1
|
Hall C, Kay R. Living the good life? A systematic review of behavioural signs of affective state in the domestic horse ( Equus caballus) and factors relating to quality of life. Part 2: Horse-human interactions. Anim Welf 2024; 33:e41. [PMID: 39469043 PMCID: PMC11514268 DOI: 10.1017/awf.2024.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 10/30/2024]
Abstract
Quality of life is dependent upon the extent to which behavioural needs are met, and the balance between pleasant and unpleasant lifetime experiences. In Part II of this systematic review, articles (n = 109) relating to horse-human interactions were reviewed to identify behavioural evidence of their positive or negative impact on the horse. The number of articles (n = 22) relating to the recognition of pain in horses, indicated the importance of identifying health issues, which are also likely to increase the aversiveness of interactions. These and articles relating to emotional reactivity testing in horses (n = 19), the behaviour of horses during handling and management procedures (n = 17), behaviour of the horse when ridden (n = 17), non-procedural horse-human interactions (n = 13), horse behaviour during transportation (n = 12) and behaviour during training other than when ridden (n = 9) were reviewed. During most interactions, horse behaviour is controlled and/or restricted by the human, masking negative or positive signs, and may be confounded by factors including fear and individual differences. In situations involving freedom of movement, positive experiences of horses with humans were associated with approach behaviour, negative ones with avoidance, but training could affect both. Undoubtedly, change is needed to reduce the extent to which interactions with humans are unpleasant for the horse. Only when the needs of the horse are fulfilled and interactions with humans are predominantly pleasurable will their quality of life improve.
Collapse
Affiliation(s)
- Carol Hall
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, Nottinghamshire NG25 0QF, UK
- National Equine Welfare Council, Slad Lane, Princes Risborough, Bucks HP27 0PP, UK
| | - Rachel Kay
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, Nottinghamshire NG25 0QF, UK
- National Equine Welfare Council, Slad Lane, Princes Risborough, Bucks HP27 0PP, UK
| |
Collapse
|
2
|
Onuma K, Watanabe M, Sasaki N. The grimace scale: a useful tool for assessing pain in laboratory animals. Exp Anim 2024; 73:234-245. [PMID: 38382945 PMCID: PMC11254488 DOI: 10.1538/expanim.24-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024] Open
Abstract
Accurately and promptly assessing pain in experimental animals is extremely important to avoid unnecessary suffering of the animals and to enhance the reproducibility of experiments. This is a key concern for veterinarians, animal caretakers, and researchers from the perspectives of veterinary care and animal welfare. Various methods including ethology, immunohistochemistry, electrophysiology, and molecular biology are used for pain assessment. However, the grimace scale, which was developed by taking cues from interpreting pain through facial expressions of non-verbal infants, has become recognized as a very simple and practical method for objectively evaluating pain levels by scoring changes in an animal's expressions. This method, which was first implemented with mice approximately 10 years ago, is now being applied to various experimental animals and is widely used in research settings. This review focuses on the usability of the grimace scale from the "cage-side" perspective, aiming to make it a more user-friendly tool for those involved in animal experiments. Differences in facial expressions in response to pain in various animals, examples of applying the grimace scale, current automated analytical methods, and future prospects are discussed.
Collapse
Affiliation(s)
- Kenta Onuma
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23, Towada, Aomori 034-0021, Japan
| | - Masaki Watanabe
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23, Towada, Aomori 034-0021, Japan
| | - Nobuya Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23, Towada, Aomori 034-0021, Japan
| |
Collapse
|
3
|
Nakashima SF, Ukezono M, Takano Y. Painful Experiences in Social Contexts Facilitate Sensitivity to Emotional Signals of Pain from Conspecifics in Laboratory Rats. Animals (Basel) 2024; 14:1280. [PMID: 38731284 PMCID: PMC11083382 DOI: 10.3390/ani14091280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Previous studies demonstrated that laboratory rats could visually receive emotional pain signals from conspecifics through pictorial stimuli. The present study examined whether a prior painful emotional experience of the receiver influenced the sensitivity of emotional expression recognition in laboratory rats. The experiment comprised four phases: the baseline preference test, pain manipulation test, post-manipulation preference test, and state anxiety test. In the baseline phase, the rats explored an apparatus comprising two boxes to which pictures of pain or neutral expressions of other conspecifics were attached. In the pain manipulation phase, each rat was allocated to one of three conditions: foot shock alone (pained-alone; PA), foot shock with other unfamiliar conspecifics (pained-with-other; PWO), or no foot shock (control). In the post-manipulation phase, the animals explored the apparatus in the same manner as they did in the baseline phase. Finally, an open-field test was used to measure state anxiety. These findings indicate that rats in the PWO group stayed longer per entry in a box with photographs depicting a neutral disposition than in a box with photographs depicting pain after manipulation. The results of the open-field test showed no significant differences between the groups, suggesting that the increased sensitivity to pain expression in other individuals due to pain experiences in social settings was not due to increased primary state anxiety. Furthermore, the results indicate that rats may use a combination of self-painful experiences and the states of other conspecifics to process the emotional signal of pain from other conspecifics. In addition, changes in the responses of rats to facial expressions in accordance with social experience suggest that the expression function of rats is not only used for emotional expressions but also for communication.
Collapse
Affiliation(s)
- Satoshi F. Nakashima
- School of Psychological Sciences, University of Human Environments, Matsuyama 790-0825, Japan;
| | - Masatoshi Ukezono
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan;
| | - Yuji Takano
- School of Psychological Sciences, University of Human Environments, Matsuyama 790-0825, Japan;
| |
Collapse
|
4
|
Comin M, Atallah E, Chincarini M, Mazzola SM, Canali E, Minero M, Cozzi B, Rossi E, Vignola G, Dalla Costa E. Events with Different Emotional Valence Affect the Eye's Lacrimal Caruncle Temperature Changes in Sheep. Animals (Basel) 2023; 14:50. [PMID: 38200782 PMCID: PMC10778003 DOI: 10.3390/ani14010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Infrared thermography (IRT) has been recently applied to measure lacrimal caruncle temperature non-invasively since this region is related to the sympathetic response, and it seems a promising technique that is able to infer negative emotions in sheep (e.g., fear). However, the scientific literature so far is limited in understanding whether a caruncle's temperature changes also in response to positive emotional states in sheep. Through classical conditioning, we aimed to assess how a positive or a negative event affects the physiological (lacrimal caruncle temperature measured with IRT and cortisol levels) and behavioral responses of sheep (ear position). Fourteen ewes from the same flock were randomly assigned to two treatment groups: positive (n = 7) and negative (n = 7). Each group was then trained through classical conditioning to associate a neutral auditory (ring bell) stimulus to an oncoming event: for the positive group, the presence of a food reward (maize grains), while for the negative one, the opening of an umbrella. After three weeks of training, before (at rest) and after (post-treatment), lacrimal caruncle temperature was non-invasively measured via IRT, and saliva samples were gently collected to measure cortisol levels. During treatment, sheep behavior was videorecorded and then analyzed using a focal animal sampling technique. At rest, the eye's lacrimal caruncle temperature was similar in both groups, while post-treatment, a significant increase was shown only in the negative group (t-test; p = 0.017). In the anticipation phase, sheep in the positive group kept their ears forward longer compared to those in the negative one (Mann-Whitney; p < 0.014), 8.3 ± 2.1 s and 5.2 ± 4.2 s, respectively. The behavioral response observed reflects a learnt association between a neutral stimulus and events with different emotional valence. Cortisol concentration slightly increased in both groups post-treatment. Our results confirm that IRT is a non-invasive technique that can be useful when applied to assess how positive and negative events may affect the physiological response in sheep.
