1
|
Marcuzzi O, Calcaterra F, Loza Vega A, Ortega Masagué MF, Armstrong E, Pereira Rico JA, Jara E, Olivera LH, Peral García P, Giovambattista G. Genomic analysis of inbreeding level, kinship and breed relationships in Creole cattle from South America. Anim Genet 2024; 55:527-539. [PMID: 38716584 DOI: 10.1111/age.13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 03/25/2024] [Accepted: 04/15/2024] [Indexed: 07/04/2024]
Abstract
The conservation of animal genetic resources refers to measures taken to prevent the loss of genetic diversity in livestock populations, including the protection of breeds from extinction. Creole cattle populations have suffered a drastic reduction in recent decades owing to absorbent crosses or replacement with commercial breeds of European or Indian origin. Genetic characterization can serve as a source of information for conservation strategies to maintain genetic variation. The objective of this work was to evaluate the levels of inbreeding and kinship through the use of genomic information. A total of 903 DNAs from 13 cattle populations from Argentina, Bolivia and Uruguay were genotyped using an SNP panel of 48 K. Also, a dataset of 76 K SNPs from Peruvian Creole was included. Two inbreeding indices (FROH and Fhat2) and kinship relationships were calculated. In addition, effective population size (Ne), linkage disequilibrium, population composition and phylogenetic relationships were estimated. In Creole cattle, FROH ranged from 0.14 to 0.03, and Fhat2 was close to zero. The inferred Ne trends exhibited a decline toward the present for all populations, whereas Creole cattle presented a lower magnitude of Ne than foreign breeds. Cluster analysis clearly differentiated the taurine and Zebu components (K2) and showed that Bolivian Creole cattle presented Zebu gene introgression. Despite the population reduction, Creole populations did not present extreme values of consanguinity and kinship and maintain high levels of genetic diversity. The information obtained in this work may be useful for planning conservation programmes for these valuable local animal genetic resources.
Collapse
Affiliation(s)
- O Marcuzzi
- IGEVET - Instituto de Genética Veterinaria 'Ing. Fernando N. Dulout' (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, La Plata, Argentina
| | - F Calcaterra
- IGEVET - Instituto de Genética Veterinaria 'Ing. Fernando N. Dulout' (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, La Plata, Argentina
| | - A Loza Vega
- Facultad de Ciencias Veterinarias, Universidad Autónoma Gabriel René Moreno, Santa Cruz de la Sierra, Bolivia
| | - M F Ortega Masagué
- Instituto de Investigación Animal del Chaco Semiárido, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Leales, Tucumán, Argentina
| | - E Armstrong
- Unidad de Genética y Mejora Animal, Departamento de Producción Animal, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - J A Pereira Rico
- Facultad de Ciencias Veterinarias, Universidad Autónoma Gabriel René Moreno, Santa Cruz de la Sierra, Bolivia
| | - E Jara
- Unidad de Genética y Mejora Animal, Departamento de Producción Animal, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - L H Olivera
- IGEVET - Instituto de Genética Veterinaria 'Ing. Fernando N. Dulout' (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, La Plata, Argentina
| | - P Peral García
- IGEVET - Instituto de Genética Veterinaria 'Ing. Fernando N. Dulout' (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, La Plata, Argentina
| | - G Giovambattista
- IGEVET - Instituto de Genética Veterinaria 'Ing. Fernando N. Dulout' (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, La Plata, Argentina
| |
Collapse
|
2
|
Putra WPB, Hartati H, Aditama R, Handiwirawan E, Margawati ET, Elieser S. Runs of homozygosity analysis and genomic inbreeding estimation in Sumba Ongole cattle ( Bos indicus) using a BovineSNP50K BeadChip. Vet World 2024; 17:1914-1919. [PMID: 39328453 PMCID: PMC11422642 DOI: 10.14202/vetworld.2024.1914-1919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/30/2024] [Indexed: 09/28/2024] Open
Abstract
Background and Aim Runs of homozygosity (ROH) is a biocomputational technique for identifying homozygous regions in the genomics of livestock. This study aimed to determine the ROH in Sumba Ongole (SO) bulls (n = 48) using the BovineSNP50K BeadChip. Materials and Methods GenomeStudio 2.0 software was used to generate the BovineSNP50K BeadChip output. The ROH and ROH-based inbreeding coefficients (FROH) were determined using the detect RUNS R v4.1.0 package. Using the following filtering criteria, PLINK v1.90 software was used to perform genotype quality control: (1) Individuals and single-nucleotide polymorphism (SNPs) had call rates >0.95; (2) more than 0.05 was the minor allele frequency; (3) the list contained only SNPs linked to autosomes; and (4) SNPs that strongly deviated (p < 1e-6) from Hardy-Weinberg equilibrium were removed. Subsequently, 25,252 autosomal SNP markers were included in the ROH and FROH analyses. Results In general, the number and length of ROH segments in pool animals were 149.77 ± 16.02 Mb and 486.13 ± 156.11 Mb, respectively. Furthermore, the ROH segments in the animals under study can be discriminated into two classes of 1-4 Mb (83.33%) and 4-8 Mb (16.67%). Subsequently, Bos taurus autosomes (BTA) 1, BTA6, and BTA14 had significant homozygous segments comprising 13 genes. Despite this, the average FROH in pool animals was 0.20 ± 0.06. Conclusion These findings indicate that a recent inbreeding event in SO cattle occurred many generations ago. Furthermore, the candidate genes identified from the ROH analysis indicate phenotypic attributes associated with environmental adaptation and economic traits.
Collapse
Affiliation(s)
- Widya Pintaka Bayu Putra
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Bogor 16911, Indonesia
| | - Hartati Hartati
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Bogor 16911, Indonesia
| | - Redi Aditama
- Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Bogor 16911, Indonesia
| | - Eko Handiwirawan
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Bogor 16911, Indonesia
| | - Endang Tri Margawati
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Bogor 16911, Indonesia
| | - Simon Elieser
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Bogor 16911, Indonesia
| |
Collapse
|
3
|
Bem RD, Benfica LF, Silva DA, Carrara ER, Brito LF, Mulim HA, Borges MS, Cyrillo JNSG, Canesin RC, Bonilha SFM, Mercadante MEZ. Assessing different metrics of pedigree and genomic inbreeding and inbreeding effect on growth, fertility, and feed efficiency traits in a closed-herd Nellore cattle population. BMC Genomics 2024; 25:738. [PMID: 39080557 PMCID: PMC11290228 DOI: 10.1186/s12864-024-10641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND The selection of individuals based on their predicted breeding values and mating of related individuals can increase the proportion of identical-by-descent alleles. In this context, the objectives of this study were to estimate inbreeding coefficients based on alternative metrics and data sources such as pedigree (FPED), hybrid genomic relationship matrix H (FH), and ROH of different length (FROH); and calculate Pearson correlations between the different metrics in a closed Nellore cattle population selected for body weight adjusted to 378 days of age (W378). In addition to total FROH (all classes) coefficients were also estimated based on the size class of the ROH segments: FROH1 (1-2 Mb), FROH2 (2-4 Mb), FROH3 (4-8 Mb), FROH4 (8-16 Mb), and FROH5 (> 16 Mb), and for each chromosome (FROH_CHR). Furthermore, we assessed the effect of each inbreeding metric on birth weight (BW), body weights adjusted to 210 (W210) and W378, scrotal circumference (SC), and residual feed intake (RFI). We also evaluated the chromosome-specific effects of inbreeding on growth traits. RESULTS The correlation between FPED and FROH was 0.60 while between FH and FROH and FH and FPED were 0.69 and 0.61, respectively. The annual rate of inbreeding was 0.16% for FPED, 0.02% for FH, and 0.16% for FROH. A 1% increase in FROH5 resulted in a reduction of up to -1.327 ± 0.495 kg in W210 and W378. Four inbreeding coefficients (FPED, FH, FROH2, and FROH5) had a significant effect on W378, with reductions of up to -3.810 ± 1.753 kg per 1% increase in FROH2. There was an unfavorable effect of FPED on RFI (0.01 ± 0.0002 kg dry matter/day) and of FROH on SC (-0.056 ± 0.022 cm). The FROH_CHR coefficients calculated for BTA3, BTA5, and BTA8 significantly affected the growth traits. CONCLUSIONS Inbreeding depression was observed for all traits evaluated. However, these effects were greater for the criterion used for selection of the animals (i.e., W378). The increase in the genomic inbreeding was associated with a higher inbreeding depression on the traits evaluated when compared to pedigree-based inbreeding. Genomic information should be used as a tool during mating to optimize control of inbreeding and, consequently, minimize inbreeding depression in Nellore cattle.
