1
|
Meepagala KM, Anderson CM, Techen N, Duke SO. Pantoea ananatis, a plant growth stimulating bacterium, and its metabolites isolated from Hydrocotyle umbellata (dollarweed). PLANT SIGNALING & BEHAVIOR 2024; 19:2331894. [PMID: 38516998 PMCID: PMC10962587 DOI: 10.1080/15592324.2024.2331894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/22/2024] [Indexed: 03/23/2024]
Abstract
A bacterium growing on infected leaves of Hydrocotyle umbellata, commonly known as dollarweed, was isolated and identified as Pantoea ananatis. An ethyl acetate extract of tryptic soy broth (TSB) liquid culture filtrate of the bacterium was subjected to silica gel chromatography to isolate bioactive molecules. Indole was isolated as the major compound that gave a distinct, foul odor to the extract, together with phenethyl alcohol, phenol, tryptophol, N-acyl-homoserine lactone, 3-(methylthio)-1-propanol, cyclo(L-pro-L-tyr), and cyclo(dehydroAla-L-Leu). This is the first report of the isolation of cyclo(dehydroAla-L-Leu) from a Pantoea species. Even though tryptophol is an intermediate in the indoleacetic acid (IAA) pathway, we were unable to detect or isolate IAA. We investigated the effect of P. ananatis inoculum on the growth of plants. Treatment of Lemna paucicostata Hegelm plants with 4 × 109 colony forming units of P. ananatis stimulated their growth by ca. five-fold after 13 days. After 13 days of treatment, some control plants were browning, but treated plants were greener and no plants were browning. The growth of both Cucumis sativus (cucumber) and Sorghum bicolor (sorghum) plants was increased by ca. 20 to 40%, depending on the growth parameter and species, when the rhizosphere was treated with the bacterium after germination at the same concentration. Plant growth promotion by Pantoea ananatis could be due to the provision of the IAA precursor indole.
Collapse
Affiliation(s)
- Kumudini M. Meepagala
- United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, USA
| | - Caleb M. Anderson
- United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, USA
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Natascha Techen
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, USA
| | - Stephen O. Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, USA
| |
Collapse
|
2
|
Kirk A, Davidson E, Stavrinides J. The expanding antimicrobial diversity of the genus Pantoea. Microbiol Res 2024; 289:127923. [PMID: 39368256 DOI: 10.1016/j.micres.2024.127923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/07/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
With the rise of antimicrobial resistance, there is high demand for novel antimicrobials to combat multi-drug resistant pathogens. The bacterial genus Pantoea produces a diversity of antimicrobial natural products effective against a wide range of bacterial and fungal targets. These antimicrobials are synthesized by specialized biosynthetic gene clusters that have unique distributions across Pantoea as well as several other genera outside of the Erwiniaceae. Phylogenetic and genomic evidence shows that these clusters can mobilize within and between species and potentially between genera. Pantoea antimicrobials belong to unique structural classes with diverse mechanisms of action, but despite their potential in antagonizing a wide variety of plant, human, and animal pathogens, little is known about many of these metabolites and how they function. This review will explore the known antimicrobials produced by Pantoea: agglomerins, andrimid, D-alanylgriseoluteic acid, dapdiamide, herbicolins, pantocins, and the various Pantoea Natural Products (PNPs). It will include information on the structure of each compound, their genetic basis, biosynthesis, mechanism of action, spectrum of activity, and distribution, highlighting the significance of Pantoea antimicrobials as potential therapeutics and for applications in biocontrol.
