Adrian Tempescul
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France.,Service d'Hématologie, CHU de Brest, Brest, France
| | - Christian Berthou
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France.,Service d'Hématologie, CHU de Brest, Brest, France
| | | | - Sophie Hillion
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France.,Laboratory of Immunology and Immunotherapy, CHU de Brest, Brest, France
| | - Yves Renaudineau
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France. .,Laboratory of Immunology and Immunotherapy, CHU de Brest, Brest, France.
| |
Collapse
|
7
|
Levy D, Craig T, Keith PK, Krishnarajah G, Beckerman R, Prusty S. Co-occurrence between C1 esterase inhibitor deficiency and autoimmune disease: a systematic literature review. Allergy Asthma Clin Immunol 2020; 16:41. [PMID: 32514272 PMCID: PMC7254644 DOI: 10.1186/s13223-020-00437-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 05/15/2020] [Indexed: 12/19/2022] Open
Abstract
Background Hereditary angioedema (HAE) is caused by a SERPING1 gene defect resulting in decreased (Type I) or dysfunctional (Type II) C1 esterase inhibitor (C1-INH). The prevalence of autoimmune diseases (ADs) in patients with HAE appears to be higher than the general population. A systematic literature review was conducted to examine the co-occurrence between HAE and ADs. Methods PubMed/EMBASE were searched for English-language reviews, case reports, observational studies, retrospective studies, and randomized controlled trials up to 04/15/2018 (04/15/2015-04/15/2018 for EMBASE) that mentioned patients with HAE Type I or II and comorbid ADs. Non-human or in vitro studies and publications of C1-INH deficiency secondary to lymphoproliferative disorders or angiotensin-converting-enzyme inhibitors were excluded. Results Of the 2880 records screened, 76 met the eligibility criteria and 155 individual occurrences of co-occurring HAE and AD were mentioned. The most common ADs were systemic lupus erythematosus (30 mentions), thyroid disease (21 mentions), and glomerulonephritis (16 mentions). When ADs were grouped by MedDRA v21.0 High Level Terms, the most common were: Lupus Erythematosus and Associated Conditions, n = 52; Endocrine Autoimmune Disorders, n = 21; Gastrointestinal Inflammatory Conditions, n = 16; Glomerulonephritis and Nephrotic Syndrome, n = 16; Rheumatoid Arthritis and Associated Conditions, n = 11; Eye, Salivary Gland and Connective Tissue Disorders, n = 10; and Immune and Associated Conditions Not Elsewhere Classified, n = 5. Conclusions Based on literature reports, systemic lupus erythematosus is the most common AD co-occurring with HAE Type I and II. Cause and effect for co-occurring HAE and AD has not been clinically established but could be related to lack of sufficient C1-INH function.
Collapse
Affiliation(s)
- Donald Levy
- Division of Basic and Clinical Immunology, University of California, 705 W. La Veta Ave STE 101, Orange, CA 92868 USA
| | - Timothy Craig
- Departments of Medicine and Pediatrics, Penn State University, Hershey, PA USA
| | - Paul K Keith
- Department of Medicine, McMaster University, Hamilton, ON Canada
| | | | | | | |
Collapse
|
8
|
Brodszki N, Frazer-Abel A, Grumach AS, Kirschfink M, Litzman J, Perez E, Seppänen MRJ, Sullivan KE, Jolles S. European Society for Immunodeficiencies (ESID) and European Reference Network on Rare Primary Immunodeficiency, Autoinflammatory and Autoimmune Diseases (ERN RITA) Complement Guideline: Deficiencies, Diagnosis, and Management. J Clin Immunol 2020; 40:576-591. [PMID: 32064578 PMCID: PMC7253377 DOI: 10.1007/s10875-020-00754-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022]
Abstract
This guideline aims to describe the complement system and the functions of the constituent pathways, with particular focus on primary immunodeficiencies (PIDs) and their diagnosis and management. The complement system is a crucial part of the innate immune system, with multiple membrane-bound and soluble components. There are three distinct enzymatic cascade pathways within the complement system, the classical, alternative and lectin pathways, which converge with the cleavage of central C3. Complement deficiencies account for ~5% of PIDs. The clinical consequences of inherited defects in the complement system are protean and include increased susceptibility to infection, autoimmune diseases (e.g., systemic lupus erythematosus), age-related macular degeneration, renal disorders (e.g., atypical hemolytic uremic syndrome) and angioedema. Modern complement analysis allows an in-depth insight into the functional and molecular basis of nearly all complement deficiencies. However, therapeutic options remain relatively limited for the majority of complement deficiencies with the exception of hereditary angioedema and inhibition of an overactivated complement system in regulation defects. Current management strategies for complement disorders associated with infection include education, family testing, vaccinations, antibiotics and emergency planning.