Collapse
Affiliation(s)
- Ricardo D Bem
- Institute of Animal Science, Sertãozinho, SP, Brazil.
- Department of Animal Science, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, SP, Brazil.
| | - Lorena F Benfica
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Delvan A Silva
- Department of Animal Sciences, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Eula R Carrara
- Department of Animal Sciences, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Henrique A Mulim
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Marcelo S Borges
- Department of Pathology, Reproduction and One Health, Faculty of Agricultural and Veterinary Sciences, Sao Paulo State University, Jaboticabal, SP, Brazil
| | | | | | | | | |
Collapse
|
4
|
Smaragdov MG. Identification of homozygosity-rich regions in the Holstein genome. Vavilovskii Zhurnal Genet Selektsii 2023; 27:471-479. [PMID: 37808215 PMCID: PMC10556852 DOI: 10.18699/vjgb-23-57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/03/2023] [Accepted: 02/27/2023] [Indexed: 10/10/2023] Open
Abstract
In this study, 371 Holstein cows from six herds and 26 Holstein bulls, which were used in these herds, were genotyped by the Illumina BovineSNP50 array. For runs of homozygosity (ROH) identification, consecutive and sliding runs were performed by the detectRUNS and Plink software. The missing calls did not significantly affect the ROH data. The mean number of ROH identified by consecutive runs was 95.4 ± 2.7, and that by sliding runs was 86.0 ± 2.6 in cows, while this number for Holstein bulls was lower 58.9 ± 1.9. The length of the ROH segments varied from 1 Mb to over 16 Mb, with the largest number of ROH having a length of 1-2 Mb. Of the 29 chromosomes, BTA 14, BTA 16, and BTA 7 were the most covered by ROH. The mean coefficient of inbreeding across the herds was 0.111 ± 0.003 and 0.104 ± 0.004 based on consecutive and sliding runs, respectively, and 0.078 ± 0.005 for bulls based on consecutive runs. These values do not exceed those for Holstein cattle in North America. The results of this study confirmed the more accurate identification of ROH by consecutive runs, and also that the number of allowed heterozygous SNPs may have a significant effect on ROH data.
Collapse
Affiliation(s)
- M G Smaragdov
- Russian Research Institute of Farm Animal Genetics and Breeding - Branch of the L.K. Ernst Federal Science Center for Animal Husbandry, St. Petersburg, Pushkin, Russia
| |
Collapse
|
5
|
Rocha RDFB, Garcia AO, Otto PI, da Silva MVB, Martins MF, Machado MA, Panetto JCDC, Guimarães SEF. Runs of homozygosity and signatures of selection for number of oocytes and embryos in the Gir Indicine cattle. Mamm Genome 2023:10.1007/s00335-023-09989-w. [PMID: 37000236 DOI: 10.1007/s00335-023-09989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/11/2023] [Indexed: 04/01/2023]
Abstract
Runs of homozygosity (ROH) and signatures of selection are the results of selection processes in livestock species that have been shown to affect several traits in cattle. The aim of the current work was to verify the profile of ROH and inbreeding depression in the number of total (TO) and viable oocytes (VO) and the number of embryos (EMBR) in Gir Indicine cattle. In addition, we aim to identify signatures of selection, genes, and enriched regions between Gir subpopulations sorted by breeding value for these traits. The genotype file contained 2093 animals and 420,718 SNP markers. Breeding values used to sort Gir animals were previously obtained. ROH and signature of selection analyses were performed using PLINK software, followed by ROH-based (FROH) and pedigree-based inbreeding (Fped) and a search for genes and their functions. An average of 50 ± 8.59 ROHs were found per animal. ROHs were separated into classes according to size, ranging from 1 to 2 Mb (ROH1-2Mb: 58.17%), representing ancient inbreeding, ROH2-4Mb (22.74%), ROH4-8Mb (11.34%), ROH8-16Mb (5.51%), and ROH>16Mb (2.24%). Combining our results, we conclude that the increase in general FROH and Fped significantly decreases TO and VO; however, in different chromosomes traits can increase or decrease with FROH. In the analysis for signatures of selection, we identified 15 genes from 47 significant genomic regions, indicating differences in populations with high and low breeding value for the three traits.
Collapse
Affiliation(s)
| | | | - Pamela Itajara Otto
- Department of Animal Science, Universidade Federal de Santa Maria, Santa Maria, Rio Grande Do Sul, Brazil
| | | | | | | | | | | |
Collapse
|
6
|
Dash S, Singh A, Dixit SP, Kumar A, Behera R. Exploring haplotype block structure, runs of homozygosity, and effective population size among dairy cattle breeds of India. Trop Anim Health Prod 2023; 55:129. [PMID: 36952060 DOI: 10.1007/s11250-023-03534-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/06/2023] [Indexed: 03/24/2023]
Abstract
The present study aimed to explore haplotype structure, runs of homozygosity (ROH), effective population size and persistence of gametic phase among three indigenous dairy cattle breeds, viz., Sahiwal (n = 19), Tharparkar (n = 17), and Gir (n = 16) by using BovineHD single nucleotide polymorphism (SNP) genotyping assay. The filtered SNPs after quality control ranged from 44% in Sahiwal to 53% in Gir. The highest number of haplotype blocks was observed in Tharparkar (15,640) and the lowest in Sahiwal (8027) spanning 17.3% and 7.8% of genome, respectively. The average block length was found close to 26 kb which suggests that multiple recombination events fragmented the ancestral haplotypes into smaller sizes. Gir cattle had the largest number of runs of homozygosity (ROH) regions (1762) followed by Tharparkar (1528) and Sahiwal (1138). Without pedigree information, inbreeding coefficients estimated from ROH (FROH) revealed that Gir had the highest FROH (0.099) proposing more inbreeding rate in this population. Effective population size (Ne) decreased slowly over the last 60 generations and at 13 generations ago; Ne was estimated as 70 for all the three dairy breeds. The highest gametic phase correlation (r = 0.78) was observed for Sahiwal and Tharparkar breed pair suggesting formulation of multi-breed reference population for successful implementation of genomic selection among dairy breeds. The decline in effective population size among native Indian cattle breeds may help in formulating strategies for conservation and genetic improvement of native germplasm for future use.