Collapse
Affiliation(s)
- Marta Comin
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, 26900 Lodi, Italy; (M.C.); (E.A.); (S.M.M.); (E.C.); (M.M.)
| | - Elie Atallah
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, 26900 Lodi, Italy; (M.C.); (E.A.); (S.M.M.); (E.C.); (M.M.)
| | - Matteo Chincarini
- Facoltà di Medicina Veterinaria, Università degli Studi di Teramo, 64100 Teramo, Italy; (M.C.); (G.V.)
| | - Silvia Michela Mazzola
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, 26900 Lodi, Italy; (M.C.); (E.A.); (S.M.M.); (E.C.); (M.M.)
| | - Elisabetta Canali
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, 26900 Lodi, Italy; (M.C.); (E.A.); (S.M.M.); (E.C.); (M.M.)
| | - Michela Minero
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, 26900 Lodi, Italy; (M.C.); (E.A.); (S.M.M.); (E.C.); (M.M.)
| | - Bruno Cozzi
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, 35131 Padova, Italy;
| | - Emanuela Rossi
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy;
| | - Giorgio Vignola
- Facoltà di Medicina Veterinaria, Università degli Studi di Teramo, 64100 Teramo, Italy; (M.C.); (G.V.)
| | - Emanuela Dalla Costa
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, 26900 Lodi, Italy; (M.C.); (E.A.); (S.M.M.); (E.C.); (M.M.)
| |
Collapse
|
5
|
Ferlini Agne G, May BE, Lovett A, Simon O, Steel C, Santos L, Guedes do Carmo L, Barbosa B, Werner LC, Daros RR, Somogyi AA, Sykes B, Franklin S. Horse Grimace Scale Does Not Detect Pain in Horses with Equine Gastric Ulcer Syndrome. Animals (Basel) 2023; 13:1623. [PMID: 37238054 PMCID: PMC10215503 DOI: 10.3390/ani13101623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/05/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Equine gastric ulcer syndrome (EGUS) is a highly prevalent and presumptively painful condition, although the amount of pain horses might experience is currently unknown. The aims of this study were to determine if the Horse Grimace Scale (HGS) could identify pain behaviours in horses with and without EGUS and if severity would be positively associated with the HGS score. Horse grimace scale scores were assessed blindly using facial photographs by seven observers and involved evaluation of 6 facial action units as 0 (not present), 1 (moderately present) and 2 (obviously present). Lameness examination, serum amyloid A (SAA) measurement and gastroscopy evaluation were performed on all horses. Horses (n = 61) were divided into two and three groups based on the presence (yes, no) and severity (none, mild, moderate-severe) of EGUS, respectively. Presence of lameness and elevated SAA (≥50 µg/mL) were used as exclusion criteria. Inter-observer reliability was analyzed by intra-class correlation coefficients (ICC). HGS scores between groups were compared using Welch's and Brown Forsythe tests (p < 0.05). Overall, HGS ICC was "excellent" (0.75). No significant differences (p = 0.566) were observed in HGS scores between horses with and without gastric lesions (mean, 95% CI; 3.36, 2.76-3.95 and 3, 1.79-4.20, respectively). HGS was not influenced by the presence or severity of EGUS in this current study. Further studies investigating the use of different pain scales in horses with EGUS are needed.
Collapse
Affiliation(s)
- Gustavo Ferlini Agne
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, Adelaide, SA 5371, Australia
| | - Bridget Eileen May
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, Adelaide, SA 5371, Australia
| | - Amy Lovett
- School of Veterinary Medicine, Massey University, Palmerston North 4474, New Zealand
| | - Olivier Simon
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, Adelaide, SA 5371, Australia
| | - Catherine Steel
- Department of Veterinary Clinical Services, Hong Kong Jockey Club, Sha Tin Racecourse, New Territories, Hong Kong
| | - Luiz Santos
- School of Biodiversity, One Health and Veterinary Sciences, The University of Glasgow, Bearsden, Glasgow G12 8QQ, UK
| | - Laize Guedes do Carmo
- Graduate Program in Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Bianca Barbosa
- Graduate Program in Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Laís Cristine Werner
- Graduate Program in Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Ruan R. Daros
- Graduate Program in Animal Science, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Andrew A. Somogyi
- Discipline of Pharmacology, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Benjamin Sykes
- School of Veterinary Medicine, Massey University, Palmerston North 4474, New Zealand
| | - Samantha Franklin
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, Adelaide, SA 5371, Australia
| |
Collapse
|
6
|
Alini M, Diwan AD, Erwin WM, Little CB, Melrose J. An update on animal models of intervertebral disc degeneration and low back pain: Exploring the potential of artificial intelligence to improve research analysis and development of prospective therapeutics. JOR Spine 2023; 6:e1230. [PMID: 36994457 PMCID: PMC10041392 DOI: 10.1002/jsp2.1230] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 02/03/2023] Open
Abstract
Animal models have been invaluable in the identification of molecular events occurring in and contributing to intervertebral disc (IVD) degeneration and important therapeutic targets have been identified. Some outstanding animal models (murine, ovine, chondrodystrophoid canine) have been identified with their own strengths and weaknesses. The llama/alpaca, horse and kangaroo have emerged as new large species for IVD studies, and only time will tell if they will surpass the utility of existing models. The complexity of IVD degeneration poses difficulties in the selection of the most appropriate molecular target of many potential candidates, to focus on in the formulation of strategies to effect disc repair and regeneration. It may well be that many therapeutic objectives should be targeted simultaneously to effect a favorable outcome in human IVD degeneration. Use of animal models in isolation will not allow resolution of this complex issue and a paradigm shift and adoption of new methodologies is required to provide the next step forward in the determination of an effective repairative strategy for the IVD. AI has improved the accuracy and assessment of spinal imaging supporting clinical diagnostics and research efforts to better understand IVD degeneration and its treatment. Implementation of AI in the evaluation of histology data has improved the usefulness of a popular murine IVD model and could also be used in an ovine histopathological grading scheme that has been used to quantify degenerative IVD changes and stem cell mediated regeneration. These models are also attractive candidates for the evaluation of novel anti-oxidant compounds that counter inflammatory conditions in degenerate IVDs and promote IVD regeneration. Some of these compounds also have pain-relieving properties. AI has facilitated development of facial recognition pain assessment in animal IVD models offering the possibility of correlating the potential pain alleviating properties of some of these compounds with IVD regeneration.
Collapse
Affiliation(s)
| | - Ashish D. Diwan
- Spine Service, Department of Orthopedic Surgery, St. George & Sutherland Campus, Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - W. Mark Erwin
- Department of SurgeryUniversity of TorontoOntarioCanada
| | - Chirstopher B. Little
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Sydney University Faculty of Medicine and Health, Northern Sydney Area Health District, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
| | - James Melrose
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Sydney University Faculty of Medicine and Health, Northern Sydney Area Health District, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
- Graduate School of Biomedical EngineeringThe University of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
7
|
Dai F, Dalla Costa E, Minero M, Briant C. Does housing system affect horse welfare? The AWIN welfare assessment protocol applied to horses kept in an outdoor group-housing system: The 'parcours'. Anim Welf 2023; 32:e22. [PMID: 38487418 PMCID: PMC10936357 DOI: 10.1017/awf.2023.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 06/17/2022] [Accepted: 09/09/2022] [Indexed: 03/03/2023]
Abstract
Outdoor group housing is generally reported as being beneficial to the welfare of horses compared to single boxes, being considered to show greater similarities with the living conditions of feral horses, allowing full expression of behaviours such as grazing, social interactions and free movement. However, concerns persist regarding the ability to maintain a good nutritional state and the possibility of acquiring injury. No data reporting a comprehensive assessment of welfare for horses in outdoor group-housing systems are currently available. The present study aimed at applying a scientifically valid welfare assessment protocol to group-housed outdoor horses in 'parcours', a particular management system used in the south of France. 'Parcours' are semi-natural areas, grazed by domestic herbivores located in lowland, mountain, or marsh. One hundred and seventy-one horses older than a year pertaining to six farms and kept on 'parcours' were evaluated by a trained veterinarian using a modified version of the second level Animal Welfare Indicators (AWIN) welfare assessment protocol for horses. No major welfare issues were detected. Horses in 'parcours' displayed few abnormal behaviours, they could move freely for most of the day and interact with conspecifics, maintaining a healthy state of nutrition and a good relationship with humans. The main welfare concerns were related to the presence of superficial integument alterations such as alopecia, difficulty in reaching quality controlled water sources and a lack of shelter. As the number of facilities involved in this study is relatively limited, further harmonised data collection should aim to enlarge the sample size and allow comparison with different outdoor group-housing conditions.