Collapse
Affiliation(s)
- Nicholas Brodszki
- Department of Pediatrics, Children's Hospital, Skåne University Hospital, Lund, Sweden
| | - Ashley Frazer-Abel
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anete S Grumach
- Clinical Immunology, Reference Center on Rare Diseases, University Center Health ABC, Santo Andre, SP, Brazil
| | | | - Jiri Litzman
- Department of Clinical Immunology and Allergology, St Anne's University Hospital, and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Elena Perez
- Allergy Associates of the Palm Beaches, North Palm Beach, FL, USA
| | - Mikko R J Seppänen
- Rare Disease Center, Children's Hospital, and Adult Primary Immunodeficiency Outpatient Clinic, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, Cardiff University & University Hospital of Wales, Cardiff, UK.
| |
Collapse
|
9
|
Regulation of the complement system and immunological tolerance in pregnancy. Semin Immunol 2019; 45:101337. [PMID: 31757607 DOI: 10.1016/j.smim.2019.101337] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022]
Abstract
Preeclampsia is a serious vascular complication of the human pregnancy, whose etiology is still poorly understood. In preeclampsia, exacerbated apoptosis and fragmentation of the placental tissue occurs due to developmental qualities of the placental trophoblast cells and/or mechanical and oxidative distress to the syncytiotrophoblast, which lines the placental villi. Dysregulation of the complement system is recognized as one of the mechanisms of the disease pathology. Complement has the ability to promote inflammation and facilitate phagocytosis of placenta-derived particles and apoptotic cells by macrophages. In preeclampsia, an overload of placental cell damage or dysregulated complement system may lead to insufficient clearance of apoptotic particles and placenta-derived debris. Excess placental damage may lead to sequestration of microparticles, such as placental vesicles, to capillaries in the glomeruli of the kidney and other vulnerable tissues. This phenomenon could contribute to the manifestations of typical diagnostic symptoms of preeclampsia: proteinuria and new-onset hypertension. In this review we propose that the complement system may serve as a regulator of the complex tolerance and clearance processes that are fundamental in healthy pregnancy. It is therefore recommended that further research be conducted to elucidate the interactions between components of the complement system and immune responses in the context of complicated and healthy pregnancy.
Collapse
|
10
|
Schröder-Braunstein J, Kirschfink M. Complement deficiencies and dysregulation: Pathophysiological consequences, modern analysis, and clinical management. Mol Immunol 2019; 114:299-311. [PMID: 31421540 DOI: 10.1016/j.molimm.2019.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 02/07/2023]
Abstract
Complement defects are associated with an enhanced risk of a broad spectrum of infectious as well as systemic or local inflammatory and thrombotic disorders. Inherited complement deficiencies have been described for virtually all complement components but can be mimicked by autoantibodies, interfering with the activity of specific complement components, convertases or regulators. While being rare, diseases related to complement deficiencies are often severe with a frequent but not exclusive manifestation during childhood. Whereas defects of early components of the classical pathway significantly increase the risk of autoimmune disorders, lack of components of the terminal pathway as well as of properdin are associated with an enhanced susceptibility to meningococcal infections. The impaired synthesis or function of C1 inhibitor results in the development of hereditary angioedema (HAE). Furthermore, complement dysregulation causes renal disorders such as atypical hemolytic uremic syndrome (aHUS) or C3 glomerulopathy (C3G) but also age-related macular degeneration (AMD). While paroxysmal nocturnal hemoglobinuria (PNH) results from the combined deficiency of the regulatory complement proteins CD55 and CD59, which is caused by somatic mutation of a common membrane anchor, isolated CD55 or CD59 deficiency is associated with the CHAPLE syndrome and polyneuropathy, respectively. Here, we provide an overview on clinical disorders related to complement deficiencies or dysregulation and describe diagnostic strategies required for their comprehensive molecular characterization - a prerequisite for informed decisions on the therapeutic management of these disorders.
Collapse
Affiliation(s)
- Jutta Schröder-Braunstein
- University of Heidelberg, Institute of Immunology, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
| | - Michael Kirschfink
- University of Heidelberg, Institute of Immunology, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany.
| |
Collapse
|