1
|
Tian X, Xu W, Du Y, Chen J. Transcriptomic analysis provides insights into the mechanisms underlying the resistance of Penaeus vannamei to Enterocytozoon hepatopenaei (EHP). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109902. [PMID: 39276814 DOI: 10.1016/j.fsi.2024.109902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
The Penaeus vannamei aquaculture industry is facing a significant challenge in the form of hepatopancreatic microsporidiosis (HPM) caused by Enterocytozoon hepatopenaei (EHP), resulting in substantial economic losses. However, the extent of knowledge regarding the mechanisms by which shrimp resist EHP is limited. We screened resistant and susceptible shrimp and found that resistant shrimp had lower EHP load and less tissue damage. To gain insight into the molecular mechanisms underlying the EHP resistance of shrimp, a comparison was conducted at the transcriptional level between the resistant and susceptible families. Transcriptomic analysis of shrimp hepatopancreas revealed significant differences between the resistant and susceptible families. Compared to the susceptible family, the immune system of the resistant family was activated. The resistant family showed up-regulation in the expression of cathepsin L, C-type lectin, penaeidin, chitinase genes, and metabolism of xenobiotics by cytochrome P450-related genes. Additionally, the resistant shrimp exhibited a higher capacity for amino acid uptake. The observed differences in the resistant and susceptible family transcriptome may contribute to the shrimp's resistance to EHP.
Collapse
Affiliation(s)
- Xiangrong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, PR China
| | - Wenlong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, PR China
| | - Yang Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, PR China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
2
|
Palliyath GK, Jangam AK, Katneni VK, Kaikkolante N, Panjan Nathamuni S, Jayaraman R, Jagabattula S, Moturi M, Shekhar MS. Meta-analysis to Unravel Core Transcriptomic Responses in Penaeus vannamei Exposed to Biotic and Abiotic Stresses. Biochem Genet 2024:10.1007/s10528-024-10772-y. [PMID: 38570440 DOI: 10.1007/s10528-024-10772-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/03/2024] [Indexed: 04/05/2024]
Abstract
Shrimp farming, a dominant economic activity in coastal areas, is affected by different abiotic and biotic stress factors. These stressors, under poor management conditions, could affect growth and health of farmed animals. Understanding the common gene expressions in response to stress, regardless of the specific stress factor, holds significant importance in the field of functional genomics. Scope of this study is to identify the core transcriptomic responses in the shrimp species Penaeus vannamei exposed to various abiotic and biotic stress conditions and to decipher their functional importance. To achieve our objective, we gathered and analyzed multiple RNA-seq datasets related to twelve abiotic and nine biotic stress conditions. Through the in silico meta-analysis, we predicted 961 differentially expressed genes (meta-DEGs) for abiotic stress conditions and 517 meta-DEGs for biotic stress conditions, respectively. These meta-DEGs represent genes that are commonly expressed across different stress factors and are indicative of the organism's general response to stress. The annotation of nineteen core up-regulated meta-DEGs revealed their diverse functions in detoxification, cell adhesion, metal ion binding, and oxidative phosphorylation. These genes play a crucial role in stress response and immune defense. For abiotic stress, significant pathways associated with the stress response include tryptophan metabolism, starch and sucrose metabolism, fatty acid degradation, carbohydrate digestion and absorption, phenylalanine metabolism, drug metabolism-other enzymes, arachidonic acid metabolism, and fatty acid elongation. Similarly, for biotic stress, metabolism of xenobiotics by cytochrome P450, pentose and glucuronate interconversions, steroid hormone biosynthesis, and drug metabolism-cytochrome P450 were found to be significant pathway associations. In addition, the study also predicted 17 stress regulatory motifs present in the identified meta-DEGs. These motifs have significance in identifying the stress responses of the organism. The metabolic pathways and regulatory motifs associated with abiotic and biotic stress factors identified through this study could be a valuable resource for developing stress management approaches in shrimp aquaculture.
Collapse
Affiliation(s)
| | | | | | | | | | - Roja Jayaraman
- ICAR-Central Institute of Brackishwater Aquaculture, Chennai, India
| | | | | | | |
Collapse
|
3
|
Jiang Z, Qin L, Chen A, Tang X, Gao W, Gao X, Jiang Q, Zhang X. rpoS involved in immune response of Macrobrachium nipponens to Vibrio mimicus infection. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109440. [PMID: 38342414 DOI: 10.1016/j.fsi.2024.109440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024]
Abstract
Vibrio mimicus is a pathogenic bacterium that cause red body disease in Macrobrachium nipponense, leading to high mortality and financial loss. Based on previous studies, rpoS gene contribute to bacterial pathogenicity during infection, but the role of RpoS involved in the immune response of M. nipponense under V. mimicus infection remains unclear. In this study, the pathogen load and the RNA-seq of M. nipponense under wild-type and ΔrpoS strain V. mimicus infection were investigated. Over the entire infection period, the ΔrpoS strain pathogen load was always lower than that of the wild-type strain in the M. nipponense hemolymph, hepatopancreas, gill and muscle. Furthermore, the expression level of rpoS gene in the hepatopancreas was the highest at 24 hours post infection (hpi), then the samples of hepatopancreas tissue infected with the wild type and ΔrpoS strain at 24 hpi were selected for RNA-seq sequencing. The results revealed a significant change in the transcriptomes of the hepatopancreases infected with ΔrpoS strain. In contrast to the wild-type infected group, the ΔrpoS strain infected group exhibited differentially expressed genes (DEGs) enriched in 181 KEGG pathways at 24 hpi. Among these pathways, 8 immune system-related pathways were enriched, including ECM-receptor interaction, PI3K-Akt signaling pathway, Rap1 signaling pathway, Gap junction, and Focal adhesion, etc. Among these pathways, up-regulated genes related to Kazal-type serine protease inhibitors, S-antigen protein, copper zinc superoxide dismutase, tight junction protein, etc. were enriched. This study elucidates that rpoS can affect tissue bacterial load and immune-related pathways, thereby impacting the survival rate of M. nipponense under V. mimicus infection. These findings validate the potential of rpoS as a promising target for the development of a live attenuated vaccine against V. mimicus.