Collapse
Affiliation(s)
- Francesca Dai
- Università degli Studi di Milano, Dipartimento di Medicina Veterinaria, e Scienze Animali, via dell’Università 6, 26900Lodi, Italy
| | - Emanuela Dalla Costa
- Università degli Studi di Milano, Dipartimento di Medicina Veterinaria, e Scienze Animali, via dell’Università 6, 26900Lodi, Italy
| | - Michela Minero
- Università degli Studi di Milano, Dipartimento di Medicina Veterinaria, e Scienze Animali, via dell’Università 6, 26900Lodi, Italy
| | | |
Collapse
|
8
|
Domínguez-Oliva A, Mota-Rojas D, Hernández-Avalos I, Mora-Medina P, Olmos-Hernández A, Verduzco-Mendoza A, Casas-Alvarado A, Whittaker AL. The neurobiology of pain and facial movements in rodents: Clinical applications and current research. Front Vet Sci 2022; 9:1016720. [PMID: 36246319 PMCID: PMC9556725 DOI: 10.3389/fvets.2022.1016720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
One of the most controversial aspects of the use of animals in science is the production of pain. Pain is a central ethical concern. The activation of neural pathways involved in the pain response has physiological, endocrine, and behavioral consequences, that can affect both the health and welfare of the animals, as well as the validity of research. The strategy to prevent these consequences requires understanding of the nociception process, pain itself, and how assessment can be performed using validated, non-invasive methods. The study of facial expressions related to pain has undergone considerable study with the finding that certain movements of the facial muscles (called facial action units) are associated with the presence and intensity of pain. This review, focused on rodents, discusses the neurobiology of facial expressions, clinical applications, and current research designed to better understand pain and the nociceptive pathway as a strategy for implementing refinement in biomedical research.
Collapse
Affiliation(s)
- Adriana Domínguez-Oliva
- Master in Science Program “Maestría en Ciencias Agropecuarias”, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assesment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
- *Correspondence: Daniel Mota-Rojas
| | - Ismael Hernández-Avalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assesment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Alexandra L. Whittaker
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
9
|
Carvalho JRG, Trindade PHE, Conde G, Antonioli ML, Funnicelli MIG, Dias PP, Canola PA, Chinelatto MA, Ferraz GC. Facial Expressions of Horses Using Weighted Multivariate Statistics for Assessment of Subtle Local Pain Induced by Polylactide-Based Polymers Implanted Subcutaneously. Animals (Basel) 2022; 12:ani12182400. [PMID: 36139260 PMCID: PMC9495041 DOI: 10.3390/ani12182400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Facial expression (FE) has been used for pain diagnosis in horses. The current study aimed to identify pain in horses undergoing under-skin polylactide-based polymer implantation. Five statistical methods for analyzing FE were used, including conventional and new approaches. First, we scored the seven FEs separately. Subsequently, the scores of the seven FEs were added (SUM). Subsequently, principal component analysis (PCoA) was performed using the scores of the seven FEs obtained using the first method. Afterwards, weights were created for each FE based on each variable’s contribution variability obtained from the PCoA (SUM.W). Finally, we applied a general score to the animal’s face (GFS). The horses were filmed before and 24 and 48 h after implantation. The tissue sensitivity to mechanical stimulation and skin temperature of the horses were assessed at the same time points. The results show no changes in the FEs analyzed separately or jointly. The horses with incision and suture but no polymer implant displayed a higher pain-related FE 48 h after implantation, while the horses implanted with polymers displayed more apparent alterations in the mechanical skin sensitivity and temperature. Our findings show that the five statistical methods used to analyze the faces of the horses were not able to detect low-grade inflammatory pain. Abstract Facial-expression-based analysis has been widely applied as a pain coding system in horses. Herein, we aimed to identify pain in horses undergoing subcutaneously polylactide-based polymer implantation. The sham group was submitted only to surgical incision. The horses were filmed before and 24 and 48 h after implantation. Five statistical methods for evaluating their facial expressions (FEs) were tested. Primarily, three levels of scores (0, 1, and 2) were applied to the seven FEs (ear movements, eyebrow tension, orbicularis tension, dilated nostrils, eye opening, muzzle tension, and masticatory muscles tension). Subsequently, the scores of the seven FEs were added (SUM). Afterwards, principal component analysis (PCoA) was performed using the scores of the seven FEs obtained using the first method. Subsequently, weights were created for each FE, based on each variable’s contribution variability obtained from the PCoA (SUM.W). Lastly, we applied a general score (GFS) to the animal’s face (0 = without pain; 1 = moderate pain; 2 = severe pain). The mechanical nociceptive threshold (MNT) and cutaneous temperature (CT) values were collected at the same moments. The results show no intra- or intergroup differences, when evaluating each FE separately or in the GFS. In the intragroup comparison and 48 h after implantation, the control group showed higher values for SUM, PCoA, and SUM.W, although the horses implanted with polymers displayed more obvious alterations in the CT and MNT. Our findings show that the five statistical strategies used to analyze the faces of the horses were not able to detect low-grade inflammatory pain.
Collapse
Affiliation(s)
- Júlia R. G. Carvalho
- Department of Animal Morphology and Physiology, School of Agricultural and Veterinarian Sciences, São Paulo State University, FCAV/UNESP, Jaboticabal 14884-900, SP, Brazil
| | - Pedro H. E. Trindade
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, FMVZ/UNESP, Botucatu 18618-681, SP, Brazil
| | - Gabriel Conde
- Department of Animal Morphology and Physiology, School of Agricultural and Veterinarian Sciences, São Paulo State University, FCAV/UNESP, Jaboticabal 14884-900, SP, Brazil
| | - Marina L. Antonioli
- Department of Veterinary Clinical and Surgery, School of Agricultural and Veterinary Sciences, São Paulo State University, FCAV/UNESP, Jaboticabal 14884-900, SP, Brazil
| | - Michelli I. G. Funnicelli
- Department of Technology, School of Agricultural and Veterinary Sciences, São Paulo State University, FCAV/UNESP, Jaboticabal 14884-900, SP, Brazil
| | - Paula P. Dias
- Department of Materials Engineering, São Carlos School of Engineering, University of São Paulo, EESC/USP, São Carlos 13563-120, SP, Brazil
| | - Paulo A. Canola
- Department of Veterinary Clinical and Surgery, School of Agricultural and Veterinary Sciences, São Paulo State University, FCAV/UNESP, Jaboticabal 14884-900, SP, Brazil
| | - Marcelo A. Chinelatto
- Department of Materials Engineering, São Carlos School of Engineering, University of São Paulo, EESC/USP, São Carlos 13563-120, SP, Brazil
| | - Guilherme C. Ferraz
- Department of Animal Morphology and Physiology, School of Agricultural and Veterinarian Sciences, São Paulo State University, FCAV/UNESP, Jaboticabal 14884-900, SP, Brazil
- Correspondence:
| |
Collapse
|
10
|
Evaluation of the practical clinical use of the Horse Grimace Scale translated into French. Vet Anaesth Analg 2022; 49:615-623. [DOI: 10.1016/j.vaa.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/11/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022]
|
11
|
A model-specific simplification of the Mouse Grimace Scale based on the pain response of intraperitoneal CCl 4 injections. Sci Rep 2022; 12:10910. [PMID: 35764784 PMCID: PMC9240072 DOI: 10.1038/s41598-022-14852-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
Despite its long establishment and applicability in mice pain detection, the Mouse Grimace Scale still seems to be underused in acute pain detection during chronic experiments. However, broadening its applicability can identify possible refinement approaches such as cumulative severity and habituation to painful stimuli. Therefore, this study focuses on two main aspects: First, five composite MGS criteria were evaluated with two independent methods (the MoBPs algorithm and a penalized least squares regression) and ranked for their relative importance. The most important variable was used in a second analysis to specifically evaluate the context of pain after an i.p. injection (intervention) in two treatment groups (CCl4 and oil (control)) at fixed times throughout four weeks in 24 male C57BL/6 N mice. One hour before and after each intervention, video recordings were taken, and the MGS assessment was performed. In this study, the results indicate orbital tightening as the most important criterion. In this experimental setup, a highly significant difference after treatment between week 0 and 1 was found in the CCl4 group, resulting in a medium-sized effect (W = 62.5, p value < 0.0001, rCCl4 = 0.64). The oil group showed no significant difference (week 0 vs 1, W = 291.5, p value = 0.7875, rcontrol = 0.04). Therefore, the study showed that the pain caused by i.p. injections was only dependent on the applied substance, and no significant cumulation or habituation occurred due to the intervention. Further, the results indicated that the MGS system can be simplified.
