1
|
da Silva IB, Costa-Leonardo AM. On the reproductive strategies post-colony foundation: major termite pest species with distinct ecological habits differ in their oviposition dynamics. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:716-724. [PMID: 37694438 DOI: 10.1017/s0007485323000421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Termite colony foundation precedes the incipient stage, when the first oviposition cycle takes place, followed by months of reproductive inactivity. The royal couple is supposed to cease oviposition during this period, investing energy to care for the first brood. When a suitable number of alloparents differentiate, egg-laying resumes. Here we followed oviposition dynamics, embryo development and queen/king body changes in laboratory colonies of the major pest species Coptotermes gestroi (Rhinotermitidae) and Cryptotermes brevis (Kalotermitidae) during 9 months. We show that they differ in these oviposition dynamics, as C. gestroi queens displayed an uninterrupted oviposition whereas C. brevis laid a cohort of eggs and ceased oviposition during a 3-month period (lag phase). C. gestroi oviposition dynamic was remarkable and suggests that occurrence of progeny was not a limiting factor, thus queens and kings were able to concomitantly invest energy in reproduction and parental care. These findings contrast those reported for rhinotermitids from temperate areas, and we discuss the likely reasons for such a condition, including endogenous rhythms, avoidance of a high mortality rate of the first progeny and adaptation to the weather conditions of the Neotropical region. Oviposition dynamic in C. brevis resembled those of several termite species, in which the royal couple cease reproduction to care for the first brood. Rearing conditions did not influence oviposition dynamics (egg-laying cycle followed by a lag phase), thus our results on the oviposition of C. gestroi and C. brevis correspond to different reproductive strategies post-foundation adopted by these pest species.
Collapse
Affiliation(s)
- Iago Bueno da Silva
- Departamento de Biologia Geral e Aplicada, Laboratório de Cupins, Instituto de Biociências, UNESP - Univ Estadual Paulista, Av. 24A, No. 1515, 13506-900 Rio Claro, SP, Brazil
| | - Ana Maria Costa-Leonardo
- Departamento de Biologia Geral e Aplicada, Laboratório de Cupins, Instituto de Biociências, UNESP - Univ Estadual Paulista, Av. 24A, No. 1515, 13506-900 Rio Claro, SP, Brazil
| |
Collapse
|
2
|
Corrêa CA, Brügger BP, Anjos N, Zanuncio JC. Egg characterization and laying pattern of Oncideres saga (Coleoptera: Cerambycidae) in Inga edulis (Fabaceae). BRAZ J BIOL 2021; 84:e249528. [PMID: 34932623 DOI: 10.1590/1519-6984.249528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/25/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
- C A Corrêa
- Universidade Federal de Viçosa - UFV, Departamento de Entomologia/Casa dos Cupins, Laboratório de Manejo Integrado de Insetos Florestais, Viçosa, MG, Brasil.,Universidade Federal de Viçosa - UFV, Departamento de Entomologia/BIOAGRO, Laboratório de Controle Biológico de Insetos - LCBI, Viçosa, MG, Brasil
| | - B P Brügger
- Universidade Federal de Juiz de Fora - UFJF, Laboratório de Ecologia Comportamental e Bioacústica - LABEC, Programa de Pós-graduação em Biodiversidade e Conservação da Natureza, Juiz de Fora, MG, Brasil
| | - N Anjos
- Universidade Federal de Viçosa - UFV, Departamento de Entomologia/Casa dos Cupins, Laboratório de Manejo Integrado de Insetos Florestais, Viçosa, MG, Brasil
| | - J C Zanuncio
- Universidade Federal de Viçosa - UFV, Departamento de Entomologia/BIOAGRO, Laboratório de Controle Biológico de Insetos - LCBI, Viçosa, MG, Brasil
| |
Collapse
|
3
|
Fanning P, Lanka S, Mermer S, Collins J, Van Timmeren S, Andrews H, Hesler S, Loeb G, Drummond F, Wiman NG, Walton V, Sial AA, Isaacs R. Field and Laboratory Testing of Feeding Stimulants to Enhance Insecticide Efficacy Against Spotted-Wing Drosophila, Drosophila suzukii (Matsumura). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1638-1646. [PMID: 34021580 DOI: 10.1093/jee/toab084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The invasive spotted-wing drosophila, Drosophila suzukii (Matsumura), is a key insect pest of berries globally, causing lost revenues and increased production costs associated with applications of insecticides. The insecticides utilized are commonly broad-spectrum pyrethroids, organophosphates, or carbamates in conventionally managed fields and spinosad in organically managed fields. Adoption of more selective insecticides has been limited due to their lower residual activity, and the requirement that some must be ingested to be effective. We investigated the use of feeding stimulants for D. suzukii as a method to improve longevity and efficacy in a range of insecticides. In laboratory bioassays, sugar increased the efficacy of all chemical classes tested; however, the inclusion of yeast only showed a benefit with malathion. Feeding stimulants had a limited effect in some cases under field conditions. Similarly, infestation in field plots and a semifield bioassay showed no significant decreases in infestation with the inclusion of feeding stimulants for the insecticides tested in these trials. We discuss the implications of these findings for managing D. suzukii in fruit crops to help ensure the harvest of marketable fruit.