Collapse
Affiliation(s)
- Ziyan Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Lijie Qin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Anting Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xinzhe Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Weifeng Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qun Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Ren Q, Dai X, Jiang Z, Huang X. Three STAT isoforms formed by selective splicing are involved in the regulation of anti-lipopolysaccharide factor expression in Macrobrachium nipponense during WSSV infection. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109039. [PMID: 37640125 DOI: 10.1016/j.fsi.2023.109039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 08/31/2023]
Abstract
White spot syndrome virus (WSSV), a double-stranded DNA virus, is harmful in aquaculture. The signal transducer and activator of transcription (STAT) has been shown to play a role during host infection with the virus, but the exact mechanism by which it acts is unclear. In this study, three STAT isoforms (MnSTAT1, MnSTAT2, and MnSTAT3) were identified in Macrobrachium nipponense. The full-length sequence of MnSTAT1 was 3336 bp, with 2259 bp open reading frame (ORF), encoding a 852 amino acids protein. The full-length sequence of MnSTAT2 was 2538 bp, and the ORF was 2391 bp, encoding 796 amino acids. The full-length sequence of MnSTAT3 sequence was 2618 bp, and the ORF was 2340 bp, encoding 779 amino acids. MnSTAT1-3 is produced by alternative last exon. MnSTAT1-3 all contain a STAT_int, a STAT_alpha, a STAT_bind, and a SH2 structure. MnSTAT1-3 are widely expressed in various tissues tested. The expression levels of MnSTAT1-3 in the intestine of M. nipponense were upregulated at multiple time points following WSSV stimulation. The expression of seven anti-lipopolysaccharide factors (ALFs) was significantly reduced with the knockdown of MnSTATs during WSSV infection. Results showed that MnSTATs regulated the expression of intestinal ALFs and was involved in the innate immunity against WSSV of M. nipponense.
Collapse
Affiliation(s)
- Qian Ren
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, China.
| | - Xiaoling Dai
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Zuosheng Jiang
- Hangzhou Vocational and Technical College, Hangzhou, China
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
5
|
Tribamrung N, Bunnoy A, Chuchird N, Srisapoome P. The first description of the blue swimming crab (Portunus pelagicus) transcriptome and immunological defense mechanism in response to white spot syndrome virus (WSSV). FISH & SHELLFISH IMMUNOLOGY 2023; 134:108626. [PMID: 36841515 DOI: 10.1016/j.fsi.2023.108626] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
In the global shellfish farming industry, white spot syndrome virus (WSSV) is a major cause of mortality and a significant factor in economic losses. However, information on molecular immune responses to WSSV in blue swimming crabs (Portunus pelagicus) has never been reported. First, viral loads were measured in the gills, hepatopancreas, intestines, subcuticular epithelium and hemocytes of blue swimming crabs (50 ± 10 g) (n = 4) after WSSV induction at 0, 24, 48 and 96 h post injection (hpi). A significant increase in WSSV particles was observed in gills at 48 and 96 hpi, as supported by histopathology. To further investigate the acute immune response to WSSV, total RNA from the same gill tissues at 0, 24, and 96 hpi was used to construct 16 high-quality RNA-seq cDNA libraries. In summary, 162,740 unigenes were discovered in these transcriptomic libraries analyzed with the GO, KO, KOG, NR, NT, PFAM and SwissProt databases. Intensive sequence analysis against control crabs using three major categories of gene oncology (GO) of DEGs, biological processes (BPs), molecular functions (MFs), and cellular components (CCs), indicated that induction of WSSV in blue swimming crabs strongly affected the immune responses of the target animals significantly during the early stages of infection from 24 to 96 hpi. Furthermore, KEGG identified approximately twenty biological pathways of gene expression that were both downregulated and upregulated. Interestingly, at 24 and 96 hpi, several immune-related genes involved in virus defense in the blue swimming crab, particularly crustin 2, chitinase, anti-lipopolysaccharide, proteinase inhibitor, and lysozyme, were highly expressed during the WSSV early infection stages. At the same time, viral mRNA transcripts, including WSV289, WSV343, WSV306, deoxyuridine 5' triphosphate nucleohydrolase, RING finger containing E3 ubiquitin-protein ligase WSV403 and WSV404, were recorded in the top twenty upregulated genes. Moreover, some immune-responsive genes related to growth development, such as chitinase, tubulin alpha and beta chains, trypsin, and the cathepsin family, were also differentially expressed during these periods. Expression validation of 20 upregulated and 11 downregulated immune-related genes using qRT‒PCR showed similar patterns with transcriptome information. Overall, the data showed that during WSSV infection, a number of immune-, metabolism-, and growth-related pathways were activated, and several of the pathways involved differed depending on the stage of virus invasion. These findings could effectively help us better understand the impact of WSSV on the physiology of blue swimming crabs and serve as a valuable reference for future research on the immune system and disease control in this target species.