Collapse
Affiliation(s)
- Soumya Dash
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India.
- School of Crop Health Policy Support Research, ICAR-National Institute of Biotic Stress Management, Raipur, 493225, Chhattisgarh, India.
| | - Avtar Singh
- Animal Genetics and Breeding Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - S P Dixit
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Avnish Kumar
- Animal Genetics Division, ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Rajalaxmi Behera
- Regional Centre, ICAR-Directorate of Poultry Research, Bhubaneswar, 751003, Odisha, India
| |
Collapse
|
7
|
Perdomo-González DI, Laseca N, Demyda-Peyrás S, Valera M, Cervantes I, Molina A. Fine-tuning genomic and pedigree inbreeding rates in equine population with a deep and reliable stud book: the case of the Pura Raza Española horse. J Anim Sci Biotechnol 2022; 13:127. [PMID: 36336696 PMCID: PMC9639299 DOI: 10.1186/s40104-022-00781-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Estimating inbreeding, which is omnipresent and inevitable in livestock populations, is a primary goal for management and animal breeding especially for those interested in mitigating the negative consequences of inbreeding. Inbreeding coefficients have been historically estimated by using pedigree information; however, over the last decade, genome-base inbreeding coefficients have come to the forefront in this field. The Pura Raza Española (PRE) horse is an autochthonous Spanish horse breed which has been recognised since 1912. The total PRE population (344,718 horses) was used to estimate Classical (F), Ballou's ancestral, Kalinowski's ancestral, Kalinowski's new and the ancestral history coefficient values. In addition, genotypic data from a selected population of 805 PRE individuals was used to determine the individual inbreeding coefficient using SNP-by-SNP-based techniques (methods of moments -FHOM-, the diagonal elements of the genomic -FG-, and hybrid matrixes -FH-) and ROH measures (FRZ). The analyse of both pedigree and genomic based inbreeding coefficients in a large and robust population such as the PRE horse, with proven parenteral information for the last 40 years and a high degree of completeness (over 90% for the last 70 years) will allow us to understand PRE genetic variability better and the correlations between the estimations will give the data greater reliability. RESULTS The mean values of the pedigree-based inbreeding coefficients ranged from 0.01 (F for the last 3 generations -F3-) to 0.44 (ancestral history coefficient) and the mean values of genomic-based inbreeding coefficients varied from 0.05 (FRZ for three generations, FH and FHOM) to 0.11 (FRZ for nine generations). Significant correlations were also found between pedigree and genomic inbreeding values, which ranged between 0.58 (F3 with FHOM) and 0.79 (F with FRZ). In addition, the correlations between FRZ estimated for the last 20 generations and the pedigree-based inbreeding highlight the fact that fewer generations of genomic data are required when comparing total inbreeding values, and the opposite when ancient values are calculated. CONCLUSIONS Ultimately, our results show that it is still useful to work with a deep and reliable pedigree in pedigree-based genetic studies with very large effective population sizes. Obtaining a satisfactory parameter will always be desirable, but the approximation obtained with a robust pedigree will allow us to work more efficiently and economically than with massive genotyping.
Collapse
Affiliation(s)
- Davinia Isabel Perdomo-González
- Departamento Agronomía, Escuela Técnica Superior de Ingeniería Agromómica, Universidad de Sevilla, Ctra Utrera Km 1, 41013, Sevilla, Spain.
| | - Nora Laseca
- Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| | - Sebastián Demyda-Peyrás
- Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina
| | - Mercedes Valera
- Departamento Agronomía, Escuela Técnica Superior de Ingeniería Agromómica, Universidad de Sevilla, Ctra Utrera Km 1, 41013, Sevilla, Spain
| | - Isabel Cervantes
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Antonio Molina
- Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
8
|
Cortes-Hernández JG, Ruiz-López FJ, Vásquez-Peláez CG, García-Ruiz A. Runs of homocigosity and its association with productive traits in Mexican Holstein cattle. PLoS One 2022; 17:e0274743. [PMID: 36121861 PMCID: PMC9484644 DOI: 10.1371/journal.pone.0274743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/03/2022] [Indexed: 11/21/2022] Open
Abstract
The objective of this study was to describe the runs of homozygosity (ROH) detected in the Mexican Holstein population and to associate them with milk, fat and protein yields, and conformation final score. After imputation and genomic quality control, 4,227 genotyped animals with 100,806 SNPs markers each were used. ROH with a minimum length of 1 Mb and a minimum of 10 SNPs were included in the analysis. One heterozygous SNP marker and five missing genotypes per ROH were allowed. A total of 425,098 ROH were found in the studied population (71.83 ± 10.73 ROH per animal), with an average length and coverage of 4.80 ± 0.77 Mb, and 276.89 Mb, respectively. The average chromosome length covered by ROH was 10.40 ± 3.70 Mb. ROH between 1 and 2 Mb were the most frequent in the population (51.33%) while those between 14 and 16 Mb were the least frequent (1.20%). Long chromosomes showed a larger number of ROH. Chromosomes 10 and 20, had a greater percentage of their length covered by ROH because they presented a largest number of long ROH (>8 Mb). From the total ROH, 17 were detected in 1,847 animals and distributed among different chromosomes, and were associated with milk, fat and protein yield and percentage, and conformation final score. Of the ROH with effects on production traits, the majority were found with a length between 1 and 4 Mb. These results show evidence of genomic regions preserved by genetic selection and associated with the improvement of the productivity and functionality of dairy cattle.
Collapse
Affiliation(s)
- José G. Cortes-Hernández
- Programa de Maestría y Doctorado en Ciencias de la Producción y de la Salud Animal, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Felipe J. Ruiz-López
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Ajuchitlán Colón Querétaro, México
| | - Carlos G. Vásquez-Peláez
- Departamento de Genética y Bioestadística de la Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Adriana García-Ruiz
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Ajuchitlán Colón Querétaro, México
- * E-mail:
| |
Collapse
|
9
|
Genomic Population Structure of the Main Historical Genetic Lines of Spanish Merino Sheep. Animals (Basel) 2022; 12:ani12101327. [PMID: 35625173 PMCID: PMC9138057 DOI: 10.3390/ani12101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Historical documentation shows that the Spanish Merino sheep was selected over many centuries due to the quality of wool, following which it was used to originate all other Merino breeds around the world, mainly by crossbreeding with local breeds. Today, the historical genetic lines that originated the Spanish Merino are still preserved in several closed herds in which they have been bred for nearly 200 years, maintaining their original genetic purity. Our study demonstrates, using a genomic approach, the exceptional genetic richness and variability of these lines, which are clearly differentiated from modern Merino breeds, and must therefore be protected to safeguard the large genetic pool they represent. Abstract According to historiographical documentation, the Romans first began to select Merino sheep in the Iberian Peninsula during the first century, with the aim of obtaining a breed appreciated for the quality of its wool. This process continued locally during the Middle Ages, when Spanish sheep were protected, and their export to foreign countries was banned. It was during the 16th century when individual Merino sheep were allowed to spread around the world to be used to improve the wool quality of local breeds. However, the wool crisis of the 1960s shifted the selection criteria of the Merino breed towards meat production at the expenses of wool. Consequently, individuals that display the genetic and phenotypic characteristics of those sheep originally bred in the kingdom of Spain in the Middle Ages are extremely difficult to find in commercial herds. In this study, we characterized the genetic basis of 403 individuals from the main historical Spanish Merino genetic lines (Granda, Hidalgo, Lopez-Montenegro, Maeso, Donoso and Egea), which were bred in isolation over the last 200 years, using a genomic approach based on genotyping data from the Axiom™ Ovine 50K SNP Genotyping Array. Our analysis included measuring population structure, genomic differentiation indexes, runs of homozygosity (ROH) patterns, and an analysis of molecular variance (AMOVA). The results showed large genetic differences between the historical lines, even though they belong to the same breed. In addition, ROH analysis showed differences due to increased inbreeding among the ancient generations compared with the modern Merino lines, confirming the breed’s ancestral and closed origin. However, our results also showed a high variability and richness within the Spanish historical Merino lines from a genetic viewpoint. This fact, together with their great ability to produce high-quality wool, suggests that ancestral Merino lines from Spain should be considered a valuable genetic population to be maintained as a resource for the improvement of wool-producing sheep breeds all around the world.