Collapse
|
12
|
Berger SE, Baria AT. Assessing Pain Research: A Narrative Review of Emerging Pain Methods, Their Technosocial Implications, and Opportunities for Multidisciplinary Approaches. FRONTIERS IN PAIN RESEARCH 2022; 3:896276. [PMID: 35721658 PMCID: PMC9201034 DOI: 10.3389/fpain.2022.896276] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Pain research traverses many disciplines and methodologies. Yet, despite our understanding and field-wide acceptance of the multifactorial essence of pain as a sensory perception, emotional experience, and biopsychosocial condition, pain scientists and practitioners often remain siloed within their domain expertise and associated techniques. The context in which the field finds itself today-with increasing reliance on digital technologies, an on-going pandemic, and continued disparities in pain care-requires new collaborations and different approaches to measuring pain. Here, we review the state-of-the-art in human pain research, summarizing emerging practices and cutting-edge techniques across multiple methods and technologies. For each, we outline foreseeable technosocial considerations, reflecting on implications for standards of care, pain management, research, and societal impact. Through overviewing alternative data sources and varied ways of measuring pain and by reflecting on the concerns, limitations, and challenges facing the field, we hope to create critical dialogues, inspire more collaborations, and foster new ideas for future pain research methods.
Collapse
Affiliation(s)
- Sara E. Berger
- Responsible and Inclusive Technologies Research, Exploratory Sciences Division, IBM Thomas J. Watson Research Center, Yorktown Heights, NY, United States
| | | |
Collapse
|
13
|
Sharing pain: Using pain domain transfer for video recognition of low grade orthopedic pain in horses. PLoS One 2022; 17:e0263854. [PMID: 35245288 PMCID: PMC8896717 DOI: 10.1371/journal.pone.0263854] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/26/2022] [Indexed: 12/16/2022] Open
Abstract
Orthopedic disorders are common among horses, often leading to euthanasia, which often could have been avoided with earlier detection. These conditions often create varying degrees of subtle long-term pain. It is challenging to train a visual pain recognition method with video data depicting such pain, since the resulting pain behavior also is subtle, sparsely appearing, and varying, making it challenging for even an expert human labeller to provide accurate ground-truth for the data. We show that a model trained solely on a dataset of horses with acute experimental pain (where labeling is less ambiguous) can aid recognition of the more subtle displays of orthopedic pain. Moreover, we present a human expert baseline for the problem, as well as an extensive empirical study of various domain transfer methods and of what is detected by the pain recognition method trained on clean experimental pain in the orthopedic dataset. Finally, this is accompanied with a discussion around the challenges posed by real-world animal behavior datasets and how best practices can be established for similar fine-grained action recognition tasks. Our code is available at https://github.com/sofiabroome/painface-recognition.
Collapse
|
14
|
Andrade-González RD, Perrusquia-Hernández E, Montes-Ángeles CD, Castillo-Díaz LA, Hernández Campos ME, Pérez-Martínez IO. Encoding signs of orofacial neuropathic pain from facial expressions in mice. Arch Oral Biol 2022; 135:105369. [DOI: 10.1016/j.archoralbio.2022.105369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/02/2022]
|
15
|
Measurement properties of grimace scales for pain assessment in non-human mammals: a systematic review. Pain 2021; 163:e697-e714. [PMID: 34510132 DOI: 10.1097/j.pain.0000000000002474] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Facial expressions of pain have been identified in several animal species. The aim of this systematic review was to provide evidence on the measurement properties of grimace scales for pain assessment. The protocol was registered (SyRF#21-Nov-2019) and the study is reported according to the PRISMA guidelines. Studies reporting the development, validation, and the assessment of measurement properties of grimace scales were included. Data extraction and assessment were performed by two investigators, following the Consensus-based Standards for the Selection of Health Measurement Instruments (COSMIN) guidelines. Six categories of measurement properties were assessed: internal consistency, reliability, measurement error, criterion and construct validity, and responsiveness. Overall strength of evidence (high, moderate, low) of each instrument was based on methodological quality, number of studies and studies' findings. Twelve scales for nine species were included (mice, rats, rabbits, horses, piglets, sheep/lamb, ferrets, cats and donkeys). Considerable variability regarding their development and measurement properties was observed. The Mouse, Rat, Horse and Feline Grimace Scales exhibited high level of evidence. The Rabbit, Lamb, Piglet and Ferret Grimace Scales and Sheep Pain Facial Expression Scale exhibited moderate level of evidence. The Sheep Grimace Scale, EQUUS-FAP and EQUUS-Donkey-FAP exhibited low level of evidence for measurement properties. Construct validity was the most reported measurement property. Reliability and other forms of validity have been understudied. This systematic review identified gaps in knowledge on the measurement properties of grimace scales. Further studies should focus on improving psychometric testing, instrument refinement and the use of grimace scales for pain assessment in non-human mammals.
Collapse
|
16
|
Watanabe S, Masuda S, Shinozuka K, Borlongan C. Preference and discrimination of facial expressions of humans, rats, and mice by C57 mice. Anim Cogn 2021; 25:297-306. [PMID: 34417921 DOI: 10.1007/s10071-021-01551-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/23/2021] [Accepted: 08/15/2021] [Indexed: 11/26/2022]
Abstract
Social animals likely recognize emotional expressions in other animals. Recent studies suggest that mice can visually perceive emotional expressions of other mice. In the first experiment, we measured the preference of mice for two different facial expressions (a normal facial expression and an expression of negative emotion such as pain) of rats, mice, and humans. Results revealed that mice showed a slight preference for the normal expression over the face expressing pain in the case of rats, but no preference in the case of others. In the second experiment, we trained mice to discriminate between the two facial expressions in an operant chamber with a touch screen. They could discriminate facial expressions of mice and rats, but they did not show discrimination of human facial expressions. Principal component analysis of the images of stimuli reveals negative correlation between pixel-based dissimilarity of training stimuli and the number of sessions to criterion. The mice showed generalization to novel images of the mouse faces with and without pain but did not maintain their discriminative behavior when new rat faces were shown. These results suggest that mice display category discrimination of conspecific facial expressions but not of other species.