Collapse
Affiliation(s)
- Nattanicha Tribamrung
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, 10900, Bangkok, Thailand; Aquatic Animal Health Management Excellence in of Center, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, 10900, Bangkok, Thailand.
| | - Anurak Bunnoy
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, 10900, Bangkok, Thailand; Aquatic Animal Health Management Excellence in of Center, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, 10900, Bangkok, Thailand.
| | - Niti Chuchird
- Aquaculture Business Research Center, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand.
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, 10900, Bangkok, Thailand; Aquatic Animal Health Management Excellence in of Center, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Road, Ladyao, Chatuchak, 10900, Bangkok, Thailand.
| |
Collapse
|
6
|
Chen X, Liu X, Cai D, Wang W, Cui C, Yang J, Xu X, Li Z. Sequencing-based network analysis provides a core set of genes for understanding hemolymph immune response mechanisms against Poly I:C stimulation in Amphioctopus fangsiao. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108544. [PMID: 36646339 DOI: 10.1016/j.fsi.2023.108544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Aquatic viruses can spread rapidly and widely in seawater for their high infective ability. Polyinosinic-polycytidylic acid (Poly I:C), a viral dsRNA analog, is an immunostimulant that has been proved to activate various immune responses of immune cells in invertebrate. Hemolymph is a critical site that host immune response in invertebrates, and its transcriptome information obtained from Amphioctopus fangsiao stimulated by Poly I:C is crucial for understanding the antiviral molecular mechanisms of this species. In this study, we analyzed gene expression data in A. fangsiao hemolymph tissue within 24 h under Poly I:C stimulation and found 1082 and 299 differentially expressed genes (DEGs) at 6 and 24 h, respectively. Union set (1,369) DEGs were selected for subsequent analyses. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses were carried out for identifying DEGs related to immunity. Several significant immune-related terms and pathways, such as toll-like receptor signaling pathways term, inflammatory response term, TNF signaling pathway, and chemokine signaling pathway were identified. A protein-protein interaction (PPI) network was constructed for examining the relationships among immune-related genes. Finally, 12 hub genes, including EGFR, ACTG1, MAP2K1, and other nine hub genes, were identified based on the KEGG enrichment analysis and PPI network. The quantitative RT-PCR (qRT-PCR) was used to verify the expression profile of 12 hub genes. This research provides a reference for solving the problem of high mortality of A. fangsiao and other mollusks and provides a reference for the future production of some disease-resistant A. fangsiao.
Collapse
Affiliation(s)
- Xipan Chen
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Dequan Cai
- Weihai Marine Development Research Institute, Weihai, 264200, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Cuiju Cui
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, 264025, China.
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
7
|
Yuan H, Zhang W, Jin S, Jiang S, Xiong Y, Chen T, Gong Y, Qiao H, Fu H. Transcriptome analysis provides novel insights into the immune mechanisms of Macrobrachium nipponense during molting. FISH & SHELLFISH IMMUNOLOGY 2022; 131:454-469. [PMID: 36257556 DOI: 10.1016/j.fsi.2022.10.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/16/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Molting is a basic physiological behavior of the Oriental river prawn (Macrobrachium nipponense), however, the gene expression patterns and immune mechanisms during the molting process of Oriental river prawn are unclear. In the current study, the gene expression levels of the hepatopancreas of the Oriental river prawn at different molting stages (pre-molting, Prm; mid-molting, Mm; and post-molting, Pom) were detected by mRNA sequencing. A total of 1721, 551, and 1054 differentially expressed genes (DEGs) were identified between the Prm hepatopancreas (PrmHe) and Mm hepatopancreas (MmHe), MmHe and Pom hepatopancreas (PomHe) and PrmHe and PomHe, respectively. The results showed that a total of 1151 DEGs were annotated into 316 signaling pathways, and the significantly enriched immune-related pathways were "Lysosome", "Hippo signaling pathway", "Apoptosis", "Autophagy-animal", and "Endocytosis". The qRT-PCR verification results of 30 randomly selected DEGs were consistent with RNA-seq. The expression patterns of eight immune related genes in different molting stages of the Oriental river prawn were analyzed by qRT-PCR. The function of Caspase-1 (CASP1) was further investigated by bioinformatics, qRT-PCR, and RNAi analysis. CASP1 has two identical conserved domains: histidine active site and pentapeptide motif, and the expression of CASP1 is the highest in ovary. The expression levels of triosephosphate isomerase (TPI), Cathepsin B (CTSB) and Hexokinase (HXK) were evaluated after knockdown of CASP1. This research provides a valuable basis to improve our understanding the immune mechanisms of Oriental river prawns at different molting stages. The identification of immune-related genes is of great significance for enhancing the immunity of the Oriental river prawn, or other crustaceans, by transgenic methods in the future.