Collapse
Affiliation(s)
- Ashlyn Kirk
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada
| | - Emma Davidson
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada
| | - John Stavrinides
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada.
| |
Collapse
|
3
|
Kirk A, Stavrinides J. Distribution and comparative genomic analysis of antimicrobial gene clusters found in Pantoea. Front Microbiol 2024; 15:1416674. [PMID: 39206372 PMCID: PMC11350110 DOI: 10.3389/fmicb.2024.1416674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Members of the bacterial genus Pantoea produce a variety of antimicrobial products that are effective against plant, animal, and human pathogens. To date, little is known about the distribution and evolutionary history of these clusters. We surveyed the public databases for the 12 currently known antibiotic biosynthetic gene clusters found across Pantoea strains to determine their distribution. We show that some clusters, namely pantocin B, PNP-3, and PNP-4 are found strictly in Pantoea, while agglomerin, andrimid, AGA, dapdiamide, herbicolin, PNP-1, PNP-2, PNP-5, and pantocin A, are more broadly distributed in distantly related genera within Vibrionaceae, Pectobacteriaceae, Yersiniaceae, Morganellaceae, and Hafniaceae. We evaluated the evolutionary history of these gene clusters relative to a cpn60-based species tree, considering the flanking regions of each cluster, %GC, and presence of mobile genetic elements, and identified potential occurrences of horizontal gene transfer. Lastly, we also describe the biosynthetic gene cluster of pantocin B in the strain Pantoea agglomerans Eh318 more than 20 years after this antibiotic was first described.
Collapse
|
4
|
Lescallette AR, Dunn ZD, Manning VA, Trippe KM, Li B. Biosynthetic Origin of Formylaminooxyvinylglycine and Characterization of the Formyltransferase GvgI. Biochemistry 2022; 61:2159-2164. [PMID: 36126313 DOI: 10.1021/acs.biochem.2c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
4-Formylaminooxyvinylglycine (FVG) is an herbicidal and antibacterial nonproteinogenic amino acid produced by several strains of the Pseudomonas fluorescens species complex. It contains a unique vinyl alkoxyamine moiety with an O-N bond, and its biosynthetic origin remains unknown. Here, we show that the gvg cluster from P. fluorescens WH6 is responsible for the biosynthesis of FVG and two additional O-N bond-containing oxyvinylglycines, guanidinooxyvinylglycine and aminooxyvinylglycine. Feeding studies in the producing bacteria indicate that these compounds originate from homoserine. We identify a formyltransferase gvgI that is required for the production of FVG and characterize the activity of this enzyme in vitro toward amino acids with a side chain amine. Sequence similarity network analysis reveals that GvgI and homologues make up a distinct group from the main classes of formyltransferases.
Collapse
Affiliation(s)
- Adam R Lescallette
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Zachary D Dunn
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Viola A Manning
- USDA-ARS Forage Seed and Cereal Research Unit, Corvallis, Oregon 97331, United States
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon 97331, United States
| | - Kristin M Trippe
- USDA-ARS Forage Seed and Cereal Research Unit, Corvallis, Oregon 97331, United States
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon 97331, United States
| | - Bo Li
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
5
|
Davis EW, Okrent RA, Manning VA, Trippe KM. Unexpected distribution of the 4-formylaminooxyvinylglycine (FVG) biosynthetic pathway in Pseudomonas and beyond. PLoS One 2021; 16:e0247348. [PMID: 33891610 PMCID: PMC8064604 DOI: 10.1371/journal.pone.0247348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/13/2021] [Indexed: 11/29/2022] Open
Abstract
The biological herbicide and antibiotic 4-formylaminooxyvinylglycine (FVG) was originally isolated from several rhizosphere-associated strains of Pseudomonas fluorescens. Biosynthesis of FVG is dependent on the gvg biosynthetic gene cluster in P. fluorescens. In this investigation, we used comparative genomics to identify strains with the genetic potential to produce FVG due to presence of a gvg gene cluster. These strains primarily belong to two groups of Pseudomonas, P. fluorescens and P. syringae, however, a few strains with the gvg cluster were found outside of Pseudomonas. Mass spectrometry confirmed that all tested strains of the P. fluorescens species group produced FVG. However, P. syringae strains did not produce FVG under standard conditions. Several lines of evidence regarding the transmission of the gvg cluster including a robust phylogenetic analysis suggest that it was introduced multiple times through horizontal gene transfer within the Pseudomonas lineage as well as in select lineages of Thiomonas, Burkholderia and Pantoea. Together, these data broaden our understanding of the evolution and diversity of FVG biosynthesis. In the course of this investigation, additional gene clusters containing only a subset of the genes required to produce FVG were identified in a broad range of bacteria, including many non-pseudomonads.
