1
|
Yang L, Yang Q, Zhang L, Ren F, Zhang Z, Jia Q. Integrated Metabolomics and Transcriptomics Analysis of Flavonoid Biosynthesis Pathway in Polygonatum cyrtonema Hua. Molecules 2024; 29:2248. [PMID: 38792110 PMCID: PMC11124200 DOI: 10.3390/molecules29102248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Flavonoids, a class of phenolic compounds, are one of the main functional components and have a wide range of molecular structures and biological activities in Polygonatum. A few of them, including homoisoflavonoids, chalcones, isoflavones, and flavones, were identified in Polygonatum and displayed a wide range of powerful biological activities, such as anti-cancer, anti-viral, and blood sugar regulation. However, few studies have systematically been published on the flavonoid biosynthesis pathway in Polygonatum cyrtonema Hua. Therefore, in the present study, a combined transcriptome and metabolome analysis was performed on the leaf, stem, rhizome, and root tissues of P. cyrtonema to uncover the synthesis pathway of flavonoids and to identify key regulatory genes. Flavonoid-targeted metabolomics detected a total of 65 active substances from four different tissues, among which 49 substances were first study to identify in Polygonatum, and 38 substances were flavonoids. A total of 19 differentially accumulated metabolites (DAMs) (five flavonols, three flavones, two dihydrochalcones, two flavanones, one flavanol, five phenylpropanoids, and one coumarin) were finally screened by KEGG enrichment analysis. Transcriptome analysis indicated that a total of 222 unigenes encoding 28 enzymes were annotated into three flavonoid biosynthesis pathways, which were "phenylpropanoid biosynthesis", "flavonoid biosynthesis", and "flavone and flavonol biosynthesis". The combined analysis of the metabolome and transcriptome revealed that 37 differentially expressed genes (DEGs) encoding 11 enzymes (C4H, PAL, 4CL, CHS, CHI, F3H, DFR, LAR, ANR, FNS, FLS) and 19 DAMs were more likely to be regulated in the flavonoid biosynthesis pathway. The expression of 11 DEGs was validated by qRT-PCR, resulting in good agreement with the RNA-Seq. Our studies provide a theoretical basis for further elucidating the flavonoid biosynthesis pathway in Polygonatum.
Collapse
Affiliation(s)
- Luyun Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (Q.Y.); (L.Z.); (F.R.); (Z.Z.)
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qingwen Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (Q.Y.); (L.Z.); (F.R.); (Z.Z.)
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Luping Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (Q.Y.); (L.Z.); (F.R.); (Z.Z.)
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fengxiao Ren
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (Q.Y.); (L.Z.); (F.R.); (Z.Z.)
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhouyao Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (Q.Y.); (L.Z.); (F.R.); (Z.Z.)
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qiaojun Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (L.Y.); (Q.Y.); (L.Z.); (F.R.); (Z.Z.)
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
2
|
Yan M, Dong S, Gong Q, Xu Q, Ge Y. Comparative chloroplast genome analysis of four Polygonatum species insights into DNA barcoding, evolution, and phylogeny. Sci Rep 2023; 13:16495. [PMID: 37779129 PMCID: PMC10543443 DOI: 10.1038/s41598-023-43638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023] Open
Abstract
The Polygonatum genus represents a perennial herb with the Liliaceae family, boasting substantial economic and medicinal significance. The majority of Polygonatum plants exhibit notable similarity while lacking distinctive identifying characteristics, thus resulting in the proliferation of adulterated medicinal materials within the market. Within this study, we conducted an in-depth analysis of the complete chloroplast (cp) genomes of four Polygonatum plants and compared them with four closely akin species. The primary objectives were to unveil structural variations, species divergence, and the phylogenetic interrelations among taxa. The cp genomes of the four Polygonatum species were typified by a conventional quadripartite structure, incorporating a large single copy region (LSC), a small single copy region (SSC), and a pair of inverted repeat regions. In total, we annotated a range of 131 to 133 genes, encompassing 84 to 86 protein-coding genes, 38 transfer RNA (tRNA) genes, 8 ribosomal RNA (rRNA) genes, and 0 to 2 pseudogenes (ycf1, infA). Our comparative analyses unequivocally revealed a remarkable consistency in gene order and GC content within the Polygonatum genus. Furthermore, we predicted a potential 59 to 64 RNA editing sites distributed across 22 protein-coding genes, with the ndhB gene exhibiting the most prominent propensity for RNA editing sites, boasting a tally of 15 sites. Notably, six regions of substantial potential variability were ascertained, characterized by elevated Pi values. Noteworthy, molecular markers for species identification, population genetic scrutiny, and phylogenetic investigations within the genus were identified in the form of the psaJ-rpl33 and trnS + trnT-psaD barcodes. The resultant phylogenetic tree unequivocally depicted the formation of a monophyletic clade comprising species within the evolutionary framework of Liliaceae, demonstrating closer evolutionary affinities with Maianthemum, Dracaeneae, and Asparageae. This comprehensive compendium of findings collectively contributes to the advancement of molecular species identification, elucidation of phylogenetic interrelationships, and the establishment of DNA barcodes tailored to the Polygonatum species.
