1
|
Xu L, Kazezian Z, Pitsillides AA, Bull AMJ. A synoptic literature review of animal models for investigating the biomechanics of knee osteoarthritis. Front Bioeng Biotechnol 2024; 12:1408015. [PMID: 39132255 PMCID: PMC11311206 DOI: 10.3389/fbioe.2024.1408015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024] Open
Abstract
Osteoarthritis (OA) is a common chronic disease largely driven by mechanical factors, causing significant health and economic burdens worldwide. Early detection is challenging, making animal models a key tool for studying its onset and mechanically-relevant pathogenesis. This review evaluate current use of preclinical in vivo models and progressive measurement techniques for analysing biomechanical factors in the specific context of the clinical OA phenotypes. It categorizes preclinical in vivo models into naturally occurring, genetically modified, chemically-induced, surgically-induced, and non-invasive types, linking each to clinical phenotypes like chronic pain, inflammation, and mechanical overload. Specifically, we discriminate between mechanical and biological factors, give a new explanation of the mechanical overload OA phenotype and propose that it should be further subcategorized into two subtypes, post-traumatic and chronic overloading OA. This review then summarises the representative models and tools in biomechanical studies of OA. We highlight and identify how to develop a mechanical model without inflammatory sequelae and how to induce OA without significant experimental trauma and so enable the detection of changes indicative of early-stage OA in the absence of such sequelae. We propose that the most popular post-traumatic OA biomechanical models are not representative of all types of mechanical overloading OA and, in particular, identify a deficiency of current rodent models to represent the chronic overloading OA phenotype without requiring intraarticular surgery. We therefore pinpoint well standardized and reproducible chronic overloading models that are being developed to enable the study of early OA changes in non-trauma related, slowly-progressive OA. In particular, non-invasive models (repetitive small compression loading model and exercise model) and an extra-articular surgical model (osteotomy) are attractive ways to present the chronic natural course of primary OA. Use of these models and quantitative mechanical behaviour tools such as gait analysis and non-invasive imaging techniques show great promise in understanding the mechanical aspects of the onset and progression of OA in the context of chronic knee joint overloading. Further development of these models and the advanced characterisation tools will enable better replication of the human chronic overloading OA phenotype and thus facilitate mechanically-driven clinical questions to be answered.
Collapse
Affiliation(s)
- Luyang Xu
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
| | - Zepur Kazezian
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
| | - Andrew A. Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Anthony M. J. Bull
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Hansen RT, Chenu C, Sofat N, Pitsillides AA. Bone marrow lesions: plugging the holes in our knowledge using animal models. Nat Rev Rheumatol 2023; 19:429-445. [PMID: 37225964 DOI: 10.1038/s41584-023-00971-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 05/26/2023]
Abstract
Bone marrow lesions (BMLs), which are early signs of osteoarthritis (OA) that are associated with the presence, onset and severity of pain, represent an emerging imaging biomarker and clinical target. Little is known, however, regarding their early spatial and temporal development, structural relationships or aetiopathogenesis, because of the sparsity of human early OA imaging and paucity of relevant tissue samples. The use of animal models is a logical approach to fill the gaps in our knowledge, and it can be informed by appraising models in which BMLs and closely related subchondral cysts have already been reported, including in spontaneous OA and pain models. The utility of these models in OA research, their relevance to clinical BMLs and practical considerations for their optimal deployment can also inform medical and veterinary clinicians and researchers alike.
Collapse
Affiliation(s)
- Rebecca T Hansen
- Skeletal Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Chantal Chenu
- Skeletal Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Nidhi Sofat
- Institute for Infection and Immunity, St George's, University of London, London, UK
- Department of Rheumatology, St George's, University Hospitals NHS Foundation Trust, London, UK
| | - Andrew A Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, London, UK.