Collapse
Affiliation(s)
- Edward W. Davis
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States of America
| | - Rachel A. Okrent
- Forage Seed and Cereal Research Unit, United States Department of Agriculture, Agricultural Research Service, Corvallis, OR, United States of America
| | - Viola A. Manning
- Forage Seed and Cereal Research Unit, United States Department of Agriculture, Agricultural Research Service, Corvallis, OR, United States of America
| | - Kristin M. Trippe
- Forage Seed and Cereal Research Unit, United States Department of Agriculture, Agricultural Research Service, Corvallis, OR, United States of America
- Department of Crop and Soil Sciences, Oregon State University, Corvallis, OR, United States of America
| |
Collapse
|
6
|
Absence of 4-Formylaminooxyvinylglycine Production by Pseudomonas fluorescens WH6 Results in Resource Reallocation from Secondary Metabolite Production to Rhizocompetence. Microorganisms 2021; 9:microorganisms9040717. [PMID: 33807194 PMCID: PMC8067088 DOI: 10.3390/microorganisms9040717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas fluorescens WH6 produces the non-proteinogenic amino acid 4-formylaminooxyvinylglycine (FVG), a secondary metabolite with antibacterial and pre-emergent herbicidal activities. The gvg operon necessary for FVG production encodes eight required genes: one regulatory (gvgR), two of unknown functional potential (gvgA and C), three with putative biosynthetic function (gvgF, H, and I), and two small ORFs (gvgB and G). To gain insight into the role of GvgA and C in FVG production, we compared the transcriptome of knockout (KO) mutants of gvgR, A, and C to wild type (WT) to test two hypotheses: (1) GvgA and GvgC play a regulatory role in FVG production and (2) non-gvg cluster genes are regulated by GvgA and GvgC. Our analyses show that, collectively, 687 genes, including the gvg operon, are differentially expressed in all KO strains versus WT, representing >10% of the genome. Fifty-one percent of these genes were similarly regulated in all KO strains with GvgC having the greatest number of uniquely regulated genes. Additional transcriptome data suggest cluster regulation through feedback of a cluster product. We also discovered that FVG biosynthesis is regulated by L-glu, L-asp, L-gln, and L-asn and that resources are reallocated in KO strains to increase phenotypes involved in rhizocompetence including motility, biofilm formation, and denitrification. Altogether, differential transcriptome analyses of mutants suggest that regulation of the cluster is multifaceted and the absence of FVG production or its downregulation can dramatically shift the lifestyle of WH6.
Collapse
|
7
|
Williams AN, Sorout N, Cameron AJ, Stavrinides J. The Integration of Genome Mining, Comparative Genomics, and Functional Genetics for Biosynthetic Gene Cluster Identification. Front Genet 2020; 11:600116. [PMID: 33343637 PMCID: PMC7744662 DOI: 10.3389/fgene.2020.600116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/11/2020] [Indexed: 11/25/2022] Open
Abstract
Antimicrobial resistance is a worldwide health crisis for which new antibiotics are needed. One strategy for antibiotic discovery is identifying unique antibiotic biosynthetic gene clusters that may produce novel compounds. The aim of this study was to demonstrate how an integrated approach that combines genome mining, comparative genomics, and functional genetics can be used to successfully identify novel biosynthetic gene clusters that produce antimicrobial natural products. Secondary metabolite clusters of an antibiotic producer are first predicted using genome mining tools, generating a list of candidates. Comparative genomic approaches are then used to identify gene suites present in the antibiotic producer that are absent in closely related non-producers. Gene sets that are common to the two lists represent leading candidates, which can then be confirmed using functional genetics approaches. To validate this strategy, we identified the genes responsible for antibiotic production in Pantoea agglomerans B025670, a strain identified in a large-scale bioactivity survey. The genome of B025670 was first mined with antiSMASH, which identified 24 candidate regions. We then used the comparative genomics platform, EDGAR, to identify genes unique to B025670 that were not present in closely related strains with contrasting antibiotic production profiles. The candidate lists generated by antiSMASH and EDGAR were compared with standalone BLAST. Among the common regions was a 14 kb cluster consisting of 14 genes with predicted enzymatic, transport, and unknown functions. Site-directed mutagenesis of the gene cluster resulted in a reduction in antimicrobial activity, suggesting involvement in antibiotic production. An integrated approach that combines genome mining, comparative genomics, and functional genetics yields a powerful, yet simple strategy for identifying potentially novel antibiotics.
