1
|
Westbury MV, Cabrera AA, Rey-Iglesia A, De Cahsan B, Duchêne DA, Hartmann S, Lorenzen ED. A genomic assessment of the marine-speciation paradox within the toothed whale superfamily Delphinoidea. Mol Ecol 2023; 32:4829-4843. [PMID: 37448145 DOI: 10.1111/mec.17069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
The impact of post-divergence gene flow in speciation has been documented across a range of taxa in recent years, and may have been especially widespread in highly mobile, wide-ranging marine species, such as cetaceans. Here, we studied individual genomes from nine species across the three families of the toothed whale superfamily Delphinoidea (Delphinidae, Phocoenidae and Monodontidae). To investigate the role of post-divergence gene flow in the speciation process, we used a multifaceted approach, including (i) phylogenomics, (ii) the distribution of shared derived alleles and (iii) demographic inference. We found the divergence of lineages within Delphinoidea did not follow a process of pure bifurcation, but was much more complex. Sliding-window phylogenomics reveal a high prevalence of discordant topologies within the superfamily, with further analyses indicating these discordances arose due to both incomplete lineage sorting and gene flow. D-statistics and f-branch analyses supported gene flow between members of Delphinoidea, with the vast majority of gene flow occurring as ancient interfamilial events. Demographic analyses provided evidence that introgressive gene flow has likely ceased between all species pairs tested, despite reports of contemporary interspecific hybrids. Our study provides the first steps towards resolving the large complexity of speciation within Delphinoidea; we reveal the prevalence of ancient interfamilial gene flow events prior to the diversification of each family, and suggest that contemporary hybridisation events may be disadvantageous, as hybrid individuals do not appear to contribute to the parental species' gene pools.
Collapse
Affiliation(s)
| | | | | | - Binia De Cahsan
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - David A Duchêne
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Stefanie Hartmann
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | |
Collapse
|
2
|
Cairns KM, Crowther MS, Parker HG, Ostrander EA, Letnic M. Genome-wide variant analyses reveal new patterns of admixture and population structure in Australian dingoes. Mol Ecol 2023; 32:4133-4150. [PMID: 37246949 PMCID: PMC10524503 DOI: 10.1111/mec.16998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/30/2023]
Abstract
Admixture between species is a cause for concern in wildlife management. Canids are particularly vulnerable to interspecific hybridisation, and genetic admixture has shaped their evolutionary history. Microsatellite DNA testing, relying on a small number of genetic markers and geographically restricted reference populations, has identified extensive domestic dog admixture in Australian dingoes and driven conservation management policy. But there exists a concern that geographic variation in dingo genotypes could confound ancestry analyses that use a small number of genetic markers. Here, we apply genome-wide single-nucleotide polymorphism (SNP) genotyping to a set of 402 wild and captive dingoes collected from across Australia and then carry out comparisons to domestic dogs. We then perform ancestry modelling and biogeographic analyses to characterise population structure in dingoes and investigate the extent of admixture between dingoes and dogs in different regions of the continent. We show that there are at least five distinct dingo populations across Australia. We observed limited evidence of dog admixture in wild dingoes. Our work challenges previous reports regarding the occurrence and extent of dog admixture in dingoes, as our ancestry analyses show that previous assessments severely overestimate the degree of domestic dog admixture in dingo populations, particularly in south-eastern Australia. These findings strongly support the use of genome-wide SNP genotyping as a refined method for wildlife managers and policymakers to assess and inform dingo management policy and legislation moving forwards.