Collapse
Affiliation(s)
- Huwei Yuan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China.
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Tianyong Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
8
|
Jiang S, Zhang W, Xiong Y, Cheng D, Wang J, Jin S, Gong Y, Wu Y, Qiao H, Fu H. Hepatopancreas transcriptome analyses provide new insights into the molecular regulatory mechanism of fast ovary maturation in Macrobrachium nipponense. BMC Genomics 2022; 23:625. [PMID: 36045344 PMCID: PMC9429573 DOI: 10.1186/s12864-022-08851-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022] Open
Abstract
Background Macrobrachium nipponense is an economically and ecologically important freshwater prawn that is widely farmed in China. In contrast to other species of marine shrimp, M. nipponense has a short sexual maturity period, resulting in not only high stocking densities, but also a reduced survival rate and increased risk of hypoxia. Therefore, there is an urgent need to study the molecular mechanisms underlying fast ovary maturation in this species. Results Comparative transcriptome analysis was performed using hepatopancreatic tissue from female M. nipponense across five ovarian maturation stages to explore differentially expressed genes and pathways involved in ovarian maturation. In total, 118.01 Gb of data were generated from 15 transcriptomes. Approximately 90.46% of clean reads were mapped from the M. nipponense reference genome. A comprehensive comparative analysis between successive ovarian maturation stages generated 230–5814 differentially expressed genes. Gene Ontology (GO) enrichment was highly concentrated in the “biological process” category in all four comparison groups, and mainly focused on energy synthesis and accumulation, energy decomposition and transport. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment results showed that, among 20 significantly enriched KEGG pathways, nine were involved in the synthesis, degradation, and metabolism of carbohydrates, lipids, and other nutrient intermediates, suggesting that the hepatopancreas has an important role in energy supply during ovarian maturation. Furthermore, the “Insect hormone biosynthesis” pathway was found to have a dominant role in the development of the ovary from immaturity to maturity, supporting the hypothesis that ecdysteroid- and juvenile hormone-signaling pathways have an important role in hepatopancreas regulation of ovarian maturation. Conclusion Taken together, this study sheds light on the role of the hepatopancreas in the molecular regulation of ovary maturation in M. nipponense. The present study provided new insights for understanding the mechanisms of reproductive regulation in crustaceans.
Collapse
|
9
|
Liu S, Xia J, Tian Y, Yao L, Xu T, Li X, Li X, Wang W, Kong J, Zhang Q. Investigation of Pathogenic Mechanism of Covert Mortality Nodavirus Infection in Penaeus vannamei. Front Microbiol 2022; 13:904358. [PMID: 35711775 PMCID: PMC9195102 DOI: 10.3389/fmicb.2022.904358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
Viral covert mortality disease (VCMD), also known as running mortality syndrome (RMS), is caused by covert mortality nodavirus (CMNV) and has impacted the shrimp farming industry in Asia and Latin America in recent years. The pathogenic mechanism of CMNV infecting Penaeus vannamei was investigated in this study. In the naturally infected shrimp, histopathological and in situ hybridization (ISH) analysis verified that CMNV infection and severe cellar structural damage occurred in almost all cells of the ommatidium. Under transmission electron microscopic (TEM), vacuolation and necrosis, together with numerous CMNV-like particles, could be observed in the cytoplasm of most cell types of the ommatidium. The challenge test showed that a low CMNV infectious dose caused cumulative mortality of 66.7 ± 6.7% and 33.3 ± 3.6% of shrimp in the 31-day outdoor and indoor farming trials, respectively. The shrimp in the infection group grew slower than those in the control group; the percentage of soft-shell individuals in the infection group (42.9%) was much higher than that of the control group (17.1%). The histopathological and ISH examinations of individuals artificially infected with CMNV revealed that severe cellar damage, including vacuolation, karyopyknosis, and structural failure, occurred not only in the cells of the refraction part of the ommatidium, but also in the cells of the nerve enrichment and hormone secretion zones. And the pathological damages were severe in the nerve cells of both the ventral nerve cord and segmental nerve of the pleopods. TEM examination revealed the ultrastructural pathological changes and vast amounts of CMNV-like particles in the above-mentioned tissues. The differential transcriptome analysis showed that the CMNV infection resulted in the significant down-regulated expression of genes of photo-transduction, digestion, absorption, and growth hormones, which might be the reason for the slow growth of shrimp infected by CMNV. This study uncovered unique characteristics of neurotropism of CMNV for the first time and explored the pathogenesis of slow growth and shell softening of P. vannamei caused by CMNV infection.