Collapse
|
10
|
Laseca N, Molina A, Ramón M, Valera M, Azcona F, Encina A, Demyda-Peyrás S. Fine-Scale Analysis of Runs of Homozygosity Islands Affecting Fertility in Mares. Front Vet Sci 2022; 9:754028. [PMID: 35252415 PMCID: PMC8891756 DOI: 10.3389/fvets.2022.754028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
The loss of genetic variability in livestock populations bred under strict selection processes is a growing concern, as it may lead to increased inbreeding values and lower fertility, as a consequence of the “inbreeding depression” effect. This is particularly important in horses, where inbreeding levels tend to rise as individuals become more and more closely related. In this study, we evaluated the effect of increased inbreeding levels on mare fertility by combining an SNP-based genomic approach using runs of homozygosity and the estimation of genetic breeding values for reproductive traits in a large population of Pura Raza Española mares. Our results showed a negative correlation between whole-genome homozygosity and fertility estimated breeding values (EBVs) at the genome level (ρ = −0.144). However, the analysis at chromosome level revealed a wide variability, with some chromosomes showing higher correlations than others. Interestingly, the correlation was stronger (−0.241) when we repeated the analysis in a reduced dataset including the 10% most and least fertile individuals, where the latter showed an increase in average inbreeding values (FROH) of around 30%. We also found 41 genomic regions (ROHi, runs of homozygosity islands) where homozygosity increased 100-fold, 13 of which were significantly associated with fertility after cross-validation. These regions encompassed 17 candidate genes previously related to oocyte and embryo development in several species. Overall, we demonstrated the relationship between increased homozygosis at the genomic level and fertility in mares. Our findings may help to deal with the occurrence of inbreeding depression, as well as further our understanding of the mechanisms underlying fertility in mares.
Collapse
Affiliation(s)
- Nora Laseca
- Laboratorio de Diagnóstico Genético Veterinario, Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| | - Antonio Molina
- Laboratorio de Diagnóstico Genético Veterinario, Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| | - Manuel Ramón
- Cersyra de Valdepeñas, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal Castilla La Mancha, Tomelloso, Spain
| | - Mercedes Valera
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Sevilla, Spain
| | - Florencia Azcona
- IGEVET (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Ana Encina
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Sevilla, Spain
- Asociación Nacional de Criadores de Caballos de Pura Raza Española, Sevilla, Spain
| | - Sebastián Demyda-Peyrás
- Departamento de Producción Animal, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET LA PLATA), La Plata, Argentina
- *Correspondence: Sebastián Demyda-Peyrás
| |
Collapse
|
11
|
Poyato-Bonilla J, Laseca N, Demyda-Peyrás S, Molina A, Valera M. 500 years of breeding in the Carthusian Strain of Pura Raza Español horse: An evolutional analysis using genealogical and genomic data. J Anim Breed Genet 2021; 139:84-99. [PMID: 34363624 DOI: 10.1111/jbg.12641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/19/2021] [Accepted: 07/25/2021] [Indexed: 01/19/2023]
Abstract
The Carthusian horse is a Pura Raza Español (PRE) strain (CS), bred as a closed population since its creation more than 500 years ago. The aim of this study was to analyse for the first time its population structure and situation of variability combining both genealogical (GEL) and genomic (GEN) data. The GEL data comprised 348,429 pedigree records (56,105 CS horses), while the GEN analysis included the high-density genotypes (670,804 SNPs) of 287 horses. Pedigree completeness demonstrated its accuracy, showing a good correlation of GEL (F) and GEN (FROH ) inbreeding coefficient in the case of PRE subpopulations partially related and non-related to Carthusian strain (0.68) but a lower value in the 100% Carthusian horses (0.42), due to the high weight of founders not detected by GEL analysis. GEN (PCA, AMOVA, and Admixture) and GEL analysis showed a good differentiation of subpopulations, but also a high level of introgression of the CS in the breed during past decades. A recent change in this trend was noteworthy, with a considerable reduction in CS variability and a genetic bottleneck (effective population sizes of 31.57 and 30.20 in GEL and GEN analysis, respectively, in last generation). The PRE has maintained its variability, and a considerable difference in estimated Ne by GEL (60.77) and GEN (188.0) data was observed. Using two sources of complementary information, it was found the existence of an ancient PRE strain with a unique genetic landmark, practically free from the influence of other equine populations.
Collapse
Affiliation(s)
- Julia Poyato-Bonilla
- Dpto. Agronomía. Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Sevilla, Spain
| | - Nora Laseca
- Dpto. Genética. Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Sebastián Demyda-Peyrás
- Departamento de Producción Animal, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Buenos Aires, Argentina.,CONICET, CCT La Plata, La Plata, Argentina
| | - Antonio Molina
- Dpto. Genética. Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Mercedes Valera
- Dpto. Agronomía. Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
12
|
Terán E, Azcona F, Ramón M, Molina A, Dorado J, Hidalgo M, Ross P, Goszczynski D, Demyda-Peyrás S. Sperm morphometry is affected by increased inbreeding in the Retinta cattle breed: A molecular approach. Mol Reprod Dev 2021; 88:416-426. [PMID: 34009693 DOI: 10.1002/mrd.23475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/02/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022]
Abstract
The effect of inbreeding depression on sperm motility is well documented, but its influence on sperm morphometry has been scarcely examined to date. Here, we combined the use of computer-assisted sperm morphometry analysis (CASMA) with a SNP-based genomic approach to determine and characterize the effect of inbreeding on the sperm shape of a highly inbred cattle population. We determined seven morphometric parameters on frozen-thawed sperm samples of 57 Retinta bulls: length (L, µm), width (W, µm), area (A, µm2 ), perimeter (P, µm), ellipticity (ELI; L/W), elongation (L-W)/(L + W) and perimeter-to-area shape factor (p2a; P2 /4 × π × A). The comparison of highly inbred (HI) and lowly inbreed (LI) individuals based on runs of homozygosity (ROH) inbreeding values (F ROH ) showed no differences between groups. An additional two-step unsupervised sperm subpopulation analysis based on morphometric parameters showed significant differences in the abundance of different sperm subpopulations between groups (p < 0.05). This analysis revealed that HI bulls harbored a higher percentage of narrow-head sperm as opposed to the higher percentage of large- and round-headed sperm detected in LI. A further genomic characterization revealed 23 regions differentially affected by inbreeding in both groups, detecting six genes (SPAG6, ARMC3, PARK7, VAMP3, DYNLRB2, and PHF7) previously related to different spermatogenesis-associated processes.