Collapse
Affiliation(s)
- Meixiu Yan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, Zhejiang Province, People's Republic of China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Shujie Dong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Qiuyi Gong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Qin Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Yuqing Ge
- The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
3
|
Liu H, Cheng H, Xu J, Hu J, Zhao C, Xing L, Wang M, Wu Z, Peng D, Yu N, Liu J. Genetic diversity and population structure of Polygonatum cyrtonema Hua in China using SSR markers. PLoS One 2023; 18:e0290605. [PMID: 37651363 PMCID: PMC10470896 DOI: 10.1371/journal.pone.0290605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023] Open
Abstract
Polygonatum cyrtonema Hua is a perennial herbaceous plant of the Polygonatum genus, belonging to the Liliaceae family, with significant medicinal and nutritional value. In China, this species is a traditional medicinal and edible herb with a long history of application and is widely appreciated by the people. However, as the demand for medicinal herbs continues to grow, excessive harvesting has led to the depletion of wild resources and the risk of genetic erosion. In addition, the chaotic cultivation of varieties and the lack of high quality germplasm resources have led to inconsistent quality of medical materials. Therefore, it is urgent to conduct genetic diversity evaluation of this species and establish a sound conservation plan. This study assessed the genetic diversity and population structure of 96 samples collected from seven regions in China using the simple sequence repeat (SSR) molecular marker technology. In this study, a total of 60 alleles (Na) were detected across the 10 polymorphic SSR markers used, with an average of 6.0 alleles generated per locus. The values of polymorphic information content (PIC) values ranged from 0.3396 to 0.8794, with an average value of 0.6430. The average value of the effective number of alleles (Ne) was 2.761, and the average value of the Shannon's information index (I) was 1.196. The population structure analysis indicates that the Polygonatum cyrtonema Hua germplasm can be classified into three subpopulations (JZ, QY, JD) at the molecular level, which corresponds to the previous subgroups identified based on individual plant phenotypic traits. Analysis of Molecular Variance (AMOVA) showed that 74% of the genetic variation was between individuals within populations in different regions. The phylogenetic analysis of the 96 germplasm samples divided them into three main populations. The QY and JD subpopulations are largely clustered together, which could be attributed to their mountainous distribution and the local climate environment. The genetic differentiation coefficient (Fst) value was low at 0.065, indicating relatively low population differentiation. The ratio of the genetic differentiation coefficient (Fst) between the JZ population and the other two populations (QY and JD) is much higher than the ratio between the QY and JD populations. Based on the clustering results and the ratio of the genetic differentiation coefficient (Fst), it can be inferred that the genetic relationship between the QY and JD subpopulations is closer, with a certain degree of genetic differentiation from the JZ subpopulation. This study supports the conservation of germplasm resources of Polygonatum cyrtonema Hua in China and provides new parental material for germplasm genetic improvement and breeding programs.
