1
|
Kustova MV, Perfilova VN, Prokofiev II, Musyko EA, Kucheryavenko AS, Kusnetsova EE, Tsetsera DE, Tyurenkov IN. Pharmacological correction of the sequelae of acute alcohol-induced myocardial damage with new derivatives of neuroactive amino acids coupled with the blockade of the neuronal NO synthase isoform. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.90241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Introduction: Acute alcohol intoxication (AAI) induces a number of myocardial disorders, which result in mitochondrial dysfunction in cardiomyocytes, oxidative stress, and decreased cardiac contractility. Nitric oxide produced by the nNOS is one of the major modulators of cardiac activity. New derivatives of GABA (RSPU-260 compound) and glutamate (glufimet) can be potentially regarded as such agents as the interaction between the NO system and the GABA and glutamatergic systems has been proved.
Materials and methods: All the studies were performed on female white Wistar rats, aged 10 months, whose weight was 280–320g AAI intoxication was modeled of 32% ethanol (gavage, 4g/kg).
Results and discussion: Glufimet and the RSPU-260 compound caused a significant improvement in myocardial contractility, increased oxygen consumption in the V3 state according to Chance, raised the respiratory control ratio and decreased the intensity of LPO intensity. Their effectiveness exceeded that of mildronate, their comparator. nNOS inhibition resulted in a pronounced aggravation of oxidative stress implicated in MDA accumulation in cardiac mitochondria and decreased activity of SOD; myocardial contractility and mitochondrial function indicators did not show a significant difference from the control group. The compounds under study coupled with nNOS inhibition had a cardioprotective effect.
Conclusion: Glufimet and the RSPU-260 compound, derivatives of neuroactive amino acids, have a pronounced cardioprotective effect, restrict LPO processes, enhance SOD activity, improve the mitochondrial respiratory function after acute alcohol intoxication when coupled with neuronal NO-synthase inhibition, the expression of which persists after AAI.
Graphical abstract:
Collapse
|
2
|
Shati AA, Zaki MSA, Alqahtani YA, Al-Qahtani SM, Haidara MA, Dawood AF, AlMohanna AM, El-Bidawy MH, Alaa Eldeen M, Eid RA. Antioxidant Activity of Vitamin C against LPS-Induced Septic Cardiomyopathy by Down-Regulation of Oxidative Stress and Inflammation. Curr Issues Mol Biol 2022; 44:2387-2400. [PMID: 35678692 PMCID: PMC9164034 DOI: 10.3390/cimb44050163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/02/2022] Open
Abstract
In severe cases of sepsis, endotoxin-induced cardiomyopathy can cause major damage to the heart. This study was designed to see if Vitamin C (Vit C) could prevent lipopolysaccharide-induced heart damage. Eighteen Sprague Dawley male rats (n = 6) were divided into three groups. Rats received 0.5 mL saline by oral gavage in addition to a standard diet (Control group), rats received one dose of endotoxin on day 15 (lipopolysaccharide) (LPS) (6 mg/kg), which produced endotoxemia (Endotoxin group), and rats that received 500 mg/Kg BW of Vit C by oral gavage for 15 days before LPS administration (Endotoxin plus Vit C group). In all groups, blood and tissue samples were collected on day 15, six hours after LPS administration, for histopathological and biochemical analysis. The LPS injection lowered superoxide dismutase (SOD) levels and increased malondialdehyde in tissues compared with a control group. Furthermore, the endotoxin group showed elevated inflammatory biomarkers, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Both light and electron microscopy showed that the endotoxic-treated group’s cardiomyocytes, intercalated disks, mitochondria, and endothelial cells were damaged. In endotoxemic rats, Vit C pretreatment significantly reduced MDA levels and restored SOD activity, minimized biomarkers of inflammation, and mitigated cardiomyocyte damage. In conclusion: Vit C protects against endotoxin-induced cardiomyopathy by inhibiting oxidative stress cytokines.
Collapse
Affiliation(s)
- Ayed A. Shati
- Department of Child Health, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia; (A.A.S.); (Y.A.A.); (S.M.A.-Q.)
| | - Mohamed Samir A. Zaki
- Anatomy Department, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia;
- Department of Histology and Cell Biology, College of Medicine, Zagazig University, Zagazig 31527, Egypt
| | - Youssef A. Alqahtani
- Department of Child Health, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia; (A.A.S.); (Y.A.A.); (S.M.A.-Q.)
| | - Saleh M. Al-Qahtani
- Department of Child Health, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia; (A.A.S.); (Y.A.A.); (S.M.A.-Q.)
| | - Mohamed A. Haidara
- Department of Physiology, Kasr Al-Aini College of Medicine, Cairo University, Cairo 11519, Egypt; (M.A.H.); (M.H.E.-B.)
| | - Amal F. Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh P.O. Box 84428, Saudi Arabia; (A.F.D.); (A.M.A.)
| | - Asmaa M. AlMohanna
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh P.O. Box 84428, Saudi Arabia; (A.F.D.); (A.M.A.)
| | - Mahmoud H. El-Bidawy
- Department of Physiology, Kasr Al-Aini College of Medicine, Cairo University, Cairo 11519, Egypt; (M.A.H.); (M.H.E.-B.)
- Department of BMS, Division of Physiology, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj P.O. Box 11942, Saudi Arabia
| | - Muhammad Alaa Eldeen
- Cell Biology, Histology & Genetics Division, Zoology Department, College of Science, Zagazig University, Zagazig 44519, Egypt;
| | - Refaat A. Eid
- Pathology Department, College of Medicine, King Khalid University, Abha P.O. Box 62529, Saudi Arabia
- Correspondence: or
| |
Collapse
|
3
|
Kourosh-Arami M, Hosseini N, Mohsenzadegan M, Komaki A, Joghataei MT. Neurophysiologic implications of neuronal nitric oxide synthase. Rev Neurosci 2021; 31:617-636. [PMID: 32739909 DOI: 10.1515/revneuro-2019-0111] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/21/2020] [Indexed: 12/12/2022]
Abstract
The molecular and chemical properties of neuronal nitric oxide synthase (nNOS) have made it a key mediator in many physiological functions and signaling transduction. The NOS monomer is inactive, but the dimer form is active. There are three forms of NOS, which are neuronal (nNOS), inducible (iNOS), and endothelial (eNOS) nitric oxide synthase. nNOS regulates nitric oxide (NO) synthesis which is the mechanism used mostly by neurons to produce NO. nNOS expression and activation is regulated by some important signaling proteins, such as cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB), calmodulin (CaM), heat shock protein 90 (HSP90)/HSP70. nNOS-derived NO has been implicated in modulating many physiological functions, such as synaptic plasticity, learning, memory, neurogenesis, etc. In this review, we have summarized recent studies that have characterized structural features, subcellular localization, and factors that regulate nNOS function. Finally, we have discussed the role of nNOS in the developing brain under a wide range of physiological conditions, especially long-term potentiation and depression.
Collapse
Affiliation(s)
- Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Nasrin Hosseini
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Monireh Mohsenzadegan
- Department of Laboratory Sciences, Allied Medical College, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Alireza Komaki
- Department of Physiology, Medical College, Hamedan University of Medical Sciences, Hamedan, Islamic Republic of Iran
| | - Mohammad Taghi Joghataei
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|