| |
Collapse
|
3
|
Koca CG, Yıldırım B, Özmen Ö, Çiçek MF, İğneci M, Kırarslan Ö, Erdil A. Comparison of the efficacy of intra-articular injections of hyaluronic acid and lactoferrin in mono-iodoacetate-induced temporomandibular joint osteoarthritis: A histomorphometric, immunohistochemistry, and micro-computed tomography analysis. Jt Dis Relat Surg 2023; 34:166-175. [PMID: 36700279 PMCID: PMC9903097 DOI: 10.52312/jdrs.2023.901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/27/2022] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES This study aims to evaluate the efficacy of high-molecular-weight hyaluronic acid (HMWHA) and lactoferrin (LF) injections on temporomandibular joint (TMJ) cartilage and subchondral bone in mono-iodoacetate (MIA)-induced temporomandibular joint osteoarthritis model in rats. MATERIALS AND METHODS In this in vivo study, a total of 24 rats were divided into three groups as follows: saline group (Group 1), HMWHA group (Group 2), and LF group (Group 3) including eight rats in each group. The intra-articular injections were administered once a week for three weeks after osteoarthritis was induced. All animals were euthanized 28 days after induction of osteoarthritis, and TMJs were harvested for histomorphometric, immunohistochemical, and micro-computed tomography (CT) analysis. RESULTS There was no significant difference between the HMWHA and LF groups in terms of the histomorphometric and immunohistochemical analysis results (p>0.05). According to the micro-CT analysis, the LF group had the highest mean bone volume fraction (74.9±0.5) and trabecular thickness (0.122±0.002), while the saline group had the lowest mean values (55.0±0.3 and 0.071±0.002, respectively) (p<0.001). There was no significant difference between the HMWHA and LF groups according to the micro-CT analysis (p>0.05). Both groups had better healing effects than the saline group in all analyses. CONCLUSION Lactoferrin has a healing effect at least as much as HMWHA in MIA-induced TMJ osteoarthritis. We suggest that LF may be evaluated in future clinical studies as a promising agent in the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Cansu Gül Koca
- Department of Oral and Maxillofacial Surgery, Uşak University Faculty of Dentistry, Uşak, Türkiye
| | - Bengisu Yıldırım
- Department of Oral and Maxillofacial Surgery, Uşak University Faculty of Dentistry, Uşak, Türkiye
| | - Özlem Özmen
- Department of Pathology, Burdur Mehmet Akif Ersoy University Faculty of Medicine, Burdur, Türkiye
| | - Muhammed Fatih Çiçek
- Department of Oral and Maxillofacial Surgery, Uşak University Faculty of Dentistry, Uşak, Türkiye
| | - Mehmet İğneci
- Department of Oral and Maxillofacial Surgery, Uşak University Faculty of Dentistry, Uşak, Türkiye
| | - Özge Kırarslan
- Department of Oral and Maxillofacial Surgery, Uşak University Faculty of Dentistry, Uşak, Türkiye
| | - Aras Erdil
- Uşak Üniversitesi Diş Hekimliği Fakültesi, Ağız Diş ve Çene Cerrahisi Anabilim Dalı, 64200 Uşak, Türkiye.
| |
Collapse
|
4
|
A systematic review of porcine models in translational pain research. Lab Anim (NY) 2021; 50:313-326. [PMID: 34650279 DOI: 10.1038/s41684-021-00862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/27/2021] [Indexed: 11/09/2022]
Abstract
Translating basic pain research from rodents to humans has proven to be a challenging task. Efforts have been made to develop preclinical large animal models of pain, such as the pig. However, no consistent overview and comparison of pig models of pain are currently available. Therefore, in this review, our primary aim was to identify the available pig models in pain research and compare these models in terms of intensity and duration. First, we systematically searched Proquest, Scopus and Web of Science and compared the duration for which the pigs were significantly sensitized as well as the intensity of mechanical sensitization. We searched models within the specific field of pain and adjacent fields in which pain induction or assessment is relevant, such as pig production. Second, we compared assessment methodologies in surrogate pain models in humans and pigs to identify areas of overlap and possible improvement. Based on the literature search, 23 types of porcine pain models were identified; 13 of which could be compared quantitatively. The induced sensitization lasted from hours to months and intensities ranged from insignificant to the maximum attainable. We also found a near to complete overlap of assessment methodologies between human and pig models within the area of peripheral neurophysiology, which allows for direct comparison of results obtained in the two species. In spite of this overlap, further development of pain assessment methodologies is still needed. We suggest that central nervous system electrophysiology, such as electroencephalography, electrocorticography or intracortical recordings, may pave the way for future objective pain assessment.