Collapse
Affiliation(s)
- Shuang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao, China
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jitao Xia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao, China
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Yuan Tian
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao, China
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Liang Yao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao, China
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Tingting Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao, China
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xupeng Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao, China
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Xiaoping Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao, China
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wei Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao, China
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Jie Kong
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao, China
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qingli Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Qingdao, China
- Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
10
|
Xue C, Xu K, Jin Y, Bian C, Sun S. Transcriptome Analysis to Study the Molecular Response in the Gill and Hepatopancreas Tissues of Macrobrachium nipponense to Salinity Acclimation. Front Physiol 2022; 13:926885. [PMID: 35694393 PMCID: PMC9176394 DOI: 10.3389/fphys.2022.926885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/02/2022] [Indexed: 11/23/2022] Open
Abstract
Macrobrachium nipponense is an economically important prawn species and common in Chinese inland capture fisheries. During aquaculture, M. nipponense can survive under freshwater and low salinity conditions. The molecular mechanism underlying the response to salinity acclimation remains unclear in this species; thus, in this study, we used the Illumina RNA sequencing platform for transcriptome analyses of the gill and hepatopancreas tissues of M. nipponense exposed to salinity stress [0.4‰ (S0, control group), 6‰ (S6, low salinity group), and 12‰ (S12, high salinity group)]. Differentially expressed genes were identified, and several important salinity adaptation-related terms and signaling pathways were found to be enriched, such as "ion transport," "oxidative phosphorylation," and "glycometabolism." Quantitative real-time PCR demonstrated the participation of 12 key genes in osmotic pressure regulation in M. nipponense under acute salinity stress. Further, the role of carbonic anhydrase in response to salinity acclimation was investigated by subjecting the gill tissues of M. nipponense to in situ hybridization. Collectively, the results reported herein enhance our understanding of the mechanisms via which M. nipponense adapts to changes in salinity.
Collapse
Affiliation(s)
- Cheng Xue
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| | - Kang Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| | - Yiting Jin
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China
| | - Shengming Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| |
Collapse
|
11
|
Ou J, Chen H, Liu Q, Bian Y, Luan X, Jiang Q, Ji H, Wang Z, Lv L, Dong X, Zhao W, Zhang Q. Integrated transcriptome analysis of immune-related mRNAs and microRNAs in Macrobrachium rosenbergii infected with Spiroplasma eriocheiris. FISH & SHELLFISH IMMUNOLOGY 2021; 119:651-669. [PMID: 34742900 DOI: 10.1016/j.fsi.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Macrobrachium rosenbergii (M. rosenbergii), is a major aquaculture species in China and Southeast Asia. However, infection with Spiroplasma eriocheiris (S. eriocheiris) has caused huge economic losses to the cultivation of M. rosenbergii. Currently, there are few reports on the immune response mechanism of M. rosenbergii that are infected with S. eriocheiris. To clarify the immune response mechanism of M. rosenbergii infected with S. eriocheiris, the key immune genes which respond to the infection with the pathogen and the regulation of related microRNAs (miRNAs) on them were identified. In this study, the mRNA and miRNA transcriptome of hepatopancreas of M. rosenbergii at different infection stages were analyzed using high-throughput sequencing and qRT-PCR. In the mRNA transcriptome, 27,703 and 33,402 genes were expressed in healthy and susceptible M. rosenbergii, respectively. By digital gene-expression profiling analysis, 23,929 and 24,325 genes were expressed, and 223 and 373 genes were significantly up-regulated and down-regulated, respectively. A total of 145 key genes related to Toll, IMD, JAK/STAT and MAPK were excavated from the transcriptome. In the miRNA transcriptome, 549 miRNAs (Conserved: 41, PN-type: 83, PC-type: 425) were sequenced, of which 87 were significantly up-regulated and 23 were significantly down-regulated. Among the related immune pathways, there are 259 miRNAs involved in the regulation of target genes in the Toll and IMD pathways, 231 JAK/STAT pathways and 122 MAPK pathways. qRT-PCR differential detection of immune-related miRNAs and mRNAs showed that 22 miRNAs with significant differences (P < 0.05) such as mro-miR-100, PC-mro-3p-27 and PN-mro-miR-316 had corresponding regulatory relationships with 22 important immune genes such as TLR2, TLR3, TLR4, TLR5, MyD88, Pelle and Relish in different stages after infection. In this study, the immune genes and related regulatory miRNAs of M. rosenbergii in response to S. eriocheiris infection were obtained. The results can provide basic data to further reveal the immune defense mechanism of M. rosenbergii against S. eriocheiris infection.