Collapse
Affiliation(s)
- Heng Liu
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - He Cheng
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Jun Xu
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Jiayi Hu
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Chenchen Zhao
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Lihua Xing
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui Province, China
| | - Mengjin Wang
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Zhendong Wu
- Anhui Qingyang County Jiuhua traditional Chinese Medicinal Materials Technology Co., Ltd, Chizhou City, Anhui Province, China
| | - Daiyin Peng
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui Province, China
| | - Nianjun Yu
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, Anhui Province, China
| | - Junling Liu
- Department of Biopharmaceuticals, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
- Anhui Provincial Institutes for Food and Drug Control, Hefei, Anhui Province, China
| |
Collapse
|
4
|
Zhou N, Tang L, Xie P, Miao K, Yang C, Liu H, Ji Y. Genome skimming as an efficient tool for authenticating commercial products of the pharmaceutically important Paris yunnanensis (Melanthiaceae). BMC PLANT BIOLOGY 2023; 23:344. [PMID: 37380980 DOI: 10.1186/s12870-023-04365-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Paris yunnanensis (Melanthiaceae) is a traditional Chinese medicinal plant of significant pharmaceutical importance. Due to previous taxonomic confusion, a congeneric species, Paris liiana, has been mistaken for P. yunnanensis and cultivated on a large scale, leading to the mixing of commercial products (i.e., seedlings and processed rhizomes) of P. yunnanensis with those of P. liiana. This may have adverse effects on quality control in the standardization of P. yunnanensis productions. As the lack of PCR amplifiable genomic DNA within processed rhizomes is an intractable obstacle to the authentication of P. yunnanensis products using PCR-based diagnostic tools, this study aimed to develop a PCR-free method to authenticate commercial P. yunnanensis products, by applying genome skimming to generate complete plastomes and nrDNA arrays for use as the molecular tags. RESULTS Based on a dense intraspecies sampling of P. liiana and P. yunnanensis, the robustness of the proposed authentication systems was evaluated by phylogenetic inferences and experimental authentication of commercial seedling and processed rhizome samples. The results indicate that the genetic criteria of both complete plastomes and nrDNA arrays were consistent with the species boundaries to achieve accurate discrimination of P. yunnanensis and P. liinna. Owing to its desirable accuracy and sensitivity, genome skimming can serve as an effective and sensitive tool for monitoring and controlling the trade of P. yunnanensis products. CONCLUSION This study provides a new way to solve the long-standing problem of the molecular authentication of processed plant products due to the lack of PCR amplifiable genomic DNA. The proposed authentication system will support quality control in the standardization of P. yunnanensis products in cultivation and drug production. This study also provides molecular evidence to clarify the long-standing taxonomic confusion regarding the species delimitation of P. yunnanensis, which will contribute to the rational exploration and conservation of the species.
Collapse
Affiliation(s)
- Nian Zhou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lilei Tang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Pingxuan Xie
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ke Miao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chengjin Yang
- Yunnan Baiyao Group, Chinese Medicinal Resources Co. LTD, Kunming, China
| | - Haiyang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yunheng Ji
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Population, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
5
|
Guo L, Wang X, Wang R, Li P. Characterization and Comparative Analysis of Chloroplast Genomes of Medicinal Herb Scrophularia ningpoensis and Its Common Adulterants (Scrophulariaceae). Int J Mol Sci 2023; 24:10034. [PMID: 37373180 DOI: 10.3390/ijms241210034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Scrophularia ningpoensis, a perennial medicinal plant from the Scrophulariaceae family, is the original species of Scrophulariae Radix (SR) in the Chinese Pharmacopoeia. This medicine is usually deliberately substituted or accidentally contaminated with other closely related species including S. kakudensis, S. buergeriana, and S. yoshimurae. Given the ambiguous identification of germplasm and complex evolutionary relationships within the genus, the complete chloroplast genomes of the four mentioned Scrophularia species were sequenced and characterized. Comparative genomic studies revealed a high degree of conservation in genomic structure, gene arrangement, and content within the species, with the entire chloroplast genome spanning 153,016-153,631 bp in full length, encoding 132 genes, including 80 protein-coding genes, 4 rRNA genes, 30 tRNA genes, and 18 duplicated genes. We identified 8 highly variable plastid regions and 39-44 SSRs as potential molecular markers for further species identification in the genus. The consistent and robust phylogenetic relationships of S. ningpoensis and its common adulterants were firstly established using a total of 28 plastid genomes from the Scrophulariaceae family. In the monophyletic group, S. kakudensis was determined to be the earliest diverging species, succeeded by S. ningpoensis. Meanwhile, S. yoshimurae and S. buergeriana were clustered together as sister clades. Our research manifestly illustrates the efficacy of plastid genomes in identifying S. ningpoensis and its counterfeits and will also contribute to a deeper understanding of the evolutionary processes within Scrophularia.