Collapse
Affiliation(s)
- Shigeru Watanabe
- Department of Psychology, Keio University, Mita 2-15-45, Minato-Ku, Tokyo, 108-8345, Japan.
| | - Sayako Masuda
- Jyumonji University, 2-1-28 Sugasawa, Niiza, Saitama, Japan
| | - Kazutaka Shinozuka
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Cesario Borlongan
- University of South Florida, MDC 78, 12901 Bruce Downs Blvd, Tampa, FL33612, USA
| |
Collapse
|
17
|
Fisher AS, Lanigan MT, Upton N, Lione LA. Preclinical Neuropathic Pain Assessment; the Importance of Translatability and Bidirectional Research. Front Pharmacol 2021; 11:614990. [PMID: 33628181 PMCID: PMC7897667 DOI: 10.3389/fphar.2020.614990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/10/2020] [Indexed: 02/04/2023] Open
Abstract
For patients suffering with chronic neuropathic pain the need for suitable novel therapies is imperative. Over recent years a contributing factor for the lack of development of new analgesics for neuropathic pain has been the mismatch of primary neuropathic pain assessment endpoints in preclinical vs. clinical trials. Despite continuous forward translation failures across diverse mechanisms, reflexive quantitative sensory testing remains the primary assessment endpoint for neuropathic pain and analgesia in animals. Restricting preclinical evaluation of pain and analgesia to exclusively reflexive outcomes is over simplified and can be argued not clinically relevant due to the continued lack of forward translation and failures in the clinic. The key to developing new analgesic treatments for neuropathic pain therefore lies in the development of clinically relevant endpoints that can translate preclinical animal results to human clinical trials. In this review we discuss this mismatch of primary neuropathic pain assessment endpoints, together with clinical and preclinical evidence that supports how bidirectional research is helping to validate new clinically relevant neuropathic pain assessment endpoints. Ethological behavioral endpoints such as burrowing and facial grimacing and objective measures such as electroencephalography provide improved translatability potential together with currently used quantitative sensory testing endpoints. By tailoring objective and subjective measures of neuropathic pain the translatability of new medicines for patients suffering with neuropathic pain will hopefully be improved.
Collapse
Affiliation(s)
- Amy S. Fisher
- Transpharmation Ltd., The London Bioscience Innovation Centre, London, United Kingdom
| | - Michael T. Lanigan
- Transpharmation Ltd., The London Bioscience Innovation Centre, London, United Kingdom
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Neil Upton
- Transpharmation Ltd., The London Bioscience Innovation Centre, London, United Kingdom
| | - Lisa A. Lione
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
18
|
Dalla Costa E, Dai F, Lecchi C, Ambrogi F, Lebelt D, Stucke D, Ravasio G, Ceciliani F, Minero M. Towards an improved pain assessment in castrated horses using facial expressions (HGS) and circulating miRNAs. Vet Rec 2021; 188:e82. [PMID: 33960478 DOI: 10.1002/vetr.82] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 11/11/2020] [Accepted: 12/26/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Pain in horses is an emergent welfare concern, and its assessment represents a challenge for equine clinicians. This study aimed at improving pain assessment in horses through a convergent validation of existing tools: we investigated whether an effective analgesic treatment influences the horse grimace scale (HGS) and the concentration of specific circulating microRNAs (miRNAs). METHODS Eleven stallions underwent routine surgical castration under general anaesthesia. They were divided into two analgesic treatment groups: castration with the administration of preoperative flunixin and castration with preoperative flunixin plus a local injection of mepivacaine into the spermatic cords. HGS and levels of seven circulating miRNAs were evaluated pre-, 8 and 20 hours post-procedure. RESULTS Compared to pre-castration, HGS, miR-126-5p, miR-145 and miR-let7e increased significantly in horses receiving flunixin at 8 hours post-castration (Friedman test, p < 0.05). Both behavioural and molecular changes occurred in horses receiving flunixin only, confirming that the addition of local mepivacaine is an effective analgesic treatment. CONCLUSIONS Combining the use of HGS and circulating miRNAs, particularly miR-145, could be meaningful to monitor acute pain conditions in horses. Our results further validate the HGS as a method to assess acute pain in horses and point out miR-145 as a promising biomarker to identify pain.
Collapse
Affiliation(s)
- Emanuela Dalla Costa
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
| | - Francesca Dai
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
| | - Cristina Lecchi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
| | - Federico Ambrogi
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milano, Italy
| | - Dirk Lebelt
- Equine Research and Consulting, Sencelles, Spain
| | | | - Giuliano Ravasio
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
| | - Fabrizio Ceciliani
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
| | - Michela Minero
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
| |
Collapse
|
19
|
Maskato Y, Dugdale AHA, Singer ER, Kelmer G, Sutton GA. Prospective Feasibility and Revalidation of the Equine Acute Abdominal Pain Scale (EAAPS) in Clinical Cases of Colic in Horses. Animals (Basel) 2020; 10:ani10122242. [PMID: 33260428 PMCID: PMC7760242 DOI: 10.3390/ani10122242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/02/2020] [Accepted: 11/23/2020] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Severity of pain, an important parameter in clinical decision making, is subjective. The Equine Acute Abdominal Pain Scale (EAAPS) was evaluated for the first time in 237 horses presenting with colic (abdominal pain) at two equine hospitals; in Israel and in the United Kingdom. The EAAPS demonstrated validity and was reportedly quick and easy to use. The EAAPS is the only equine pain scale that has been tested to this extent for these properties on clinical cases in equine hospitals. Use of the EAAPS apparently requires no training, is easy to use in clinical cases, and can improve equine welfare. Abstract Assessment of the severity of pain in colic cases is subjective. The Equine Acute Abdominal Pain Scale (EAAPS), previously validated using film clips of horses with colic, was tested for feasibility and revalidated in both medical and surgical colic cases in Israel and the UK. Feasibility qualities evaluated were quickness and ease-of-use. Pain in 231 horses, presented for colic, was assessed by 35 participants; 26 in the UK and 9 in Israel. Without prior training, participants assessed the severity of pain using two scales; the EAAPS and a visual analogue scale (VAS). Convergent validity comparing the EAAPS to the VAS was substantial, discriminant validity was good, and predictive validity for surgical treatment was similar to the VAS, but for mortality, the VAS was significantly better. No participants reported the EAAPS to be “very slow” or “very difficult” to use. The mode reported was “quick”/“very quick” and “easy”/“very easy” to use, though in less than 10% of cases, it was reported to be a little less quick or easy. More experienced first-time users found it significantly quicker to use than less experienced participants. In conclusion, the EAAPS is the only equine pain assessment scale that has been tested and found to demonstrate good feasibility for use in the referral hospital setting.
Collapse
Affiliation(s)
- Yamit Maskato
- Large Animal Department, Robert H Smith, Faculty of Agriculture, Food and Environmental Sciences, Koret School of Veterinary Medicine, Veterinary Teaching Hospital, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel; (Y.M.); (G.K.)
| | - Alexandra H. A. Dugdale
- Leahurst Campus, School of Veterinary Science, University of Liverpool, Chester High Road, Neston CH64 7TE, UK; (A.H.A.D.); (E.R.S.)
| | - Ellen R. Singer
- Leahurst Campus, School of Veterinary Science, University of Liverpool, Chester High Road, Neston CH64 7TE, UK; (A.H.A.D.); (E.R.S.)
| | - Gal Kelmer
- Large Animal Department, Robert H Smith, Faculty of Agriculture, Food and Environmental Sciences, Koret School of Veterinary Medicine, Veterinary Teaching Hospital, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel; (Y.M.); (G.K.)
| | - Gila A. Sutton
- Large Animal Department, Robert H Smith, Faculty of Agriculture, Food and Environmental Sciences, Koret School of Veterinary Medicine, Veterinary Teaching Hospital, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel; (Y.M.); (G.K.)