Collapse
Affiliation(s)
- Kylie M. Cairns
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Mathew S. Crowther
- School of Life and Environmental Sciences, University of Sydney, New South Wales 2006, Australia
| | - Heidi G. Parker
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Elaine A. Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Mike Letnic
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
3
|
Wittwer S, Gerber L, Allen SJ, Willems EP, Marfurt SM, Krützen M. Reconstructing the colonization history of Indo-Pacific bottlenose dolphins (Tursiops aduncus) in Northwestern Australia. Mol Ecol 2023. [PMID: 37173858 DOI: 10.1111/mec.16984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Bottlenose dolphins (Tursiops spp.) are found in waters around Australia, with T. truncatus typically occupying deeper, more oceanic habitat, while T. aduncus occur in shallower, coastal waters. Little is known about the colonization history of T. aduncus along the Western Australian coastline; however, it has been hypothesized that extant populations are the result of an expansion along the coastline originating from a source in the north of Australia. To investigate the history of coastal T. aduncus populations in the area, we generated a genomic SNP dataset using a double-digest restriction-site-associated DNA (ddRAD) sequencing approach. The resulting dataset consisted of 103,201 biallelic SNPs for 112 individuals which were sampled from eleven coastal and two offshore sites between Shark Bay and Cygnet Bay, Western Australia. Our population genomic analyses showed a pattern consistent with the proposed source in the north with significant isolation by distance along the coastline, as well as a reduction in genomic diversity measures along the coastline with Shark Bay showing the most pronounced reduction. Our demographic analysis indicated that the expansion of T. aduncus along the coastline began around the last glacial maximum and progressed southwards with the Shark Bay population being founded only 13 kya. Our results are in line with coastal colonization histories inferred for Tursiops globally, highlighting the ability of delphinids to rapidly colonize novel coastal niches as habitat is released during glacial cycle-related global sea level and temperature changes.
Collapse
Affiliation(s)
- Samuel Wittwer
- Evolutionary Genetics Group, Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| | - Livia Gerber
- Evolutionary Genetics Group, Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
- Australian National Wildlife Collection, CSIRO National Research Collections Australia, Canberra, Australian Capital Territory, Australia
| | - Simon J Allen
- Evolutionary Genetics Group, Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
- School of Biological Sciences, University of Bristol, Bristol, UK
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Erik P Willems
- Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| | - Svenja M Marfurt
- Evolutionary Genetics Group, Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| | - Michael Krützen
- Evolutionary Genetics Group, Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Genetic Diversity and Maternal Lineage of Indo-Pacific Bottlenose Dolphin (Tursiops aduncus) in the Andaman Sea of Thailand. DIVERSITY 2022. [DOI: 10.3390/d14121093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Indo-Pacific bottlenose dolphins (Tursiops aduncus) are a coastal species found in Thai waters off the coasts of the Andaman Sea and the Gulf of Thailand. This species was recently re-listed as near-threatened by the IUCN Red List, though the population status in Thai seas is not known. Here, we investigated genetic diversity, population structure, maternal lineage, and demographics by analyzing skin tissue samples (n = 30) of T. aduncus stranded along the Andaman coastline of Thailand between 1990 and 2019. This study was based on 11 microsatellite loci and 265 bp mtDNA control regions compared to data available through the National Center for Biotechnology Information (NCBI). From microsatellites, the observed heterozygosity (Ho) ranged from 0.46 to 0.85. The mean fixation index (F) value for all loci was 0.10 ± 0.04, which suggests some degree of inbreeding. Two genetic clusters (the most likely K at K = 2) were observed in T. aduncus through the population structure analysis using multiple criteria. For the mtDNA control region, a total of 17 haplotypes were found for dolphins in Thai seas (14 haplotypes from our samples; three haplotypes from the NCBI database) with high levels of haplotype diversity (h) at 0.926 ± 0.027 and nucleotide diversity (π) at 0.045 ± 0.002. A decline in the effective population size from 0.05 million years ago also was observed in Thai T. aduncus through Bayesian Skyline Plots analysis. A unique set of haplotypes was identified in our samples, which may have originated from the Australian and Indian Oceans rather than the Western Pacific Ocean. These results improve our understanding of the maternal lineage of the Indo-Pacific bottlenose dolphin, which can be used for monitoring population status and establishing better conservation plans for this species in the Thai Andaman Sea.