Collapse
Affiliation(s)
- Lei Guo
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xia Wang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ruihong Wang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pan Li
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Wang F, Hou T, Luo S, Geng C, Chen C, Liu D, Han B, Gao L. Rapid and Green Methods for Qualitative Classification of Polygonati Rhizoma and Polygonati Odorati Rhizoma Using a Handheld near Infrared Instrument. J CHEM-NY 2023. [DOI: 10.1155/2023/4888557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
The confusing use of Polygonati Rhizoma (PR) and Polygonati Odorati Rhizoma (POR) poses an unpredictable threat to the health of consumers. Sensitive, nondestructive, rapid, and multicomponent techniques for their detection are sought after. In this study, a low-cost, short-wavelength (898–1668 nm), and handheld near-infrared (NIR) spectrometer combined with multivariate spectral evaluation methods was used to establish calibration models for identifying PR and POR. NIR spectra were treated with a standard normal variate (SNV) before performing chemometric approaches. Then principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were tested for calibration model development. The PCA results showed that spectral differences existed between the two herbs. However, the evaluation techniques could not separate them with the required accuracy. The PLS-DA calibration model, on the other hand, could separate the two herbs according to their spectral information with the prediction accuracy of >98.3%. Thus, it has been proven that a rapid, green, and low-cost method to support on-site and practical inspection through a handheld NIR instrument has been established to identify PR and POR and ensure the safety of the clinical medication.
Collapse
|
7
|
Species identification of culinary spices with two-locus DNA barcoding. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
8
|
Yu J, Chen W, Zhao L, Yue T, Yang W, Wang X. Efficient separation of anti-inflammatory isolates from Polygonti rhizome by three different modes of high-speed counter-current chromatography. J Sep Sci 2022; 45:4012-4022. [PMID: 36136041 DOI: 10.1002/jssc.202200545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/18/2022] [Accepted: 09/04/2022] [Indexed: 11/05/2022]
Abstract
Successful isolation of 15 compounds from Polygonti rhizome was obtained by an efficient technique combined with macroporous resin column chromatography pretreatment and three different modes of high-speed counter-current chromatography for the first time. For the pretreatment, AB-8 resin was applied to remove the polysaccharides and enrich four different parts (samples I, II, III, and IV) by polarities. For the separation, sample I was separated by pH-zone-refining counter-current chromatography and seven cycle recycling mode high-speed counter-current chromatography, yielding four alkaloids (1--4); samples II-IV were further separated by the conventional high-speed counter-current chromatography, yielding seven flavonoids (5-10, 12), one steroid saponin (11), and three terpenoids (13-15). Finally, the isolates were assayed for their anti-inflammatory activities against nitric oxide production with compounds 5, 9-10, 13 showing significant anti-inflammatory activities, IC50 values which were 13.0, 16.2, 17.1, and 14.7 μM, respectively, while others showing moderate and weak anti-inflammatory activities, respectively.
Collapse
Affiliation(s)
- Jinqian Yu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Shandong Academy of Sciences, Qilu University of Technology, Jinan, P. R. China.,School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Wenxiu Chen
- Weifang Engineering Vocational College, Weifang, P. R. China
| | - Lei Zhao
- Chemical Technology Research Institute of Shandong, Qingdao University of Science and Technology, Jinan, P. R. China
| | - Tao Yue
- Chemical Technology Research Institute of Shandong, Qingdao University of Science and Technology, Jinan, P. R. China
| | - Wencui Yang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Shandong Academy of Sciences, Qilu University of Technology, Jinan, P. R. China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Shandong Academy of Sciences, Qilu University of Technology, Jinan, P. R. China.,School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| |
Collapse
|
9
|