Collapse
|
8
|
Robinson LJ, Verrett JN, Sorout N, Stavrinides J. A broad-spectrum antibacterial natural product from the cystic fibrosis isolate, Pantoea agglomerans Tx10. Microbiol Res 2020; 237:126479. [PMID: 32416447 DOI: 10.1016/j.micres.2020.126479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/23/2020] [Accepted: 03/30/2020] [Indexed: 02/01/2023]
Abstract
The prevalence of antibiotic-resistant Gram-positive and Gram-negative pathogens has prompted considerable efforts to identify new antibacterials. Here we show that Pantoea agglomerans Tx10-an isolate from the sputum sample of a cystic fibrosis patient-is a strong competitor that inhibits the growth of a wide range of Gram-positive and Gram-negative bacteria through the production of a secreted compound. A genetic screen to identify the genes involved in the production of this compound resulted in the delineation of a 6-gene biosynthetic cluster. We called this compound Pantoea Natural Product 2 (PNP-2). Assays with mutants deficient in PNP-2 production revealed they were still able to inhibit Erwinia amylovora, suggesting the production of a second antibiotic, which we identified as Pantocin A. We generated Pantocin A knockouts, and a PNP-2/Pantocin A double knockout and used these to evaluate the spectrum of activity of both natural products. We show that strains of Enterobacter, E. coli, Klebsiella, Kosakonia, Pseudocitrobacter, Salmonella, Staphylococcus, and Streptococcus as well as the majority of Pantoea strains assayed are susceptible to PNP-2, indicating a broad spectrum of activity, and potential for therapeutic development.
Collapse
Affiliation(s)
- Lucas J Robinson
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S0A2, Canada; Pasteur Institute, Paris, France
| | - Jennifer N Verrett
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S0A2, Canada
| | - Naveen Sorout
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S0A2, Canada
| | - John Stavrinides
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S0A2, Canada.
| |
Collapse
|
9
|
Williams AN, Stavrinides J. Pantoea Natural Product 3 is encoded by an eight-gene biosynthetic gene cluster and exhibits antimicrobial activity against multi-drug resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Microbiol Res 2020; 234:126412. [PMID: 32062363 DOI: 10.1016/j.micres.2020.126412] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/22/2019] [Accepted: 01/10/2020] [Indexed: 01/08/2023]
Abstract
Multi-drug resistant Acinetobacter baumannii and Pseudomonas aeruginosa continue to pose a serious health threat worldwide. Two Pantoea agglomerans strains, 3581 and SN01080, produce an antibiotic effective against these pathogens. To identify the antibiotic biosynthetic gene clusters, independent genetic screens were conducted for each strain using a mini-Tn5 transposon, which resulted in the identification of the same conserved eight-gene cluster. We have named this antibiotic Pantoea Natural Product 3 (PNP-3). The PNP-3 biosynthetic cluster is composed of genes encoding two Major Facilitator Superfamily (MFS) transporters, an ArsR family regulator, and five predicted enzymes. The biosynthetic gene cluster is found in only a few Pantoea strains and is not present within the antiSMASH and BAGEL4 databases, suggesting it may be novel. In strain 3581, PNP-3 production is linked to pantocin A production, where loss of pantocin A production results in a larger PNP-3 zone of inhibition. To evaluate the spectrum of activity, PNP-3 producers, including several PNP-3 mutants and pantocin A site-directed mutants, were tested against a collection of clinical, drug-resistant strains of A. baumannii and P. aeruginosa, as well as, Klebsiella, Escherichia coli, Enterobacter, Staphylococcus aureus, and Streptococcus mutans. PNP-3 was found to be effective against all strains except vancomycin-resistant Enterococcus under the tested conditions. Heterologous expression of the four predicted biosynthetic genes in Erwinia amylovora resulted in antibiotic production, providing a means for future overexpression and purification. PNP-3 is a natural product that is effective against drug-resistant A. baumannii, P. aeruginosa, and enteric species for which there are currently few treatment options.