Collapse
Affiliation(s)
- Jiangtao Ou
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China.
| | - Hao Chen
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Qiao Liu
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Yunxia Bian
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Xiaoqi Luan
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Qicheng Jiang
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Hao Ji
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Zisheng Wang
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Linlan Lv
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Xuexing Dong
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Weihong Zhao
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| | - Qihuan Zhang
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, School of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224051, Province Jiangsu, China
| |
Collapse
|
12
|
Chen D, Guo L, Yi C, Wang S, Ru Y, Wang H. Hepatopancreatic transcriptome analysis and humoral immune factor assays in red claw crayfish (Cherax quadricarinatus) provide insight into innate immunomodulation under Vibrio parahaemolyticus infection. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112266. [PMID: 33930770 DOI: 10.1016/j.ecoenv.2021.112266] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Red claw crayfish (Cherax quadricarinatus) is an economically and nutritionally important specie. We aimed to assess the immunostimulatory response to C. quadricarinatus infection with Vibrio parahaemolyticus. After determining the LD50, we infected C. quadricarinatus and examined the differential expression profiles of hepatopancreas transcriptional genes, and observed the temporal changes of hepatopancreas pathological sections and serum immunoenzymatic activities at different time points to reveal the infection mechanism of V. parahaemolyticus and the immune detoxification mechanism of the organism. The results showed that V. parahaemolyticus infection with C. quadricarinatus caused hepatopancreas injury and the immune enzyme activity of the organism changed with time delay. Transcriptome analysis of 47,338 single genes obtained by RNA sequencing and de nove transcriptome assembly identified a total of 3678 differentially expressed genes (P < 0.05) in the expression profiles of susceptible and normal animals for comparative analysis, and 2516 differentially expressed genes (P < 0.05) in the expression profiles of asymptomatic (infection-resistant) and normal animals. GO and KEGG and analyses revealed immune-related pathways under V. parahaemolyticus infection, including Vibrio cholerae infection, phagosome, lysozyme, oxidative phosphorylation, antigen processing and presentation, apoptosis, and Toll-like receptor signaling, as well as significant differences in the expression patterns of related immune genes at different times (P < 0.05). These new experimental results reveal the molecular response of the hepatopancreas to V. parahaemolyticus infection and the corresponding adaptive mechanisms, thus further revealing the pathogenesis due to bacterial infection in the aquatic environment, and providing a reference for further understanding of microbial-host interactions in aquatic systems.
Collapse
Affiliation(s)
- Duanduan Chen
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Leifeng Guo
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Cao Yi
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Shouquan Wang
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Yuanyuan Ru
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Hui Wang
- Aquaculture Research Lab, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
13
|
Hu Y, Fu Y, Jin S, Fu H, Qiao H, Zhang W, Jiang S, Gong Y, Xiong Y, Wu Y, Wang Y, Xu L. Comparative transcriptome analysis of lethality in response to RNA interference of the oriental river prawn (Macrobrachium nipponense). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100802. [PMID: 33578185 DOI: 10.1016/j.cbd.2021.100802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 12/22/2022]
Abstract
A previous study identified slow-tonic S2 tropomyosin and slow tropomyosin isoform as sex-related genes in Macrobrachium nipponense. Their functions were analyzed using RNA interference. However, more than half of the specimens died approximately 8-12 h after injection of the respective double-stranded RNAs (dsRNAs), and HE staining indicated that the heart and gills were the most likely tissues responsible for the resultant deaths. In the current study, we conducted a comparative transcriptomic study of the gills and hearts of M. nipponense to identify potential target genes associated with acute death after dsRNA injection. A total of 68,772 annotated unigenes were generated. In the heart, differentially expressed genes (DEGs) were mainly enriched in glycolysis/gluconeogenesis and oxidative phosphorylation, while the most relevant pathways in the gills were lysosome, phagosome, and peroxisome. Ten DEGs were screened out and analyzed under lethal hypoxic stress. Among these, fructose 1, 6-biphosphate-aldolase (FBA), glyceraldehyde 3-phosphate dehydrogenase (GDPDH), alcohol dehydrogenase class-3 (ADC3), ATP-synthase subunit 9 (ATPS9), and acid ceramidase-like (ACL) were all differentially expressed under hypoxic conditions. This study shed light on the lethal mechanism caused by interference with tropomyosin genes in M. nipponense, and identifies the related pathways and key genes that could help to improve stress resistance and tolerance in M. nipponense.
Collapse
Affiliation(s)
- Yuning Hu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, PR China.
| | - Yin Fu
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Yabing Wang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China.
| | - Lei Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, PR China.