Ahmad M, Ali A, Ullah Z, Sher H, Dai DQ, Ali M, Iqbal J, Zahoor M, Ali I. Biosynthesized silver nanoparticles using Polygonatum geminiflorum efficiently control fusarium wilt disease of tomato. Front Bioeng Biotechnol 2022; 10:988607. [PMID: 36159677 PMCID: PMC9493356 DOI: 10.3389/fbioe.2022.988607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Nanomaterials are gaining tremendous potential as emerging antimicrobials in the quest to find resistance-free alternatives of chemical pesticides. In this study, stable silver nanoparticles were synthesized using the aqueous extract of medicinal plant species Polygonatum geminiflorum , and their morphological features were evaluated by transmission electron microscopy, X-ray diffraction spectroscopy and energy dispersive X-ray analysis. In vitro Antifungal activity of the synthesized silver nanoparticles (AgNPs) and P. geminiflorum extract (PE) either alone or in combination (PE-AgNPs) against Fusarium oxysporum was evaluated using disc-diffusion and well-diffusion methods. In planta assay of the same treatments against Fusarium wilt diseases of tomato was evaluated by foliar spray method. Moreover, plant extract was evaluated for the quantitative investigation of antioxidant activity, phenolics and flavonoids by spectroscopic and HPLC techniques. Phytochemical analysis indicated the presence of total phenolic and flavonoid contents as 48.32 mg ± 1.54 mg GAE/g and 57.08 mg ± 1.36 mg QE/g, respectively. The DPPH radical scavenging of leaf extract was found to be 88.23% ± 0.87%. Besides, the HPLC phenolic profile showed the presence of 15 bioactive phenolic compounds. Characterization of nanoparticles revealed the size ranging from 8 nm to 34 nm with average crystallite size of 27 nm. The FTIR analysis revealed important functional groups that were responsible for the reduction and stabilization of AgNPs. In the in vitro assays, 100 μg/ml of AgNPs and AgNPs-PE strongly inhibited Fusarium oxysporum. The same treatments tested against Fusarium sprayed on tomato plants in controlled environment exhibited nearly 100% plant survival with no observable phytotoxicity. These finding provide a simple baseline to control Fusarium wilt using silver nano bio-control agents without affecting the crop health.
Collapse
Affiliation(s)
- Maaz Ahmad
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Yunnan Engineering Research Center of Fruit Wine, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh, Swat, Pakistan
| | - Ahmad Ali
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh, Swat, Pakistan
| | - Zahid Ullah
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh, Swat, Pakistan
| | - Hassan Sher
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh, Swat, Pakistan
| | - Dong-Qin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Yunnan Engineering Research Center of Fruit Wine, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China
| | - Mohammad Ali
- Centre for Biotechnology and Microbiology, University of Swat, Charbagh, Swat, Pakistan
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Iftikhar Ali
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh, Swat, Pakistan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Kaur A, Sharma Y, Kumar A, Ghosh MP, Bala K. In-vitro antiproliferative efficacy of Abrus precatorius seed extracts on cervical carcinoma. Sci Rep 2022; 12:10226. [PMID: 35715430 PMCID: PMC9205867 DOI: 10.1038/s41598-022-13976-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Abrus precatorius is a tropical medicinal plant with multiple medicinal benefits whose seeds have not yet been studied against cervical cancer. Herein, we have assessed the antioxidant and antiproliferative properties of seed extracts (ethyl acetate and 70% ethanol) prepared from Soxhlet and Maceration extraction methods against Hep2C and HeLa Cells. We observed that the APE (Sox) extract had a significantly higher total flavonoid content, APA (Mac) extract had a high total phenolic content, and APA (Sox) extract had a high total tannin content. Further, HPLC analysis of extracts revealed the presence of tannic acid and rutin. Moreover, APA (Sox) exhibited the highest free radical scavenging activity. APE (Mac) had the best antiproliferative activity against Hep2C cells, while APA (Sox) had the best antiproliferative activity against HeLa cells. In Hep2C cells, APE (Mac) extract revealed the highest SOD, catalase activity, GSH content, and the lowest MDA content, whereas APA (Mac) extract demonstrated the highest GST activity. In HeLa cells, APA (Sox) extract showed the highest SOD, GST activity, GSH content, and the least MDA content, whereas APA (Mac) extract showed the highest catalase activity. Lastly, docking results suggested maximum binding affinity of tannic acid with HER2 and GCR receptors. This study provides evidence that A. precatorius seed extracts possess promising bioactive compounds with probable anticancer and antioxidant properties against cervical cancer for restricting tumor growth.