Collapse
Affiliation(s)
- Ashley N Williams
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S0A2, Canada
| | - John Stavrinides
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S0A2, Canada.
| |
Collapse
|
10
|
Resistance to Two Vinylglycine Antibiotic Analogs Is Conferred by Inactivation of Two Separate Amino Acid Transporters in Erwinia amylovora. J Bacteriol 2019; 201:JB.00658-18. [PMID: 30745372 DOI: 10.1128/jb.00658-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/04/2019] [Indexed: 11/20/2022] Open
Abstract
Erwinia amylovora is the causal agent of fire blight of apple and pear trees. Several bacteria have been shown to produce antibiotics that antagonize E. amylovora, including pantocins, herbicolins, dapdiamides, and the vinylglycines, 4-formylaminooxyvinylglycine (FVG) and 4-aminoethoxyvinylglycine (AVG). Pantoea ananatis BRT175 was previously shown to exhibit antibiotic activity against E. amylovora via the production of Pantoea natural product 1 (PNP-1), later shown to be FVG; however, exposure of E. amylovora to FVG results in spontaneously resistant mutants. To identify the mechanism of resistance, we used genome variant analysis on spontaneous FVG-resistant mutants of E. amylovora and identified null mutations in the l-asparagine permease gene ansP Heterologous expression of ansP in normally resistant Escherichia coli was sufficient to impart FVG susceptibility, suggesting that FVG is imported through this permease. Because FVG and AVG are structurally similar, we hypothesized that resistance to AVG would also be conferred through inactivation of ansP; however, ansP mutants were not resistant to AVG. We found that spontaneously resistant Ea321 mutants also arise in the presence of AVG, with whole-genome variant analysis revealing that resistance was due to inactivation of the arginine ABC transporter permease subunit gene artQ Heterologous expression of the predicted lysE-like transporter encoded within the Pantoea ananatis BRT175 FVG biosynthetic cluster, which is likely responsible for antibiotic export, was sufficient to confer resistance to both FVG and AVG. This work highlights the important roles of amino acid transporters in antibiotic import into bacteria and the potential utility of antimicrobial amino acid analogs as antibiotics.IMPORTANCE The related antibiotics formylaminooxyvinylglycine (FVG) and aminoethoxyvinylglycine (AVG) have been shown to have activity against the fire blight pathogen Erwinia amylovora; however, E. amylovora can develop spontaneous resistance to these antibiotics. By comparing the genomes of mutants to those of the wild type, we found that inactivation of the l-asparagine transporter conferred resistance to FVG, while inactivation of the l-arginine transporter conferred resistance to AVG. We also show that the transporter encoded by the FVG biosynthetic cluster can confer resistance to both FVG and AVG. Our work indicates the important role that amino acid transporters play in the import of antibiotics and highlights the possible utility in designer antibiotics that enter the bacterial cell through amino acid transporters.
Collapse
|