| |
Collapse
|
14
|
Wang K, Dai X, Zhang C, Cao X, Zhang R, Zhang Z, Huang X, Ren Q. Two Wnt genes regulate the expression levels of antimicrobial peptides during Vibrio infection in Macrobrachium nipponense. FISH & SHELLFISH IMMUNOLOGY 2020; 101:225-233. [PMID: 32247046 DOI: 10.1016/j.fsi.2020.03.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
The Wnt signal transduction pathway is involved in a wide variety of cellular processes, including cell proliferation, differentiation, apoptosis, and immunity against microbial infection. In the current study, we cloned and characterized two Wnt homologues (Mn-Wnt4 and Mn-Wnt16) in Macrobrachium nipponense. The full length cDNA of Mn-Wnt4 was 3144 bp with a 1074 bp open reading frame (ORF) that encoded a protein containing 358 amino acid residues. The full length cDNA of Mn-Wnt16 transcript was 2893 bp with a 1281 bp ORF that encoded a 427 amino acid protein. Mn-Wnt4 and Mn-Wnt16 proteins contained a highly conserved WNT1 domain. Tissue distribution analysis showed that Mn-Wnt4 and Mn-Wnt16 were highly expressed in the stomach. The transcriptional levels of Mn-Wnt4 and Mn-Wnt16 in the stomach were upregulated at most tested time points after bacterial (Staphylococcus aureus and Vibrio parahaemolyticus) and viral (White spot syndrome virus) infection. Moreover, the expression levels of some antimicrobial peptides (AMPs) (including anti-lipopolysaccharide factor [ALF] and crustin [CRU]) were upregulated after V. parahaemolyticus infection. We further used dsRNA-mediated RNA interference technology to explore the relationship between these two Wnt genes and the expression levels of AMPs during V. parahaemolyticus infection. Mn-Wnt4 knockdown could significantly inhibit the expression of ALF1 and CRU4 in the stomach of V. parahaemolyticus-injected prawns, whereas Mn-Wnt16 silencing could result in the inhibition of the expression level of CRU3 and CRU4 in the stomach of V. parahaemolyticus-infected prawns. These findings indicated that the Wnt gene family might participate in the body's innate immune response to Vibrio infection by regulating the synthesis of a variety of AMPs. Our study will help to understand the role of the Wnt signaling pathway in the immune response of crustaceans.
Collapse
Affiliation(s)
- Kaiqiang Wang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Xiaoling Dai
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Chao Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Xueying Cao
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Ruidong Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Zhuoxing Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| | - Qian Ren
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China; Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong Province, 250014, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu Province, 222005, China.
| |
Collapse
|
15
|
Yang H, Wei X, Wang R, Zeng L, Yang Y, Huang G, Shafique L, Ma H, Ruan Z, Naz H, Lin Y, Huang L, Chen T. Transcriptomics of Cherax quadricarinatus hepatopancreas during infection with Decapod iridescent virus 1 (DIV1). FISH & SHELLFISH IMMUNOLOGY 2020; 98:832-842. [PMID: 31759080 DOI: 10.1016/j.fsi.2019.11.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Cherax quadricarinatus is a large-sized, highly fecund, and fast-growing species of freshwater crayfish, and has become one of the world's most intensely studied crustaceans. Decapod iridescent virus 1 (DIV1), a newly described species in the family Iridoviridae, is known to infect various crustaceans, including C. quadricarinatus, and may pose a new threat in the shrimp-farming industry. The present study performed de novo transcriptome sequencing of C. quadricarinatus hepatopancreas during DIV1 infection. A total of 114,784 transcripts and 56,418 genes were obtained; 1070 genes were upregulated and 775 genes were downregulated when compared with the uninfected samples (controls). Three pattern recognition receptor genes (fibrinogen-related protein, C-type lectin, and beta-1,3-glucan-binding protein) were upregulated during DIV1 infection. Among the top-30 upregulated unigenes, 9 unigenes were identified as vitellogenin (Vg) genes, and the top-3 upregulated unigenes were identified as involved in Vg lipid transport, lipid localization, and lipid transporter activity, which were all significantly over-representative GO terms in the GO enrichment analysis of total and upregulated differentially expressed genes (DEGs). Many genes associated with Jak-STAT signaling pathway, Endocytosis, Phagosome, MAPK signaling pathway, Apoptosis and Lysosome were positively modified after DIV1 infection. The predicted protein-protein interaction (PPI) analysis showed NF1 and TUBA, CRM1 and TUBB were involved in protein interactions. This research showed that DIV1 infection has a significant impact on the transcriptome profile of C. quadricarinatus hepatopancreas, and the results enhance our understanding of virus-host interactions. Furthermore, the high number of transcripts generated in the present study will provide information for identifying novel genes in the absence of a full C. quadricarinatus genome sequence.
Collapse
Affiliation(s)
- Huizan Yang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Xinxian Wei
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Rui Wang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| | - Lan Zeng
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Yanhao Yang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Guanghua Huang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Laiba Shafique
- Nanning University, Nanning, 530200, Guangxi, China; A State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530005, China
| | - Huawei Ma
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Zhide Ruan
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Huma Naz
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan; A State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, 530005, China
| | - Yong Lin
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Liming Huang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Tao Chen
- Nanning University, Nanning, 530200, Guangxi, China.