- Correspondence: ; Tel.: +972-54-8820545
| |
Collapse
|
20
|
Rashid M, Silventoinen A, Gleerup KB, Andersen PH. Equine Facial Action Coding System for determination of pain-related facial responses in videos of horses. PLoS One 2020; 15:e0231608. [PMID: 33141852 PMCID: PMC7608869 DOI: 10.1371/journal.pone.0231608] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/29/2020] [Indexed: 11/18/2022] Open
Abstract
During the last decade, a number of pain assessment tools based on facial expressions have been developed for horses. While all tools focus on moveable facial muscles related to the ears, eyes, nostrils, lips, and chin, results are difficult to compare due to differences in the research conditions, descriptions and methodologies. We used a Facial Action Coding System (FACS) modified for horses (EquiFACS) to code and analyse video recordings of acute short-term experimental pain (n = 6) and clinical cases expected to be in pain or without pain (n = 21). Statistical methods for analyses were a frequency based method adapted from human FACS approaches, and a novel method based on co-occurrence of facial actions in time slots of varying lengths. We describe for the first time changes in facial expressions using EquiFACS in video of horses with pain. The ear rotator (EAD104), nostril dilation (AD38) and lower face behaviours, particularly chin raiser (AU17), were found to be important pain indicators. The inner brow raiser (AU101) and eye white increase (AD1) had less consistent results across experimental and clinical data. Frequency statistics identified AUs, EADs and ADs that corresponded well to anatomical regions and facial expressions identified by previous horse pain research. The co-occurrence based method additionally identified lower face behaviors that were pain specific, but not frequent, and showed better generalization between experimental and clinical data. In particular, chewing (AD81) was found to be indicative of pain. Lastly, we identified increased frequency of half blink (AU47) as a new indicator of pain in the horses of this study.
Collapse
Affiliation(s)
- Maheen Rashid
- Dept. Computer Science, University of California Davis, Davis, California, United States of America
- * E-mail:
| | - Alina Silventoinen
- Dept. Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Pia Haubro Andersen
- Dept. Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
21
|
Mota-Rojas D, Olmos-Hernández A, Verduzco-Mendoza A, Hernández E, Martínez-Burnes J, Whittaker AL. The Utility of Grimace Scales for Practical Pain Assessment in Laboratory Animals. Animals (Basel) 2020; 10:ani10101838. [PMID: 33050267 PMCID: PMC7600890 DOI: 10.3390/ani10101838] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Grimace scales for laboratory animals were first reported ten years ago. Yet, despite their promise as pain assessment tools it appears that they have not been implemented widely in animal research establishments for clinical pain assessment. We discuss potential reasons for this based on the knowledge gained to date on their use and suggest avenues for further research, which might improve uptake of their use in laboratory animal medicine. Abstract Animals’ facial expressions are widely used as a readout for emotion. Scientific interest in the facial expressions of laboratory animals has centered primarily on negative experiences, such as pain, experienced as a result of scientific research procedures. Recent attempts to standardize evaluation of facial expressions associated with pain in laboratory animals has culminated in the development of “grimace scales”. The prevention or relief of pain in laboratory animals is a fundamental requirement for in vivo research to satisfy community expectations. However, to date it appears that the grimace scales have not seen widespread implementation as clinical pain assessment techniques in biomedical research. In this review, we discuss some of the barriers to implementation of the scales in clinical laboratory animal medicine, progress made in automation of collection, and suggest avenues for future research.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Ciudad de México 04960, CDMX, Mexico;
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Tlalpan 14389, CDMX, Mexico; (A.O.-H.); (A.V.-M.)
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Tlalpan 14389, CDMX, Mexico; (A.O.-H.); (A.V.-M.)
| | - Elein Hernández
- Department of Clinical Studies and Surgery, Facultad de Estudios Superiores Cuautiltán UNAM, Cuautitlán Izcalli 54714, Estado de México, Mexico;
| | - Julio Martínez-Burnes
- Graduate and Research Department, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Cd Victoria 87000, Tamaulipas, Mexico;
| | - Alexandra L. Whittaker
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, SA 5116, Australia
- Correspondence:
| |
Collapse
|
22
|
Grimace Scores: Tools to Support the Identification of Pain in Mammals Used in Research. Animals (Basel) 2020; 10:ani10101726. [PMID: 32977561 PMCID: PMC7598254 DOI: 10.3390/ani10101726] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022] Open
Abstract
The 3Rs, Replacement, Reduction and Refinement, is a framework to ensure the ethical and justified use of animals in research. The implementation of refinements is required to alleviate and minimise the pain and suffering of animals in research. Public acceptability of animal use in research is contingent on satisfying ethical and legal obligations to provide pain relief along with humane endpoints. To fulfil this obligation, staff, researchers, veterinarians, and technicians must rapidly, accurately, efficiently and consistently identify, assess and act on signs of pain. This ability is paramount to uphold animal welfare, prevent undue suffering and mitigate possible negative impacts on research. Identification of pain may be based on indicators such as physiological, behavioural, or physical ones. Each has been used to develop different pain scoring systems with potential benefits and limitations in identifying and assessing pain. Grimace scores are a promising adjunctive behavioural technique in some mammalian species to identify and assess pain in research animals. The use of this method can be beneficial to animal welfare and research outcomes by identifying animals that may require alleviation of pain or humane intervention. This paper highlights the benefits, caveats, and potential applications of grimace scales.
Collapse
|
23
|
Reliability of the Mouse Grimace Scale in C57BL/6JRj Mice. Animals (Basel) 2020; 10:ani10091648. [PMID: 32937881 PMCID: PMC7552260 DOI: 10.3390/ani10091648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022] Open
Abstract
To maintain and foster the welfare of laboratory mice, tools that reliably measure the current state of the animals are applied in clinical assessment. One of these is the Mouse Grimace Scale (MGS), a coding system for facial expression analysis. Since there are concerns about the objectivity of the MGS, we further investigated its reliability. Four observers (two experienced and two inexperienced in use of the MGS) scored 188 images of 33 female and 31 male C57BL/6JRj mice. Images were generated prior to, 150 min, and two days after ketamine/xylazine anesthesia. The intraclass correlations coefficient (ICC = 0.851) indicated good agreement on total MGS scores between all observers when all three time points were included in the analysis. However, interrater reliability was higher in the early post-anesthetic period (ICC = 0.799) than at baseline (ICC = 0.556) and on day 2 after anesthesia (ICC = 0.329). The best agreement was achieved for orbital tightening, and the poorest agreement for nose and cheek bulge, depending on the observers' experience levels. In general, experienced observers produced scores of higher consistency when compared to inexperienced. Against this background, we critically discuss factors that potentially influence the reliability of MGS scoring.
Collapse
|
24
|
Mogil JS, Pang DSJ, Silva Dutra GG, Chambers CT. The development and use of facial grimace scales for pain measurement in animals. Neurosci Biobehav Rev 2020; 116:480-493. [PMID: 32682741 DOI: 10.1016/j.neubiorev.2020.07.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/25/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022]
Abstract
The measurement of pain in animals is surprisingly complex, and remains a critical issue in veterinary care and biomedical research. Based on the known utility of pain measurement via facial expression in verbal and especially non-verbal human populations, "grimace scales" were first developed a decade ago for use in rodents and now exist for 10 different mammalian species. This review details the background context, historical development, features (including duration), psychometric properties, modulatory factors, and impact of animal grimace scales for pain.
Collapse
Affiliation(s)
- Jeffrey S Mogil
- Depts. of Psychology and Anesthesia, Alan Edwards Centre for Research on Pain McGill University, Montreal, QC, Canada.
| | - Daniel S J Pang
- Veterinary Clinical and Diagnostic Services, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Gabrielle Guanaes Silva Dutra
- Depts. of Psychology and Anesthesia, Alan Edwards Centre for Research on Pain McGill University, Montreal, QC, Canada
| | | |
Collapse
|
25
|
de Camp NV, Ladwig-Wiegard M, Geitner CIE, Bergeler J, Thöne-Reineke C. EEG based assessment of stress in horses: a pilot study. PeerJ 2020; 8:e8629. [PMID: 32435527 PMCID: PMC7227666 DOI: 10.7717/peerj.8629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/24/2020] [Indexed: 11/20/2022] Open
Abstract
As has been hypothesized more than 20 years ago, data derived from Electroencephalography (EEG) measurements can be used to distinguish between behavioral states associated with animal welfare. In our current study we found a high degree of correlation between the modulation index of phase related amplitude changes in the EEG of horses (n = 6 measurements with three different horses, mare and gelding) and their facial expression, measured by the use of the horse grimace scale. Furthermore, the pattern of phase amplitude coupling (PAC) was significantly different between a rest condition and a stress condition in horses. This pilot study paves the way for a possible use of EEG derived PAC as an objective tool for the assessment of animal welfare. Beyond that, the method might be useful to assess welfare aspects in the clinical setting for human patients, as for example in the neonatal intensive care unit.