Collapse
Affiliation(s)
- Ester Terán
- IGEVET - Instituto de Genética Veterinaria, UNLP - CONICET, Facultad de Ciencias Veterinarias Universidad Nacional de la Plata, La Plata, Buenos Aires, Argentina.,Departamento de Producción Animal, Facultad de Ciencias Veterinarias, UNLP - CONICET, Facultad de Ciencias Veterinarias Universidad Nacional de la Plata, La Plata, Buenos Aires, Argentina
| | - Florencia Azcona
- IGEVET - Instituto de Genética Veterinaria, UNLP - CONICET, Facultad de Ciencias Veterinarias Universidad Nacional de la Plata, La Plata, Buenos Aires, Argentina
| | - Manuel Ramón
- CERSYRA-Centro Regional de Selección y Reproducción Animal de Castilla-La Mancha, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Valdepeñas, España
| | - Antonio Molina
- Departamento de Genética, Universidad de Córdoba, Córdoba, España
| | - Jesús Dorado
- Grupo de Reproducción Veterinaria, Departamento de Medicina y Cirugía animal, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, España
| | - Manuel Hidalgo
- Grupo de Reproducción Veterinaria, Departamento de Medicina y Cirugía animal, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, España
| | - Pablo Ross
- Department of Animal Science, University of California at Davis, Davis, California, USA
| | - Daniel Goszczynski
- Department of Animal Science, University of California at Davis, Davis, California, USA
| | - Sebastián Demyda-Peyrás
- Departamento de Producción Animal, Facultad de Ciencias Veterinarias, UNLP - CONICET, Facultad de Ciencias Veterinarias Universidad Nacional de la Plata, La Plata, Buenos Aires, Argentina
| |
Collapse
|
13
|
Pirosanto Y, Laseca N, Valera M, Molina A, Moreno-Millán M, Bugno-Poniewierska M, Ross P, Azor P, Demyda-Peyrás S. Screening and detection of chromosomal copy number alterations in the domestic horse using SNP-array genotyping data. Anim Genet 2021; 52:431-439. [PMID: 34013628 DOI: 10.1111/age.13077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/25/2021] [Accepted: 04/22/2021] [Indexed: 12/27/2022]
Abstract
Chromosomal abnormalities are a common cause of infertility in horses. However, they are difficult to detect using automated methods. Here, we propose a simple methodology based on single nucleotide polymorphism (SNP)-array data that allows us to detect the main chromosomal abnormalities in horses in a single procedure. As proof of concept, we were able to detect chromosomal abnormalities in 33 out of 268 individuals, including monosomies, chimerisms, and male and female sex-reversions, by analyzing the raw signal intensity produced by an SNP array-based genotyping platform. We also demonstrated that the procedure is not affected by the SNP density of the array employed or by the inbreeding level of the individuals. Finally, the methodology proposed in this study could be performed in an open bioinformatic environment, thus permitting its integration as a flexible screening tool in diagnostic laboratories and genomic breeding programs.
Collapse
Affiliation(s)
- Y Pirosanto
- Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 s/n, La Plata, 1900, Argentina.,IGEVET (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, UNLP, Calle 60 y 118 s/n, La Plata, 1900, Argentina
| | - N Laseca
- Laboratorio de Diagnóstico Genético Veterinario, Departamento de Genética, Universidad de Córdoba, CN IV KM 396, Edificio Gregor Mendel, Campus Rabanales, Córdoba, 14071, España
| | - M Valera
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Ctra. de Utrera km 1, Sevilla, 41013, España
| | - A Molina
- Laboratorio de Diagnóstico Genético Veterinario, Departamento de Genética, Universidad de Córdoba, CN IV KM 396, Edificio Gregor Mendel, Campus Rabanales, Córdoba, 14071, España
| | - M Moreno-Millán
- Laboratorio de Diagnóstico Genético Veterinario, Departamento de Genética, Universidad de Córdoba, CN IV KM 396, Edificio Gregor Mendel, Campus Rabanales, Córdoba, 14071, España
| | - M Bugno-Poniewierska
- Katedra Rozrodu, Anatomii i Genomiki Zwierząt Wydział Hodowli i Biologii Zwierząt, Uniwersytet Rolniczy im. Hugona Kołłątaja w Krakowie, al. Mickiewicza 24/28, Krakow, 30-059, Poland
| | - P Ross
- Department of Animal Science, University of California, Davis, One Shields Ave., Davis, CA, 95616, USA
| | - P Azor
- Asociación Nacional de Criadores de Caballos de Pura Raza Española (ANCCE), Edif. Indotorre · Avda. del Reino Unido 11, pl. 3ª 2, Sevilla, 41012, España
| | - S Demyda-Peyrás
- Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 s/n, La Plata, 1900, Argentina.,IGEVET (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, UNLP, Calle 60 y 118 s/n, La Plata, 1900, Argentina
| |
Collapse
|
14
|
Pavan S, Delvento C, Mazzeo R, Ricciardi F, Losciale P, Gaeta L, D'Agostino N, Taranto F, Sánchez-Pérez R, Ricciardi L, Lotti C. Almond diversity and homozygosity define structure, kinship, inbreeding, and linkage disequilibrium in cultivated germplasm, and reveal genomic associations with nut and seed weight. HORTICULTURE RESEARCH 2021; 8:15. [PMID: 33423037 PMCID: PMC7797004 DOI: 10.1038/s41438-020-00447-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/04/2020] [Accepted: 11/13/2020] [Indexed: 05/04/2023]
Abstract
Almond [Prunus dulcis Miller (D.A. Webb)] is the main tree nut species worldwide. Here, genotyping-by-sequencing (GBS) was applied to 149 almond cultivars from the ex situ collections of the Italian Council for Agricultural Research (CREA) and the Spanish National Research Council (CSIC), leading to the detection of 93,119 single-nucleotide polymorphisms (SNPs). The study of population structure outlined four distinct genetic groups and highlighted diversification between the Mediterranean and Californian gene pools. Data on SNP diversity and runs of homozygosity (ROHs) allowed the definition of kinship, inbreeding, and linkage disequilibrium (LD) decay in almond cultivated germplasm. Four-year phenotypic observations, gathered on 98 cultivars of the CREA collection, were used to perform a genome-wide association study (GWAS) and, for the first time in a crop species, homozygosity mapping (HM), resulting in the identification of genomic associations with nut, shell, and seed weight. Both GWAS and HM suggested that loci controlling nut and seed weight are mostly independent. Overall, this study provides insights on the almond cultivation history and delivers information of major interest for almond genetics and breeding. In a broader perspective, our results encourage the use of ROHs in crop science to estimate inbreeding, choose parental combinations minimizing the risk of inbreeding depression, and identify genomic footprints of selection for specific traits.
Collapse
Affiliation(s)
- Stefano Pavan
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/A, Bari, 70126, Italy.