Collapse
|
5
|
Chakrabarti S, Ai M, Henson FM, Smith ESJ. Peripheral mechanisms of arthritic pain: A proposal to leverage large animals for in vitro studies. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2020; 8:100051. [PMID: 32817908 PMCID: PMC7426561 DOI: 10.1016/j.ynpai.2020.100051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 04/14/2023]
Abstract
Pain arising from musculoskeletal disorders such as arthritis is one of the leading causes of disability. Whereas the past 20-years has seen an increase in targeted therapies for rheumatoid arthritis (RA), other arthritis conditions, especially osteoarthritis, remain poorly treated. Although modulation of central pain pathways occurs in chronic arthritis, multiple lines of evidence indicate that peripherally driven pain is important in arthritic pain. To understand the peripheral mechanisms of arthritic pain, various in vitro and in vivo models have been developed, largely in rodents. Although rodent models provide numerous advantages for studying arthritis pathogenesis and treatment, the anatomy and biomechanics of rodent joints differ considerably to those of humans. By contrast, the anatomy and biomechanics of joints in larger animals, such as dogs, show greater similarity to human joints and thus studying them can provide novel insight for arthritis research. The purpose of this article is firstly to review models of arthritis and behavioral outcomes commonly used in large animals. Secondly, we review the existing in vitro models and assays used to study arthritic pain, primarily in rodents, and discuss the potential for adopting these strategies, as well as likely limitations, in large animals. We believe that exploring peripheral mechanisms of arthritic pain in vitro in large animals has the potential to reduce the veterinary burden of arthritis in commonly afflicted species like dogs, as well as to improve translatability of pain research into the clinic.
Collapse
Affiliation(s)
- Sampurna Chakrabarti
- Department of Neuroscience, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
- Department of Pharmacology, University of Cambridge, UK
| | - Minji Ai
- Department of Veterinary Medicine, University of Cambridge, UK
| | | | | |
Collapse
|
6
|
Rajendran K, Murthy NS, Frick MA, Tao S, Unger MD, LaVallee KT, Larson NB, Leng S, Maus TP, McCollough CH. Quantitative Knee Arthrography in a Large Animal Model of Osteoarthritis Using Photon-Counting Detector CT. Invest Radiol 2020; 55:349-356. [PMID: 31985604 PMCID: PMC7212750 DOI: 10.1097/rli.0000000000000648] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study was to grade cartilage damage in a swine model of osteoarthritis using a whole-body photon-counting detector (PCD) CT. MATERIALS AND METHODS A multienergy phantom containing gadolinium (Gd) (2, 4, 8, and 16 mg/mL) and hydroxyapatite (200 and 400 mg/cc) was scanned using a PCD-CT system (48 × 0.25 mm collimation, 80 kV, 800 mAs, D50 reconstruction kernel) to serve as calibration for material decomposition and to assess quantification accuracy. Osteoarthritis was induced in Yucatan miniswine (n = 8) using 1.2 mg monoiodoacetate (MIA) injected into a randomized knee, whereas the contralateral control knee received saline. Twenty-one days later, a contrast bolus (gadoterate meglumine, 4 mL/knee) was intra-articularly administered into both knees. The knees were simultaneously scanned on the PCD-CT system (48 × 0.25 mm collimation, 80 kV, 800 mAs). Multienergy images were reconstructed with a sharp "V71" kernel and a quantitative "D50" kernel. Image denoising was applied to the V71 images before grading cartilage damage, and an iterative material decomposition technique was applied to D50 images to generate the Gd maps. Two radiologists blinded to the knee injection status graded the cartilage integrity based on a modified International Cartilage Repair Society scoring system. Histology was performed on excised cartilage using methylene blue/basic fuchsin. Statistical analysis of grade distribution was performed using an exact test of omnibus symmetry with P < 0.05 considered significant. RESULTS Material decomposed images from the multienergy phantom scan showed delineation and quantification of Gd and hydroxyapatite with a root-mean-squared error of 0.3 mg/mL and 18.4 mg/cc, respectively. In the animal cohort, the radiologists reported chondromalacia in the MIA knees with International Cartilage Repair Society scores ranging from grade 1 (cartilage heterogeneity, n = 4 knees) to grade 3 (up to 100% cartilage loss, n = 4 knees). Grade 1 was characterized by cartilage heterogeneity and increased joint space in the patellofemoral compartment, whereas grade 3 was characterized by cartilage erosion and bone-on-bone articulation in the patellofemoral compartment. All control knees were scored as grade 0 (normal cartilage). Significant difference (P = 0.004) was observed in the grade distribution between the MIA and control knees. Gross examination of the excised knees showed cartilage lesions in the grade 3 MIA knees. The Gd maps from material decomposition showed lower contrast levels in the joint space of the MIA knee compared with the contralateral control knee due to joint effusion. Histology revealed chondrocyte loss in the MIA knee cartilage confirming the chondrotoxic effects of MIA on cartilage matrix. CONCLUSIONS We demonstrated a high-resolution and quantitative PCD-CT arthrography technique for grading cartilage damage in a large animal model of osteoarthritis. Photon-counting detector CT offers simultaneous high-resolution and multienergy imaging capabilities that allowed morphological assessment of cartilage loss and quantification of contrast levels in the joint as a marker of joint disease. Cartilage damage in the MIA knees was graded using PCD-CT images, and the image-based findings were further confirmed using histology and gross examination of the excised knees.