Collapse
Affiliation(s)
- Nora V de Camp
- Behavioral Physiology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany.,Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany
| | - Mechthild Ladwig-Wiegard
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany
| | - Carola I E Geitner
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany
| | - Jürgen Bergeler
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany.,Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christa Thöne-Reineke
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
26
|
Does Thirty-Minute Standardised Training Improve the Inter-Observer Reliability of the Horse Grimace Scale (HGS)? A Case Study. Animals (Basel) 2020; 10:ani10050781. [PMID: 32365927 PMCID: PMC7277819 DOI: 10.3390/ani10050781] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 11/17/2022] Open
Abstract
The Horse Grimace Scale (HGS) is a facial-expression-based pain coding system that enables a range of acute painful conditions in horses to be effectively identified. Using valid assessment methods to identify pain in horses is of a clear importance; however, the reliability of the assessment is highly dependent on the assessors' ability to use it. Training of new assessors plays a critical role in underpinning reliability. The aim of the study was to evaluate whether a 30-minute standardised training program on HGS is effective at improving the agreement between observers with no horse experience and when compared to an HGS expert. Two hundred and six undergraduate students with no horse experience were recruited. Prior to any training, observers were asked to score 10 pictures of horse faces using the six Facial Action Units (FAUs) of the HGS. Then, an HGS expert provided a 30-minute face-to-face training session, including detailed descriptions and example pictures of each FAU. After training, observers scored 10 different pictures. Cohen's k coefficient was used to determine inter-observer reliability between each observer and the expert; a paired-sample t-test was conducted to determine differences in agreement pre- and post-training. Pre-training, Cohen's k ranged from 0.20 for tension above the eye area to 0.68 for stiffly backwards ears. Post-training, the reliability for stiffly backwards ears and orbital tightening significantly increased, reaching Cohen's k values of 0.90 and 0.91 respectively (paired-sample t-test; p < 0.001). The results suggest that this 30-minute face-to-face training session was not sufficient to allow observers without horse experience to effectively apply HGS. However, this standardised training program could represent a starting point for a more comprehensive training program for those without horse experience in order to increase their reliably in applying HGS.
Collapse
|
27
|
Andresen N, Wöllhaf M, Hohlbaum K, Lewejohann L, Hellwich O, Thöne-Reineke C, Belik V. Towards a fully automated surveillance of well-being status in laboratory mice using deep learning: Starting with facial expression analysis. PLoS One 2020; 15:e0228059. [PMID: 32294094 PMCID: PMC7159220 DOI: 10.1371/journal.pone.0228059] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/06/2020] [Indexed: 01/09/2023] Open
Abstract
Assessing the well-being of an animal is hindered by the limitations of efficient communication between humans and animals. Instead of direct communication, a variety of parameters are employed to evaluate the well-being of an animal. Especially in the field of biomedical research, scientifically sound tools to assess pain, suffering, and distress for experimental animals are highly demanded due to ethical and legal reasons. For mice, the most commonly used laboratory animals, a valuable tool is the Mouse Grimace Scale (MGS), a coding system for facial expressions of pain in mice. We aim to develop a fully automated system for the surveillance of post-surgical and post-anesthetic effects in mice. Our work introduces a semi-automated pipeline as a first step towards this goal. A new data set of images of black-furred laboratory mice that were moving freely is used and provided. Images were obtained after anesthesia (with isoflurane or ketamine/xylazine combination) and surgery (castration). We deploy two pre-trained state of the art deep convolutional neural network (CNN) architectures (ResNet50 and InceptionV3) and compare to a third CNN architecture without pre-training. Depending on the particular treatment, we achieve an accuracy of up to 99% for the recognition of the absence or presence of post-surgical and/or post-anesthetic effects on the facial expression.
Collapse
Affiliation(s)
- Niek Andresen
- Department of Computer Vision & Remote Sensing, Technische Universität Berlin, Berlin, Germany
| | - Manuel Wöllhaf
- Department of Computer Vision & Remote Sensing, Technische Universität Berlin, Berlin, Germany
| | - Katharina Hohlbaum
- Institute of Animal Welfare, Animal Behavior, and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- * E-mail: (KH); (VB)
| | - Lars Lewejohann
- Institute of Animal Welfare, Animal Behavior, and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Olaf Hellwich
- Department of Computer Vision & Remote Sensing, Technische Universität Berlin, Berlin, Germany
| | - Christa Thöne-Reineke
- Institute of Animal Welfare, Animal Behavior, and Laboratory Animal Science, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Vitaly Belik
- System Modeling Group, Institute for Veterinary Epidemiology and Biostatistics, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- * E-mail: (KH); (VB)
| |
Collapse
|
28
|
González-Cano R, Montilla-García Á, Ruiz-Cantero MC, Bravo-Caparrós I, Tejada MÁ, Nieto FR, Cobos EJ. The search for translational pain outcomes to refine analgesic development: Where did we come from and where are we going? Neurosci Biobehav Rev 2020; 113:238-261. [PMID: 32147529 DOI: 10.1016/j.neubiorev.2020.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/06/2020] [Accepted: 03/04/2020] [Indexed: 12/11/2022]
Abstract
Pain measures traditionally used in rodents record mere reflexes evoked by sensory stimuli; the results thus may not fully reflect the human pain phenotype. Alterations in physical and emotional functioning, pain-depressed behaviors and facial pain expressions were recently proposed as additional pain outcomes to provide a more accurate measure of clinical pain in rodents, and hence to potentially enhance analgesic drug development. We aimed to review how preclinical pain assessment has evolved since the development of the tail flick test in 1941, with a particular focus on a critical analysis of some nonstandard pain outcomes, and a consideration of how sex differences may affect the performance of these pain surrogates. We tracked original research articles in Medline for the following periods: 1973-1977, 1983-1987, 1993-1997, 2003-2007, and 2014-2018. We identified 606 research articles about alternative surrogate pain measures, 473 of which were published between 2014 and 2018. This indicates that preclinical pain assessment is moving toward the use of these measures, which may soon become standard procedures in preclinical pain laboratories.
Collapse
Affiliation(s)
- Rafael González-Cano
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - Ángeles Montilla-García
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - M Carmen Ruiz-Cantero
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - Inmaculada Bravo-Caparrós
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - Miguel Á Tejada
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain; IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria.
| | - Francisco R Nieto
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain.
| | - Enrique J Cobos
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neuroscience, Biomedical Research Center, University of Granada, Armilla, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; Teófilo Hernando Institute for Drug Discovery, Madrid, Spain.
| |
Collapse
|
29
|
Is the Piglet Grimace Scale (PGS) a Useful Welfare Indicator to Assess Pain after Cryptorchidectomy in Growing Pigs? Animals (Basel) 2020; 10:ani10030412. [PMID: 32131424 PMCID: PMC7143901 DOI: 10.3390/ani10030412] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
Pig cryptorchidism is a congenital anomaly, which requires surgical intervention. Pain assessment in pig farming has some limitations and consumers are increasingly concerned about suffering linked to on-farm procedures. The PGS seems to be a promising tool for pain assessment in piglets, although it has not been investigated whether this tool is applicable to growing pigs. This study was designed to determine whether the PGS could be useful to assess pain in growing pigs undergoing on-farm cryptorchidectomy. Ten mixed-breed cryptorchid pigs were pre-medicated with azaperone and ketamine. Anesthesia was induced and maintained using IV sodium based. Pigs were filmed pre- and 6 h post-surgery to evaluate their behavior (scan sampling every minute). Besides, 36 pictures of the face expressions (18 pre- and 18 6 h post-surgery) were scored with the PGS by three treatment-blind observers. The pre-surgery pig's activity ratio was 59%, while it was 2% 6 h post-surgery. While the PGS inter-observer reliability was excellent (Interclass Correlation Coefficient value of 0.87), the PGS score increased significantly in pigs 6 h post-surgery (Paired sample t-test, p = 0.02). The PGS proved to be a potentially effective method to assess pain associated with cryptorchidectomy. However, further validation studies are required to validate this tool for other potentially painful procedures.