| |
Collapse
|
16
|
Vogt G. Cytopathology and immune response in the hepatopancreas of decapod crustaceans. DISEASES OF AQUATIC ORGANISMS 2020; 138:41-88. [PMID: 32103822 DOI: 10.3354/dao03443] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The hepatopancreas of decapod crustaceans is used as an example to illustrate the range of cytopathologies, detoxification mechanisms, and immune responses that environmental toxicants and pathogens can induce in a single organ. The hepatopancreas is the central metabolic organ of decapods and consists of hundreds of blindly-ending tubules and intertubular spaces. The tubular epithelium contains 5 structurally and functionally different cell types, and the interstitium contains haemolymph, haemocytes, connective tissue, and fixed phagocytes. Some physiological conditions such as moulting and starvation cause marked but reversible ultrastructural alterations of the epithelial cells. Environmental toxicants induce either detoxification mechanisms or structural damage in cells, depending on toxicant and concentration. The hepatopancreas is also a main target organ for pathogens, mainly viruses, bacteria, and protists that enter the body via the digestive tract and gills and replicate in the hepatopancreatocytes. The cytopathologies caused by toxicants and pathogens affect single cell types specifically or, more often, several cell types simultaneously. Pathogenesis often begins in a certain cell organelle such as the nucleus, mitochondrion, or endoplasmic reticulum, spreads to other organelles, and ends with death of the infected cell. Fixed phagocytes in the interstitium capture and degrade pathogens that move from the infected tubules into the intertubular spaces or enter the hepatopancreas via circulation. Relatively few disease agents elicit the melanisation and encapsulation reaction that encloses infected tubules by a rigid melanised capsule and kills the entrapped pathogens.
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| |
Collapse
|
17
|
Mohd Ghani F, Bhassu S. A new insight to biomarkers related to resistance in survived-white spot syndrome virus challenged giant tiger shrimp, Penaeus monodon. PeerJ 2019; 7:e8107. [PMID: 31875142 PMCID: PMC6927347 DOI: 10.7717/peerj.8107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 10/27/2019] [Indexed: 12/13/2022] Open
Abstract
The emergence of diseases such as white spot disease has become a threat to Penaeus monodon cultivation. Although there have been a few studies utilizing RNA-Seq, the cellular processes of host-virus interaction in this species remain mostly anonymous. In the present study, P. monodon was challenged with WSSV by intramuscular injection and survived for 12 days. The effect of the host gene expression by WSSV infection in the haemocytes, hepatopancreas and muscle of P. monodon was studied using Illumina HiSeq 2000. The RNA-Seq of cDNA libraries was developed from surviving WSSV-challenged shrimp as well as from normal healthy shrimp as control. A comparison of the transcriptome data of the two groups showed 2,644 host genes to be significantly up-regulated and 2,194 genes significantly down-regulated as a result of the infection with WSSV. Among the differentially expressed genes, our study discovered HMGB, TNFSF and c-Jun in P. monodon as new potential candidate genes for further investigation for the development of potential disease resistance markers. Our study also provided significant data on the differential expression of genes in the survived WSSV infected P. monodon that will help to improve understanding of host-virus interactions in this species.
Collapse
Affiliation(s)
- Farhana Mohd Ghani
- Department of Genetics & Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Subha Bhassu
- Department of Genetics & Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Wan H, Jia X, Zou P, Zhang Z, Wang Y. The Single-molecule long-read sequencing of Scylla paramamosain. Sci Rep 2019; 9:12401. [PMID: 31455827 PMCID: PMC6711964 DOI: 10.1038/s41598-019-48824-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022] Open
Abstract
Scylla paramamosain is an important aquaculture crab, which has great economical and nutritional value. To the best of our knowledge, few full-length crab transcriptomes are available. In this study, a library composed of 12 different tissues including gill, hepatopancreas, muscle, cerebral ganglion, eyestalk, thoracic ganglia, intestine, heart, testis, ovary, sperm reservoir, and hemocyte was constructed and sequenced using Pacific Biosciences single-molecule real-time (SMRT) long-read sequencing technology. A total of 284803 full-length non-chimeric reads were obtained, from which 79005 high-quality unique transcripts were obtained after error correction and sequence clustering and redundant. Additionally, a total of 52544 transcripts were annotated against protein database (NCBI nonredundant, Swiss-Prot, KOG, and KEGG database). A total of 23644 long non-coding RNAs (lncRNAs) and 131561 simple sequence repeats (SSRs) were identified. Meanwhile, the isoforms of many genes were also identified in this study. Our study provides a rich set of full-length cDNA sequences for S. paramamosain, which will greatly facilitate S. paramamosain research.
Collapse
Affiliation(s)
- Haifu Wan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, P.R. China
| | - Xiwei Jia
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, P.R. China
| | - Pengfei Zou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, P.R. China
| | - Ziping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China.
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, P.R. China.
| |
Collapse
|
19
|
Vogt G. Functional cytology of the hepatopancreas of decapod crustaceans. J Morphol 2019; 280:1405-1444. [DOI: 10.1002/jmor.21040] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Günter Vogt
- Faculty of BiosciencesUniversity of Heidelberg Heidelberg Germany
| |
Collapse
|
20
|
Cloning and characterisation of Na+/K+-ATPase and carbonic anhydrase from oriental river prawn Macrobrachium nipponense. Int J Biol Macromol 2019; 129:809-817. [DOI: 10.1016/j.ijbiomac.2019.02.098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/16/2019] [Accepted: 02/16/2019] [Indexed: 01/04/2023]
|