Collapse
Affiliation(s)
- Philip Fanning
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Srinivas Lanka
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Serhan Mermer
- Department of Horticulture, Oregon State University, 4017 Agriculture and Life Sciences Building, Corvallis, OR 97331, USA
| | - Judith Collins
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Steven Van Timmeren
- Department of Entomology, Michigan State University, 578 Wilson Road, East Lansing, MI 48824, USA
| | - Heather Andrews
- North Willamette Research and Extension Center, Oregon State University, Aurora, Oregon 97002, and USA
| | - Stephen Hesler
- Department of Entomology, Cornell AgriTech, Cornell University, 15 W. Castle Creed Drive, Geneva, NY 14456, USA
| | - Gregory Loeb
- Department of Entomology, Cornell AgriTech, Cornell University, 15 W. Castle Creed Drive, Geneva, NY 14456, USA
| | - Francis Drummond
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Nik G Wiman
- North Willamette Research and Extension Center, Oregon State University, Aurora, Oregon 97002, and USA
| | - Vaughn Walton
- Department of Horticulture, Oregon State University, 4017 Agriculture and Life Sciences Building, Corvallis, OR 97331, USA
| | - Ashfaq A Sial
- Department of Entomology, University of Georgia, 413 Biological Sciences Building, Athens, GA 30602, USA
| | - Rufus Isaacs
- Department of Entomology, Michigan State University, 578 Wilson Road, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Bourne A, Fountain MT, Wijnen H, Shaw B. Potential of the European earwig (Forficula auricularia) as a biocontrol agent of the soft and stone fruit pest Drosophila suzukii. PEST MANAGEMENT SCIENCE 2019; 75:3340-3345. [PMID: 31066201 DOI: 10.1002/ps.5459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/28/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The unintentional introduction of Drosophila suzukii (Matsumura) from Asia has caused global economic losses in the soft and stone fruit industries. Pesticide use can have unintended negative impacts on natural enemies, disrupting attempts to incorporate integrated pest management programmes. Generalist predators could potentially act as biocontrol agents of D. suzukii. In this context, the predatory capabilities of the European earwig (Forficula auricularia) were investigated. RESULTS In semi-field conditions, F. auricularia were effective at reducing the reproductive rate of D. suzukii in more densely populated enclosures. In controlled laboratory conditions, significant negative effects of earwigs were observed for both low (three breeding pairs) and high (six breeding pairs) D. suzukii densities. Both semi-field and laboratory experiments revealed that F. auricularia predation on adult D. suzukii could not account for the subsequent reductions in population density. CONCLUSIONS Reductions in both larval and adult offspring in the presence of earwigs indicate an impact on D. suzukii via predation prior to metamorphosis or disruption of oviposition. Although F. auricularia may predate D. suzukii populations, its capacity to act as a biocontrol agent may be limited. However, results suggest that F. auricularia may be a more effective biocontrol agent earlier in the growing season. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | - Bethan Shaw
- University of Southampton, Southampton, UK
- NIAB EMR, East Malling, Kent, UK
| |
Collapse
|
5
|
Shaw B, Fountain M, Wijnen H. Control of Daily Locomotor Activity Patterns in Drosophila suzukii by the Circadian Clock, Light, Temperature and Social Interactions. J Biol Rhythms 2019; 34:463-481. [PMID: 31436123 DOI: 10.1177/0748730419869085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding behavioral rhythms in a pest species can contribute to improving the efficacy of control methods targeting that pest. However, in some species, the behavioral patterns recorded in artificial conditions contrast greatly with observed wild-type behavioral rhythms. In this study, we identify the determinants of daily activity rhythms of the soft and stone fruit pest Drosophila suzukii. The impact of gender, space, social housing, temperature, light, fly morph, and the circadian clock on D. suzukii locomotor rhythms was investigated. Assays were performed under artificial laboratory conditions or more natural semifield conditions to identify how these factors affected daily locomotor behavior. Daily locomotor activity patterns collected under semifield conditions varied very little between the various sex and social condition combinations. However, in lab-based assays, individual and group-housed males often exhibited divergent activity patterns, with more prominent hyperactivity at light/dark transitions. In contrast, hyperactivity responses were suppressed under lab protocols mimicking summer conditions for groups of females and mixed-sex groups. Moreover, when environmental cues were removed, flies held in groups displayed stronger rhythmicity than individual flies. Thus, social interactions can reinforce circadian behavior and resist hyperactivity responses in D. suzukii. Fly morph appeared to have little impact on behavioral pattern, with winter and summer morph flies displaying similar activity profiles under April semifield and laboratory mimic environmental conditions. In conclusion, separate and combined effects of light, temperature, circadian clock function, and social interactions were apparent in the daily activity profiles of D. suzukii. When groups of female or mixed-sex flies were used, implementation of matching photoperiods and realistic daily temperature gradients in the lab was sufficient to re-create behavioral patterns observed in summer semifield settings. The ability to leverage lab assays to predict D. suzukii field behavior promises to be a valuable asset in improving control measures for this pest.