Collapse
Affiliation(s)
- Amritpal Kaur
- Therapeutics and Molecular Diagnostic Lab, Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Yash Sharma
- Therapeutics and Molecular Diagnostic Lab, Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Anoop Kumar
- National Institute of Biologicals, Noida, India
| | - Madhumita P Ghosh
- Therapeutics and Molecular Diagnostic Lab, Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Kumud Bala
- Therapeutics and Molecular Diagnostic Lab, Center for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India.
| |
Collapse
|
11
|
DNA Barcodes for Accurate Identification of Selected Medicinal Plants (Caryophyllales): Toward Barcoding Flowering Plants of the United Arab Emirates. DIVERSITY 2022. [DOI: 10.3390/d14040262] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The need for herbal medicinal plants is steadily increasing. Hence, the accurate identification of plant material has become vital for safe usage, avoiding adulteration, and medicinal plant trading. DNA barcoding has shown to be a valuable molecular identification tool for medicinal plants, ensuring the safety and efficacy of plant materials of therapeutic significance. Using morphological characters in genera with closely related species, species delimitation is often difficult. Here, we evaluated the capability of the nuclear barcode ITS2 and plastid DNA barcodes rbcL and matK to identify 20 medicinally important plant species of Caryophyllales. In our analysis, we applied an integrative approach for species discrimination using pairwise distance-based unsupervised operational taxonomic unit “OTU picking” methods, viz., ABGD (Automated Barcode Gap Analysis) and ASAP (Assemble Species by Automatic Partitioning). Along with the unsupervised OTU picking methods, Supervised Machine Learning methods (SML) were also implemented to recognize divergent taxa. Our results indicated that ITS2 was more successful in distinguishing between examined species, implying that it could be used to detect the contamination and adulteration of these medicinally important plants. Moreover, this study suggests that the combination of more than one method could assist in the resolution of morphologically similar or closely related taxa.
Collapse
|
12
|
SSR Loci Analysis in Transcriptome and Molecular Marker Development in Polygonatum sibiricum. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4237913. [PMID: 35299892 PMCID: PMC8923796 DOI: 10.1155/2022/4237913] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/10/2022] [Accepted: 01/31/2022] [Indexed: 11/22/2022]
Abstract
To study the SSR loci information and develop molecular markers, a total of 435,858 unigenes in transcriptome of Polygonatum sibiricum were used to explore SSR. The distribution frequency of SSR and the basic characteristics of repeat motifs were analyzed using MISA software, and SSR primers were designed by Primer 3.0 software and then validated by PCR. Moreover, the gene function analysis of SSR Unigene was obtained by Blast. The results showed that 112,728 SSR loci were found in the transcriptome of Polygonatum sibiricum, which distributed in 435,858 unigenes with a distribution frequency of 25.86%. Mo-nucleotide and Di-nucleotide repeat were the main types, accounted for 83.83% of all SSRs. The repeat motifs of A/T and AC/GT were the predominant repeat types of Mo-nucleotide and Di-nucleotide, respectively. A total of 113,305 pairs of SSR primers with the potential to produce polymorphism were designed for maker development. One hundred and fifty-four of the 500 randomly selected primers not only produced fragments with expected molecular size but also had high polymorphism, which could accurately separate the tested varieties. The gene function of unigenes containing SSR was mostly related to the molecular function of Polygonatum sibiricum. The SSR markers in transcriptome of Polygonatum sibiricum show rich type, strong specificity, and high potential of polymorphism, which will benefit the candidate gene mining and marker-assisted breeding. The developed markers can also provide technical methods for molecular identification of intraspecific species of Polygonatum Mill. and maker-assisted breeding of superior varieties of Polygonatum Mill.