Collapse
Affiliation(s)
| | | | | | | | - Mark D. Unger
- Department of Anesthesiology and Oncology, Mayo Clinic, Rochester, MN
| | | | - Nicholas B. Larson
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN
| | - Shuai Leng
- Department of Radiology, Mayo Clinic, Rochester, MN
| | | | | |
Collapse
|
7
|
LaVallee KT, Maus TP, Stock JD, Stalder KJ, Karriker LA, Murthy NS, Kanwar R, Beutler AS, Unger MD. Quantitation of Gait and Stance Alterations Due to Monosodium Iodoacetate-induced Knee Osteoarthritis in Yucatan Swine. Comp Med 2020; 70:248-257. [PMID: 32331555 DOI: 10.30802/aalas-cm-19-000075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Knee osteoarthritis is one of the most common causes of chronic pain worldwide, and several animal models have been developed to investigate disease mechanisms and treatments to combat associated morbidities. Here we describe a novel method for assessment of locomotor pain behavior in Yucatan swine. We used monosodium iodoacetate (MIA) to induce osteoarthritis in the hindlimb knee, and then conducted live observation, quantitative gait analysis, and quantitative weight-bearing stance analysis. We used these methods to test the hypothesis that locomotor pain behaviors after osteoarthritis induction would be detected by multiparameter quantitation for at least 12 wk in a novel large animal model of osteoarthritis. MIA-induced knee osteoarthritis produced lameness quantifiable by all measurement techniques, with onset at 2 to 4 wk and persistence until the conclusion of the study at 12 wk. Both live observation and gait analysis of kinetic parameters identified mild and moderate osteoarthritis phenotypes corresponding to a binary dose relationship. Quantitative stance analysis demonstrated the greatest sensitivity, discriminating between mild osteoarthritis states induced by 1.2 and 4.0 mg MIA, with stability of expression for as long as 12 wk. The multiparameter quantitation used in our study allowed rejection of the null hypothesis. This large animal model of quantitative locomotor pain resulting from MIA-induced osteoarthritis may support the assessment of new analgesic strategies for human knee osteoarthritis.
Collapse
Affiliation(s)
| | - Timothy P Maus
- Department of Radiology (Section of Interventional Pain Management), Mayo Clinic, Rochester, Minnesota
| | - Joseph D Stock
- Department of Animal Science, Iowa State University, Ames, Iowa
| | | | - Locke A Karriker
- College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Naveen S Murthy
- Department of Radiology (Section of Interventional Pain Management), Mayo Clinic, Rochester, Minnesota
| | - Rahul Kanwar
- Departments of Anesthesiology and Oncology, Translational Science Track, Mayo Graduate School, Mayo Clinic, Rochester, Minnesota
| | - Andrea S Beutler
- Departments of Anesthesiology and Oncology, Translational Science Track, Mayo Graduate School, Mayo Clinic, Rochester, Minnesota
| | - Mark D Unger
- Departments of Anesthesiology and Oncology, Translational Science Track, Mayo Graduate School, Mayo Clinic, Rochester, Minnesota;,
| |
Collapse
|