Collapse
Affiliation(s)
- Bethan Shaw
- NIAB EMR, East Malling, Kent, UK.,School of Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton, UK
| | | | - Herman Wijnen
- School of Biological Sciences and Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
6
|
Hansen CN, Özkaya Ö, Roe H, Kyriacou CP, Giongo L, Rosato E. Locomotor Behaviour and Clock Neurons Organisation in the Agricultural Pest Drosophila suzukii. Front Physiol 2019; 10:941. [PMID: 31396106 PMCID: PMC6667661 DOI: 10.3389/fphys.2019.00941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/09/2019] [Indexed: 01/29/2023] Open
Abstract
Drosophila suzukii (Matsumara) also called Spotted Wing Drosophila (SWD), is an invasive pest species originally from Asia that has now spread widely across Europe and North America. The majority of drosophilids including the best known Drosophila melanogaster only breed on decaying fruits. On the contrary, the presence of a strong serrated ovipositor and behavioural and metabolic adaptations allow D. suzukii to lay eggs inside healthy, ripening fruits that are still on the plant. Here we present an analysis of the rhythmic locomotor activity behaviour of D. suzukii under several laboratory settings. Moreover, we identify the canonical clock neurons in this species by reporting the expression pattern of the major clock proteins in the brain. Interestingly, a fundamentally similar organisation of the clock neurons network between D. melanogaster and D. suzukii does not correspond to similar characteristics in rhythmic locomotor activity behaviour.
Collapse
Affiliation(s)
- Celia Napier Hansen
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Özge Özkaya
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Helen Roe
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Charalambos P Kyriacou
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Lara Giongo
- Centro Ricerca e Innovazione, Fondazione Edmund Mach, Trento, Italy
| | - Ezio Rosato
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
7
|
Plantamp C, Henri H, Andrieux T, Regis C, Mialdea G, Dray S, Gibert P, Desouhant E. Phenotypic plasticity in the invasive pest Drosophila suzukii: activity rhythms and gene expression in response to temperature. J Exp Biol 2019; 222:jeb.199398. [DOI: 10.1242/jeb.199398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/07/2019] [Indexed: 11/20/2022]
Abstract
Phenotypic plasticity may contribute to the invasive success of an alien species in a new environment. A higher plastic species may survive and reproduce in more diverse environments, thereby supporting establishment and colonization. We focused on plasticity in the circadian rhythm of activity, which can favour species coexistence in invasion, for the invasive species Drosophila suzukii, which is expected to be a weaker direct competitor than other Drosophila species of the resident community. We compared between the invasive D. suzukii and the resident D. melanogaster the circadian rhythms of the locomotor activity in adults and the expression of clock genes in response to temperature. We showed that D. suzukii is active in a narrower range of temperatures than D. melanogaster and that the activities of both species overlap during the day, regardless of the temperature. Both species are diurnal and exhibit rhythmic activity at dawn and dusk, with a much lower activity at dawn for D. suzukii females. Our results showed that the timeless and clock genes are good candidates to explain the plastic response that is observed in relation to temperature. Overall, our results suggest that thermal phenotypic plasticity in D. suzukii activity is not sufficient to explain the invasive success of D. suzukii and calls for testing other hypotheses, such as the release of competitors and/or predators.
Collapse
Affiliation(s)
- C. Plantamp
- Université de Lyon, 69000 Lyon, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, INRIA, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - H. Henri
- Université de Lyon, 69000 Lyon, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, INRIA, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - T. Andrieux
- Université de Lyon, 69000 Lyon, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, INRIA, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - C. Regis
- Université de Lyon, 69000 Lyon, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, INRIA, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - G. Mialdea
- Université de Lyon, 69000 Lyon, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, INRIA, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - S. Dray
- Université de Lyon, 69000 Lyon, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, INRIA, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - P. Gibert
- Université de Lyon, 69000 Lyon, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, INRIA, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - E. Desouhant
- Université de Lyon, 69000 Lyon, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, INRIA, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| |
Collapse
|