Collapse
|
13
|
Wang J, Qian J, Jiang Y, Chen X, Zheng B, Chen S, Yang F, Xu Z, Duan B. Comparative Analysis of Chloroplast Genome and New Insights Into Phylogenetic Relationships of Polygonatum and Tribe Polygonateae. FRONTIERS IN PLANT SCIENCE 2022; 13:882189. [PMID: 35812916 PMCID: PMC9263837 DOI: 10.3389/fpls.2022.882189] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/03/2022] [Indexed: 05/22/2023]
Abstract
Members of Polygonatum are perennial herbs that have been widely used in traditional Chinese medicine to invigorate Qi, moisten the lung, and benefit the kidney and spleen among patients. However, the phylogenetic relationships and intrageneric taxonomy within Polygonatum have long been controversial because of the complexity of their morphological variations and lack of high-resolution molecular markers. The chloroplast (cp) genome is an optimal model for deciphering phylogenetic relationships in related families. In the present study, the complete cp genome of 26 species of Trib. Polygonateae were de novo assembled and characterized; all species exhibited a conserved quadripartite structure, that is, two inverted repeats (IR) containing most of the ribosomal RNA genes, and two unique regions, large single sequence (LSC) and small single sequence (SSC). A total of 8 highly variable regions (rps16-trnQ-UUG, trnS-GCU-trnG-UCC, rpl32-trnL-UAG, matK-rps16, petA-psbJ, trnT-UGU-trnL-UAA, accD-psaI, and trnC-GCA-petN) that might be useful as potential molecular markers for identifying Polygonatum species were identified. The molecular clock analysis results showed that the divergence time of Polygonatum might occur at ∼14.71 Ma, and the verticillate leaf might be the ancestral state of this genus. Moreover, phylogenetic analysis based on 88 cp genomes strongly supported the monophyly of Polygonatum. The phylogenetic analysis also suggested that Heteropolygonatum may be the sister group of the Polygonatum, but the Disporopsis, Maianthemum, and Disporum may have diverged earlier. This study provides valuable information for further species identification, evolution, and phylogenetic research of Polygonatum.
Collapse
Affiliation(s)
- Jing Wang
- College of Pharmaceutical Science, Dali University, Dali, China
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin, China
| | - Jun Qian
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Yuan Jiang
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Xiaochen Chen
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin, China
| | - Baojiang Zheng
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fajian Yang
- Baoshan College of Traditional Chinese Medicine, Baoshan, China
| | - Zhichao Xu
- College of Pharmaceutical Science, Dali University, Dali, China
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, College of Life Science, Northeast Forestry University, Harbin, China
- *Correspondence: Zhichao Xu,
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali, China
- Baozhong Duan,
| |
Collapse
|
14
|
The complete chloroplast genome and characteristics analysis of Musa basjoo Siebold. Mol Biol Rep 2021; 48:7113-7125. [PMID: 34541615 DOI: 10.1007/s11033-021-06702-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND An ornamental plant often seen in gardens and farmhouses, Musa basjoo Siebold can also be used as Chinese herbal medicine. Its pseudostem and leaves are diuretic; its root can be decocted together with ginger and licorice to cure gonorrhea and diabetes; the decoct soup of its pseudostem can help relieve heat, and the decoct soup of its dried flower can treat cerebral hemorrhage. There have not been many chloroplast genome studies on M. basjoo Siebold. METHODS AND RESULTS We characterized its complete chloroplast genome using Novaseq 6000 sequencing. This paper shows that the length of the chloroplast genome M. basjoo Siebold is 172,322 bp, with 36.45% GC content. M. basjoo Siebold includes a large single-copy region of 90,160 bp, a small single-copy region of 11,668 bp, and a pair of inverted repeats of 35,247 bp. Comparing the genomic structure and sequence data of closely related species, we have revealed the conserved gene order of the IR and LSC/SSC regions, which has provided a very inspiring discovery for future phylogenetic research. CONCLUSIONS Overall, this study has constructed an evolutionary tree of the genus Musa species with the complete chloroplast genome sequence for the first time. As can be seen, there is no obvious multi-branching in the genus, and M. basjoo Siebold and Musa itinerans are the closest relatives.
Collapse
|
15
|
Nurtay L, Sun Q, Mu C, Cao Z, Wang Q, Liang Z, Ma C, Li X, Amin A, Xie Y. Rhizoma polygonati from Mount Tai: nutritional value and usefulness as a traditional Chinese medicine, source of herbzyme, and potential remediating agent for COVID-19 and chronic and hidden hunger. ACUPUNCTURE AND HERBAL MEDICINE 2021; 1:31-38. [PMID: 37810195 PMCID: PMC9380154 DOI: 10.1097/hm9.0000000000000008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Recently, traditional Chinese medicine-based treatment has succeeded in fighting coronavirus disease 2019 (COVID-19), and Rhizoma polygonati (Huangjing) has been one of the recommended components. Its processed products play antidiabetic, antiviral, antitumor, antioxidation, antifatigue, antiaging, and immune enhancement roles. The climate in Mount Tai is mild, and the dense forest is suitable for the growth of Rhizome polygonati, which has gradually evolved into a unique specie. Considering the important medicinal value and pleasant taste of Mount Tai-Rhizoma polygonati, various healthy and functional food products, controlled by quality markers with anti-COVID-19 potential, as well as emergency foods can be developed. The study aimed to review current evidence on the nutritional value of Rhizoma polygonati from Mount Tai and its usefulness as a traditional Chinese medicine, source of herbzyme, and potential remediating agent for COVID-19 and food shortage. Most recent findings regarding herbal nanomedicine have revealed that nanoscale chemical compounds are potentially efficient in drug delivery or nanozyme catalysis upon bioprocessing. Nanoflower structure is found in processed Rhizoma polygonati by self-assembly and has wide application in enzymatic events, particularly nanoscale herbzyme. The novel findings regarding Mount Tai-Rhizoma polygonati could enhance its novel applications in chronic and hidden hunger, clinical nanomedicine, and as an anti-COVID-19 agent.