Collapse
|
30
|
Jirkof P, Rudeck J, Lewejohann L. Assessing Affective State in Laboratory Rodents to Promote Animal Welfare-What Is the Progress in Applied Refinement Research? Animals (Basel) 2019; 9:E1026. [PMID: 31775293 PMCID: PMC6941082 DOI: 10.3390/ani9121026] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022] Open
Abstract
An animal's capacity to suffer is a prerequisite for any animal welfare concern, and the minimization of suffering is a key aim of refinement research. In contrast to the traditional focus on avoiding or reducing negative welfare states, modern animal welfare concepts highlight the importance of promoting positive welfare states in laboratory animals. Reliable assessments of affective states, as well as the knowledge of how to elicit positive affective states, are central to this concept. Important achievements have been made to assess pain and other negative affective states in animals in the last decades, but it is only recently that the neurobiology of positive emotions in humans and animals has been gaining more interest. Thereby, the need for promotion of positive affective states for laboratory animals is gaining more acceptance, and methods allowing the assessment of affective states in animals have been increasingly introduced. In this overview article, we present common and emerging methods to assess affective states in laboratory rodents. We focus on the implementation of these methods into applied refinement research to identify achieved progress as well as the future potential of these tools to improve animal welfare in animal-based research.
Collapse
Affiliation(s)
- Paulin Jirkof
- Department Animal Welfare and 3R, University of Zurich, 8057 Zurich, Switzerland
| | - Juliane Rudeck
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), 12277 Berlin, Germany; (J.R.); (L.L.)
| | - Lars Lewejohann
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), 12277 Berlin, Germany; (J.R.); (L.L.)
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie University Berlin, 14163 Berlin, Germany
| |
Collapse
|
31
|
Keubler LM, Hoppe N, Potschka H, Talbot SR, Vollmar B, Zechner D, Häger C, Bleich A. Where are we heading? Challenges in evidence-based severity assessment. Lab Anim 2019; 54:50-62. [PMID: 31718424 DOI: 10.1177/0023677219877216] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Evidence-based severity assessment in laboratory animals is, apart from the ethical responsibility, imperative to generate reproducible, standardized and valid data. However, the path towards a valid study design determining the degree of pain, distress and suffering experienced by the animal is lined with pitfalls and obstacles as we will elucidate in this review. Furthermore, we will ponder on the genesis of a holistic concept relying on multifactorial composite scales. These have to combine robust and reliable parameters to measure the multidimensional aspects that define the severity of animal experiments, generating a basis for the substantiation of the refinement principle.
Collapse
Affiliation(s)
- Lydia M Keubler
- Institute for Laboratory Animal Science, Hannover Medical School, Germany
| | - Nils Hoppe
- Centre for Ethics and Law in the Life Sciences, University of Hannover, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximillians-University, Germany
| | - Steven R Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center, Rostock, Germany
| | - Dietmar Zechner
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center, Rostock, Germany
| | - Christine Häger
- Institute for Laboratory Animal Science, Hannover Medical School, Germany
| | | |
Collapse
|
32
|
Ernst L, Kopaczka M, Schulz M, Talbot SR, Struve B, Häger C, Bleich A, Durst M, Jirkof P, Arras M, van Dijk RM, Miljanovic N, Potschka H, Merhof D, Tolba RH. Semi-automated generation of pictures for the Mouse Grimace Scale: A multi-laboratory analysis (Part 2). Lab Anim 2019; 54:92-98. [PMID: 31660777 DOI: 10.1177/0023677219881664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Mouse Grimace Scale (MGS) is an established method for estimating pain in mice during animal studies. Recently, an improved and standardized MGS set-up and an algorithm for automated and blinded output of images for MGS evaluation were introduced. The present study evaluated the application of this standardized set-up and the robustness of the associated algorithm at four facilities in different locations and as part of varied experimental projects. Experiments using the MGS performed at four facilities (F1-F4) were included in the study; 200 pictures per facility (100 pictures each rated as positive and negative by the algorithm) were evaluated by three raters for image quality and reliability of the algorithm. In three of the four facilities, sufficient image quality and consistency were demonstrated. Intraclass correlation coefficient, calculated to demonstrate the correlation among raters at the three facilities (F1-F3), showed excellent correlation. The specificity and sensitivity of the results obtained by different raters and the algorithm were analysed using Fisher's exact test (p < 0.05). The analysis indicated a sensitivity of 77% and a specificity of 64%. The results of our study showed that the algorithm demonstrated robust performance at facilities in different locations in accordance with the strict application of our MGS setup.
Collapse
Affiliation(s)
- Lisa Ernst
- Institute for Laboratory Animal Science, RWTH Aachen University, Germany
| | - Marcin Kopaczka
- Institute of Imaging & Computer Vision, RWTH Aachen University, Germany
| | - Mareike Schulz
- Institute for Laboratory Animal Science, RWTH Aachen University, Germany
| | - Steven R Talbot
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover, Germany
| | - Birgitta Struve
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover, Germany
| | - Christine Häger
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover, Germany
| | - Mattea Durst
- Anaesthesia and Perioperative Pain Research, University of Zurich, Switzerland
| | - Paulin Jirkof
- Anaesthesia and Perioperative Pain Research, University of Zurich, Switzerland
| | - Margarete Arras
- Anaesthesia and Perioperative Pain Research, University of Zurich, Switzerland
| | | | - Nina Miljanovic
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Germany.,Graduate School of Systemic Neurosciences, GSN LMU Munich, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Germany
| | - Dorit Merhof
- Institute of Imaging & Computer Vision, RWTH Aachen University, Germany
| | - Rene H Tolba
- Institute for Laboratory Animal Science, RWTH Aachen University, Germany
| |
Collapse
|
33
|
McLennan KM, Miller AL, Dalla Costa E, Stucke D, Corke MJ, Broom DM, Leach MC. Conceptual and methodological issues relating to pain assessment in mammals: The development and utilisation of pain facial expression scales. Appl Anim Behav Sci 2019. [DOI: 10.1016/j.applanim.2019.06.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Tappe-Theodor A, King T, Morgan MM. Pros and Cons of Clinically Relevant Methods to Assess Pain in Rodents. Neurosci Biobehav Rev 2019; 100:335-343. [PMID: 30885811 PMCID: PMC6528820 DOI: 10.1016/j.neubiorev.2019.03.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/14/2019] [Accepted: 03/14/2019] [Indexed: 01/03/2023]
Abstract
The primary objective of preclinical pain research is to improve the treatment of pain. Decades of research using pain-evoked tests has revealed much about mechanisms but failed to deliver new treatments. Evoked pain-tests are often limited because they ignore spontaneous pain and motor or disruptive side effects confound interpretation of results. New tests have been developed to focus more closely on clinical goals such as reducing pathological pain and restoring function. The objective of this review is to describe and discuss several of these tests. We focus on: Grimace Scale, Operant Behavior, Wheel Running, Burrowing, Nesting, Home Cage Monitoring, Gait Analysis and Conditioned Place Preference/ Aversion. A brief description of each method is presented along with an analysis of the advantages and limitations. The pros and cons of each test will help researchers identify the assessment tool most appropriate to meet their particular objective to assess pain in rodents. These tests provide another tool to unravel the mechanisms underlying chronic pain and help overcome the translational gap in drug development.
Collapse
Affiliation(s)
- Anke Tappe-Theodor
- Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.
| | - Tamara King
- Department of Biomedical Sciences, College of Osteopathic Medicine, Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, USA
| | - Michael M Morgan
- Department of Psychology, Washington State University, Vancouver, WA, USA
| |
Collapse
|