- Institute of Biomedical Technologies, National Research Council (CNR), Via Amendola 122/D, Bari, 70126, Italy.
| | - Chiara Delvento
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/A, Bari, 70126, Italy
| | - Rosa Mazzeo
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, Foggia, 71100, Italy
| | - Francesca Ricciardi
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, Foggia, 71100, Italy
| | - Pasquale Losciale
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/A, Bari, 70126, Italy
| | - Liliana Gaeta
- Council for Agricultural Research and Economics-Research Centre for Agriculture and Environment (CREA-AA), Bari, 70125, Italy
| | - Nunzio D'Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Italy
| | - Francesca Taranto
- Institute of Biosciences and Bioresources, National Research Council of Italy, Portici, 80055, Italy
| | | | - Luigi Ricciardi
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/A, Bari, 70126, Italy
| | - Concetta Lotti
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, Foggia, 71100, Italy.
| |
Collapse
|
15
|
Strillacci MG, Vevey M, Blanchet V, Mantovani R, Sartori C, Bagnato A. The Genomic Variation in the Aosta Cattle Breeds Raised in an Extensive Alpine Farming System. Animals (Basel) 2020; 10:ani10122385. [PMID: 33322839 PMCID: PMC7764440 DOI: 10.3390/ani10122385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/28/2022] Open
Abstract
The Aosta Red Pied (Valdostana Pezzata Rossa (VRP)), the Aosta Black Pied (Valdostana Pezzata Nera (VBP)) and the Aosta Chestnut (Valdostana Castana (CAS)) are dual-purpose cattle breeds (meat and milk), very well adapted to the harsh environmental conditions of alpine territories: their farming is in fact characterized by summer pasture at very high altitude. A total of 728 individuals were genotyped with the GeenSeek Genomic Profiler® (GGP) Bovine 150K Illumina SNP chip as a part of the DUALBREEDING-PSRN Italian-funded research project. The genetic diversity among populations showed that the three breeds are distinct populations based on the FST values, ADMIXTURE and Principal Component Analysis (PCA) results. Runs of Homozygosity (ROH) were obtained for the three populations to disclose recent autozygosity. The genomic inbreeding based on the ROH was calculated and coupled with information derived from the F (inbreeding coefficient) and FST parameters. The mean FROH values were low: CAS = 0.06, VBP = 0.05 and VRP = 0.07, while the average F values were -0.003, -0.01 and -0.003, respectively. The annotation and enrichment analysis, performed in the identified most frequent ROH (TOP_ROH), showed genes that can be linked to the resilience capacity of these populations to harsh environmental farming conditions, and to the peculiar characteristics searched for by farmers in each breed.
Collapse
Affiliation(s)
- Maria Giuseppina Strillacci
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell’Università 6, 20133 Milano, Italy;
| | - Mario Vevey
- Associazione Nazionale Bovini di Razza Valdostana, Fraz. Favret, 5, 11020 Gressan, Italy; (M.V.); (V.B.)
| | - Veruska Blanchet
- Associazione Nazionale Bovini di Razza Valdostana, Fraz. Favret, 5, 11020 Gressan, Italy; (M.V.); (V.B.)
| | - Roberto Mantovani
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Università degli Studi di Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (R.M.); (C.S.)
| | - Cristina Sartori
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Università degli Studi di Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (R.M.); (C.S.)
| | - Alessandro Bagnato
- Department of Veterinary Medicine, Università degli Studi di Milano, Via dell’Università 6, 20133 Milano, Italy;
- Correspondence: ; Tel.: +39-02-5033-4583
| |
Collapse
|
16
|
Abstract
Runs of homozygosity (ROH) are chromosomal stretches that in a diploid genome appear in a homozygous state and display identical alleles at multiple contiguous loci. This study aimed to systematically compare the genomic distribution of the ROH islands among five populations of wild vs commercial chickens of both layer and broiler type. To this end, we analyzed whole genome sequences of 115 birds including white layer (WL, n = 25), brown layer (BL, n = 25), broiler line A (BRA, n = 20), broiler line B (BRB, n = 20) and Red Junglefowl (RJF, n = 25). The ROH segments varied in size markedly among populations, ranging from 0.3 to 21.83 Mb reflecting their past genealogy. White layers contained the largest portion of the genome in homozygous state with an average ROH length of 432.1 Mb (±18.7) per bird, despite carrying it in short segments (0.3-1 Mb). Population-wise inbreeding measures based on Wright's (Fis) and genomic (FROH) metrics revealed highly inbred genome of layer lines relative to the broilers and Red Junglefowl. We further revealed the ROH islands, among commercial lines overlapped with QTL related to limb development (GREM1, MEOX2), body weight (Meis2a.1, uc_338), eggshell color (GLCCI1, ICA1, UMAD1), antibody response to Newcastle virus (ROBO2), and feather pecking. Comparison of ROH landscape in sequencing resolution demonstrated that a sizable portion of genome of commercial lines segregates in homozygote state, reflecting many generations of assortative mating and intensive selection in their recent history. In contrary, wild birds carry shorter ROH segments, likely suggestive of older evolutionary events.
Collapse
|
17
|
Rodríguez-Valera Y, Rocha D, Naves M, Renand G, Pérez-Pineda E, Ramayo-Caldas Y, Ramos-Onsins SE. The Identification of Runs of Homozygosity Gives a Focus on the Genetic Diversity and Adaptation of the "Charolais de Cuba" Cattle. Animals (Basel) 2020; 10:ani10122233. [PMID: 33261195 PMCID: PMC7760288 DOI: 10.3390/ani10122233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The Charolais de Cuba cattle is a tropical adapted breed founded in Cuba around 120 years ago from Charolais French specimens. Nowadays, it is still a closed breed and remains as a small population. In this work, we analyzed the inbreeding and diversity patterns, as well as the population size, of this recent adapted breed via a run of homozygosity (ROH) analysis. We found that the genomic inbreeding levels are higher in the Charolais de Cuba breed compared to French and British Charolais populations. Nevertheless, we detected that the effective population size experienced a very similar decline during the last century in the three Charolais populations studied. Finally, a number of regions with exceptional patterns of long homozygosity were identified in this breed, and these could be related to processes of adaptation to tropical conditions. Abstract Inbreeding and effective population size (Ne) are fundamental indicators for the management and conservation of genetic diversity in populations. Genomic inbreeding gives accurate estimates of inbreeding, and the Ne determines the rate of the loss of genetic variation. The objective of this work was to study the distribution of runs of homozygosity (ROHs) in order to estimate genomic inbreeding (FROH) and an effective population size using 38,789 Single Nucleotide Polymorphisms (SNPs) from the Illumina Bovine 50K BeadChip in 86 samples from populations of Charolais de Cuba (n = 40) cattle and to compare this information with French (n = 20) and British Charolais (n = 26) populations. In the Cuban, French, and British Charolais populations, the average estimated genomic inbreeding values using the FROH statistics were 5.7%, 3.4%, and 4%, respectively. The dispersion measured by variation coefficient was high at 43.9%, 37.0%, and 54.2%, respectively. The effective population size experienced a very similar decline during the last century in Charolais de Cuba (from 139 to 23 individuals), in French Charolais (from 142 to 12), and in British Charolais (from 145 to 14) for the ~20 last generations. However, the high variability found in the ROH indicators and FROH reveals an opportunity for maintaining the genetic diversity of this breed with an adequate mating strategy, which can be favored with the use of molecular markers. Moreover, the detected ROH were compared to previous results obtained on the detection of signatures of selection in the same breed. Some of the observed signatures were confirmed by the ROHs, emphasizing the process of adaptation to tropical climate experienced by the Charolais de Cuba population.