Collapse
Affiliation(s)
- Lazzat Nurtay
- School of Sciences and Humanities, Department of Biology, Nazarbayev University, Nur-Sultan, Republic of Kazakhstan
| | - Qinglei Sun
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chenglin Mu
- Sino-German Joint Research Center on Agricultural Biology, State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Zhongshan Cao
- Sino-German Joint Research Center on Agricultural Biology, State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Qian Wang
- Shandong Taishanhuangjing Biotechnology Co. Ltd, Huangjing Industrial Park, Tai’an, China
| | - Zongsuo Liang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xugang Li
- Sino-German Joint Research Center on Agricultural Biology, State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Amr Amin
- Biology Department, UAE University, Al Ain 15551, UAE
- The College, The University of Chicago, Chicago, IL 60637, USA
| | - Yingqiu Xie
- School of Sciences and Humanities, Department of Biology, Nazarbayev University, Nur-Sultan, Republic of Kazakhstan
| |
Collapse
|
16
|
Wang ZF, Hu YQ, Wu QG, Zhang R. Virtual Screening of Potential Anti-fatigue Mechanism of Polygonati Rhizoma Based on Network Pharmacology. Comb Chem High Throughput Screen 2020; 22:612-624. [PMID: 31694519 DOI: 10.2174/1386207322666191106110615] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/17/2019] [Accepted: 10/26/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND OBJECTIVE A large number of people are facing the danger of fatigue due to the fast-paced lifestyle. Fatigue is common in some diseases, such as cancer. The mechanism of fatigue is not definite. Traditional Chinese medicine is often used for fatigue, but the potential mechanism of Polygonati Rhizoma (PR) is still not clear. This study attempts to explore the potential anti-fatigue mechanism of Polygonati Rhizoma through virtual screening based on network pharmacology. METHODS The candidate compounds of PR and the known targets of fatigue are obtained from multiple professional databases. PharmMapper Server is designed to identify potential targets for the candidate compounds. We developed a Herbal medicine-Compound-Disease-Target network and analyzed the interactions. Protein-protein interaction network is developed through the Cytoscape software and analyzed by topological methods. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment are carried out by DAVID Database. Finally, we develop Compound-Target-Pathway network to illustrate the anti-fatigue mechanism of PR. RESULTS This approach identified 12 active compounds and 156 candidate targets of PR. The top 10 annotation terms for GO and KEGG were obtained by enrichment analysis with 35 key targets. The interaction between E2F1 and PI3K-AKT plays a vital role in the anti-fatigue effect of PR due to this study. CONCLUSION This study demonstrates that PR has multi-component, multi-target and multipathway effects.
Collapse
Affiliation(s)
- Ze-Feng Wang
- Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ye-Qing Hu
- Department of Pharmacy, Anqing Medical and Pharmaceutica College, Anqing, China
| | - Qi-Guo Wu
- Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Zhang
- Anhui No.2 Provincial People's Hospital, Hefei, 230012, China
| |
Collapse
|
17
|
Yang CQ, Lv Q, Zhang AB. Sixteen Years of DNA Barcoding in China: What Has Been Done? What Can Be Done? Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
18
|
Whitehurst LE, Cunard CE, Reed JN, Worthy SJ, Marsico TD, Lucardi RD, Burgess KS. Preliminary application of DNA barcoding toward the detection of viable plant propagules at an initial, international point-of-entry in Georgia, USA. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02204-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|