Collapse
Affiliation(s)
- Yoel Rodríguez-Valera
- Faculty of Agricultural Sciences, University of Granma, Bayamo 95100, Cuba; (Y.R.-V.); (E.P.-P.)
| | - Dominique Rocha
- GABI, INRAE, AgroParisTech, University Paris-Saclay, F-78350 Jouy-en-Josas, France; (D.R.); (G.R.)
| | - Michel Naves
- INRAE, URZ, 97170 Petit Bourg, Guadeloupe, France;
| | - Gilles Renand
- GABI, INRAE, AgroParisTech, University Paris-Saclay, F-78350 Jouy-en-Josas, France; (D.R.); (G.R.)
| | - Eliecer Pérez-Pineda
- Faculty of Agricultural Sciences, University of Granma, Bayamo 95100, Cuba; (Y.R.-V.); (E.P.-P.)
| | - Yuliaxis Ramayo-Caldas
- GABI, INRAE, AgroParisTech, University Paris-Saclay, F-78350 Jouy-en-Josas, France; (D.R.); (G.R.)
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
- Correspondence: (Y.R.-C.); (S.E.R.-O.)
| | - Sebastian E. Ramos-Onsins
- Plant and Animal Genomics, Centre of Research in Agricultural Genomics (CRAG) Consortium CSIC-IRTA-UAB-UB, Campus UAB, 08193 Bellaterra, Spain
- Correspondence: (Y.R.-C.); (S.E.R.-O.)
| |
Collapse
|
18
|
Fallahi MH, Shahrbabak HM, Shahrbabak MM, Arpanahi RA, Gholami S. Assessment of Genetic Diversity in Azerbaijani Buffalo Population in Iran Based on Runs of Homozygosity Stretches. RUSS J GENET+ 2020. [DOI: 10.1134/s102279542010004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Genome-Wide Assessment of Runs of Homozygosity in Chinese Wagyu Beef Cattle. Animals (Basel) 2020; 10:ani10081425. [PMID: 32824035 PMCID: PMC7460448 DOI: 10.3390/ani10081425] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Runs of homozygosity (ROH) are continuous homozygous regions that generally exist in the DNA sequence of diploid organisms. Identifications of ROH leading to reduction in performance can provide valuable insight into the genetic architecture of complex traits. Here, we evaluated genome-wide patterns of homozygosity and their association with important traits in Chinese Wagyu beef cattle. We identified a total of 29,271 ROH segments from 462 animals. Within each animal, an average number of ROH was 63.36 while an average length was 62.19 Mb. To evaluate the enrichment of ROH across genomes, we initially identified 280 ROH regions by merging ROH events across all individuals. Of these, nine regions containing 154 candidate genes, were significantly associated with six traits (body height, chest circumference, fat coverage, backfat thickness, ribeye area, and carcass length; p < 0.01). Moreover, we found 26 consensus ROH regions with frequencies exceeding 10%, and several regions overlapped with QTLs, which are associated with body weight, calving ease, and stillbirth. Among them, we observed 41 candidate genes, including BCKDHB, MAB21L1, SLC2A13, FGFR3, FGFRL1, CPLX1, CTNNA1, CORT, CTNNBIP1, and NMNAT1, which have been previously reported to be related to body conformation, meat quality, susceptibility, and reproductive traits. In summary, we assessed genome-wide autozygosity patterns and inbreeding levels in Chinese Wagyu beef cattle. Our study identified many candidate regions and genes overlapped with ROH for several important traits, which could be unitized to assist the design of a selection mating strategy in beef cattle.
Collapse
|
20
|
Estimates of Autozygosity Through Runs of Homozygosity in Farmed Coho Salmon. Genes (Basel) 2020; 11:genes11050490. [PMID: 32365758 PMCID: PMC7290985 DOI: 10.3390/genes11050490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 11/17/2022] Open
Abstract
The characterization of runs of homozygosity (ROH), using high-density single nucleotide polymorphisms (SNPs) allows inferences to be made about the past demographic history of animal populations and the genomic ROH has become a common approach to characterize the inbreeding. We aimed to analyze and characterize ROH patterns and compare different genomic and pedigree-based methods to estimate the inbreeding coefficient in two pure lines (POP A and B) and one recently admixed line (POP C) of coho salmon (Oncorhynchus kisutch) breeding nuclei, genotyped using a 200 K Affymetrix Axiom® myDesign Custom SNP Array. A large number and greater mean length of ROH were found for the two “pure” lines and the recently admixed line (POP C) showed the lowest number and smaller mean length of ROH. The ROH analysis for different length classes suggests that all three coho salmon lines the genome is largely composed of a high number of short segments (<4 Mb), and for POP C no segment >16 Mb was found. A high variable number of ROH, mean length and inbreeding values across chromosomes; positively the consequence of artificial selection. Pedigree-based inbreeding values tended to underestimate genomic-based inbreeding levels, which in turn varied depending on the method used for estimation. The high positive correlations between different genomic-based inbreeding coefficients suggest that they are consistent and may be more accurate than pedigree-based methods, given that they capture information from past and more recent demographic events, even when there are no pedigree records available.
Collapse
|
21
|
Szmatoła T, Gurgul A, Jasielczuk I, Fu W, Ropka-Molik K. A detailed characteristics of bias associated with long runs of homozygosity identification based on medium density SNP microarrays. J Genomics 2020; 8:43-48. [PMID: 32328205 PMCID: PMC7171384 DOI: 10.7150/jgen.39147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/18/2020] [Indexed: 01/18/2023] Open
Abstract
In the present study, runs of homozygosity (ROH) detected with the use of a standard bovine 54k single nucleotide polymorphism (SNP) genotyping assay and two different ROH detection approaches, based on 50 (M1) or 15 (M2) consecutive SNPs, were compared with results of whole genome sequencing. Both microarray-based methods accurately recognised medium-sized ROH, however, it was found that M2 method seemed to better than M1 identify short ROH, but highly overestimated their number, leading to numerous false positive calls. Moreover, long ROH identified with microarray data tended to break into shorter segments in sequencing data because of the presence of regions with high heterozygosity within the ROH sequences. This may indicate, that these long ROH are formed by closely positioned shorter homozygous segments that may be of older origin or may be created by two similar but not identical haplotypes, showing minor internal recombination signs. Such finding also suggests that at least some of the results of previous studies in regard to long ROH may be biased leading to inaccurate estimations of genomes autozygosity via ROH classification into length categories.
Collapse
Affiliation(s)
- Tomasz Szmatoła
- University Centre of Veterinary Medicine, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059 Kraków, Poland.,National Research Institute of Animal Production, Department of Animal Molecular Biology, Krakowska 1, 32-083 Balice, Poland
| | - Artur Gurgul
- University Centre of Veterinary Medicine, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059 Kraków, Poland.,National Research Institute of Animal Production, Department of Animal Molecular Biology, Krakowska 1, 32-083 Balice, Poland
| | - Igor Jasielczuk
- University Centre of Veterinary Medicine, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059 Kraków, Poland.,National Research Institute of Animal Production, Department of Animal Molecular Biology, Krakowska 1, 32-083 Balice, Poland
| | - Weiwei Fu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Katarzyna Ropka-Molik
- National Research Institute of Animal Production, Department of Animal Molecular Biology, Krakowska 1, 32-083 Balice, Poland
| |
Collapse
|
22
|
Aramburu O, Ceballos F, Casanova A, Le Moan A, Hemmer-Hansen J, Bekkevold D, Bouza C, Martínez P. Genomic Signatures After Five Generations of Intensive Selective Breeding: Runs of Homozygosity and Genetic Diversity in Representative Domestic and Wild Populations of Turbot ( Scophthalmus maximus). Front Genet 2020; 11:296. [PMID: 32346384 PMCID: PMC7169425 DOI: 10.3389/fgene.2020.00296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Massive genotyping of single nucleotide polymorphisms (SNP) has opened opportunities for analyzing the way in which selection shapes genomes. Artificial or natural selection usually leaves genomic signatures associated with selective sweeps around the responsible locus. Strong selective sweeps are most often identified either by lower genetic diversity than the genomic average and/or islands of runs of homozygosity (ROHi). Here, we conducted an analysis of selective sweeps in turbot (Scophthalmus maximus) using two SNP datasets from a Northeastern Atlantic population (36 individuals) and a domestic broodstock (46 individuals). Twenty-six families (∼ 40 offspring per family) from this broodstock and three SNP datasets applying differing filtering criteria were used to adjust ROH calling parameters. The best-fitted genomic inbreeding estimate (FROH) was obtained by the sum of ROH longer than 1 Mb, called using a 21,615 SNP panel, a sliding window of 37 SNPs and one heterozygous SNP per window allowed. These parameters were used to obtain the ROHi distribution in the domestic and wild populations (49 and 0 ROHi, respectively). Regions with higher and lower genetic diversity within each population were obtained using sliding windows of 37 SNPs. Furthermore, those regions were mapped in the turbot genome against previously reported genetic markers associated with QTL (Quantitative Trait Loci) and outlier loci for domestic or natural selection to identify putative selective sweeps. Out of the 319 and 278 windows surpassing the suggestive pooled heterozygosity thresholds (ZHp) in the wild and domestic population, respectively, 78 and 54 were retained under more restrictive ZHp criteria. A total of 116 suggestive windows (representing 19 genomic regions) were linked to either QTL for production traits, or outliers for divergent or balancing selection. Twenty-four of them (representing 3 genomic regions) were retained under stricter ZHp thresholds. Eleven QTL/outlier markers were exclusively found in suggestive regions of the domestic broodstock, 7 in the wild population and one in both populations; one (broodstock) and two (wild) of those were found in significant regions retained under more restrictive ZHp criteria in the broodstock and the wild population, respectively. Genome mining and functional enrichment within regions associated with selective sweeps disclosed relevant genes and pathways related to aquaculture target traits, including growth and immune-related pathways, metabolism and response to hypoxia, which showcases how this genome atlas of genetic diversity can be a valuable resource to look for candidate genes related to natural or artificial selection in turbot populations.
Collapse
Affiliation(s)
- Oscar Aramburu
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, Lugo, Spain.,Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco Ceballos
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Johannesburg, South Africa
| | - Adrián Casanova
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, Lugo, Spain.,Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Alan Le Moan
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Jakob Hemmer-Hansen
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Dorte Bekkevold
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Carmen Bouza
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, Lugo, Spain.,Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Paulino Martínez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, Lugo, Spain.,Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
23
|
Peripolli E, Metzger J, de Lemos MVA, Stafuzza NB, Kluska S, Olivieri BF, Feitosa FLB, Berton MP, Lopes FB, Munari DP, Lôbo RB, Magnabosco CDU, Di Croce F, Osterstock J, Denise S, Pereira ASC, Baldi F. Autozygosity islands and ROH patterns in Nellore lineages: evidence of selection for functionally important traits. BMC Genomics 2018; 19:680. [PMID: 30223795 PMCID: PMC6142381 DOI: 10.1186/s12864-018-5060-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/07/2018] [Indexed: 12/20/2022] Open
Abstract
Background The aim of this study was to assess genome-wide autozygosity in a Nellore cattle population and to characterize ROH patterns and autozygosity islands that may have occurred due to selection within its lineages. It attempts also to compare estimates of inbreeding calculated from ROH (FROH), genomic relationship matrix (FGRM), and pedigree-based coefficient (FPED). Results The average number of ROH per animal was 55.15 ± 13.01 with an average size of 3.24 Mb. The Nellore genome is composed mostly by a high number of shorter segments accounting for 78% of all ROH, although the proportion of the genome covered by them was relatively small. The genome autozygosity proportion indicates moderate to high inbreeding levels for classical standards, with an average value of 7.15% (178.70 Mb). The average of FPED and FROH, and their correlations (− 0.05 to 0.26) were low. Estimates of correlation between FGRM-FPED was zero, while the correlation (− 0.01 to − 0.07) between FGRM-FROH decreased as a function of ROH length, except for FROH > 8Mb (− 0.03). Overall, inbreeding coefficients were not high for the genotyped animals. Autozygosity islands were evident across the genome (n = 62) and their genomic location did not largely differ within lineages. Enriched terms (p < 0.01) associated with defense response to bacteria (GO:0042742), immune complex reaction (GO:0045647), pregnancy-associated glycoproteins genes (GO:0030163), and organism growth (GO:0040014) were described within the autozygotic islands. Conclusions Low FPED-FROH correlation estimates indicate that FPED is not the most suitable method for capturing ancient inbreeding when the pedigree does not extend back many generations and FROH should be used instead. Enriched terms (p < 0.01) suggest a strong selection for immune response. Non-overlapping islands within the lineages greatly explain the mechanism underlying selection for functionally important traits in Nellore cattle. Electronic supplementary material The online version of this article (10.1186/s12864-018-5060-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisa Peripolli
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, UNESP Univ Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, 14884-900, Brazil.
| | - Julia Metzger
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Marcos Vinícius Antunes de Lemos
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, UNESP Univ Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, 14884-900, Brazil
| | - Nedenia Bonvino Stafuzza
- Departamento de Ciências Exatas, Faculdade de Ciências Agrárias e Veterinárias, UNESP Univ Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, 14884-900, Brazil
| | - Sabrina Kluska
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, UNESP Univ Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, 14884-900, Brazil
| | - Bianca Ferreira Olivieri
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, UNESP Univ Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, 14884-900, Brazil
| | - Fabieli Louise Braga Feitosa
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, UNESP Univ Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, 14884-900, Brazil
| | - Mariana Piatto Berton
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, UNESP Univ Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, 14884-900, Brazil
| | - Fernando Brito Lopes
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, UNESP Univ Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, 14884-900, Brazil
| | - Danísio Prado Munari
- Departamento de Ciências Exatas, Faculdade de Ciências Agrárias e Veterinárias, UNESP Univ Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, 14884-900, Brazil
| | - Raysildo Barbosa Lôbo
- Associação Nacional de Criadores e Pesquisadores (ANCP), Ribeirão Preto, 14020-230, Brazil
| | | | | | | | | | | | - Fernando Baldi
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, UNESP Univ Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, 14884-900, Brazil
| |
Collapse
|