Collapse
|
5
|
Body length and growth pattern of free-ranging Indo-Pacific bottlenose dolphins off Mikura Island estimated using an underwater 3D camera. Mamm Biol 2022. [DOI: 10.1007/s42991-022-00304-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Inamori D, Kita YF, Funasaka N. External Morphological and Molecular Evidence of Natural Intrageneric Hybridization between Common and Indo-Pacific Bottlenose Dolphins (Tursiops truncatus × T. aduncus) from Japanese Waters. MAMMAL STUDY 2021. [DOI: 10.3106/ms2021-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Daiki Inamori
- Taiji Whale Museum, Taiji, Higashimuro, Wakayama 649-5171, Japan
| | - Yuki F. Kita
- Department of Marine Biology and Sciences, School of Biological Sciences, Tokai University, Minami-ku, Sapporo, Hokkaido 005-8601, Japan
| | - Noriko Funasaka
- Cetacean Research Center, Graduate School of Bioresources, Mie University, Kurimamachiya, Tsu, Mie 514-8507, Japan
| |
Collapse
|
7
|
Adavoudi R, Pilot M. Consequences of Hybridization in Mammals: A Systematic Review. Genes (Basel) 2021; 13:50. [PMID: 35052393 PMCID: PMC8774782 DOI: 10.3390/genes13010050] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Hybridization, defined as breeding between two distinct taxonomic units, can have an important effect on the evolutionary patterns in cross-breeding taxa. Although interspecific hybridization has frequently been considered as a maladaptive process, which threatens species genetic integrity and survival via genetic swamping and outbreeding depression, in some cases hybridization can introduce novel adaptive variation and increase fitness. Most studies to date focused on documenting hybridization events and analyzing their causes, while relatively little is known about the consequences of hybridization and its impact on the parental species. To address this knowledge gap, we conducted a systematic review of studies on hybridization in mammals published in 2010-2021, and identified 115 relevant studies. Of 13 categories of hybridization consequences described in these studies, the most common negative consequence (21% of studies) was genetic swamping and the most common positive consequence (8%) was the gain of novel adaptive variation. The total frequency of negative consequences (49%) was higher than positive (13%) and neutral (38%) consequences. These frequencies are biased by the detection possibilities of microsatellite loci, the most common genetic markers used in the papers assessed. As negative outcomes are typically easier to demonstrate than positive ones (e.g., extinction vs hybrid speciation), they may be over-represented in publications. Transition towards genomic studies involving both neutral and adaptive variation will provide a better insight into the real impacts of hybridization.
Collapse
Affiliation(s)
| | - Małgorzata Pilot
- Museum and Institute of Zoology, Polish Academy of Sciences, ul. Nadwiślańska 108, 80-680 Gdańsk, Poland;
| |
Collapse
|
8
|
Extensive Interspecific Gene Flow Shaped Complex Evolutionary History and Underestimated Species Diversity in Rapidly Radiated Dolphins. J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09581-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractRecently diverged taxa are often characterized by high rates of hybridization, which can complicate phylogenetic reconstruction. For this reason, the phylogenetic relationships and evolutionary history of dolphins are still not very well resolved; the question of whether the genera Tursiops and Stenella are monophyletic is especially controversial. Here, we performed re-sequencing of six dolphin genomes and combined them with eight previously published dolphin SRA datasets and six whole-genome datasets to investigate the phylogenetic relationships of dolphins and test the monophyly hypothesis of Tursiops and Stenella. Phylogenetic reconstruction with the maximum likelihood and Bayesian methods of concatenated loci, as well as with coalescence analyses of sliding window trees, produced a concordant and well-supported tree. Our studies support the non-monophyletic status of Tursiops and Stenella because the species referred these genera do not form exclusive monophyletic clades. This suggests that the current taxonomy of both genera might not reflect their evolutionary history and may underestimate their diversity. A four-taxon D-statistic (ABBA-BABA) test, five-taxon DFOIL test, and tree-based PhyloNet analyses all showed extensive gene flow across dolphin species, which could explain the instability in resolving phylogenetic relationship of oceanic dolphins with different and limited markers. This study could be a good case to demonstrate how genomic data can reveal complex speciation and phylogeny in rapidly radiating animal groups.
Collapse
|
9
|
Probert R, Bastian A, Elwen SH, James BS, Gridley T. Vocal correlates of arousal in bottlenose dolphins (Tursiops spp.) in human care. PLoS One 2021; 16:e0250913. [PMID: 34469449 PMCID: PMC8409691 DOI: 10.1371/journal.pone.0250913] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/19/2021] [Indexed: 02/02/2023] Open
Abstract
Human-controlled regimes can entrain behavioural responses and may impact animal welfare. Therefore, understanding the influence of schedules on animal behaviour can be a valuable tool to improve welfare, however information on behaviour overnight and in the absence of husbandry staff remains rare. Bottlenose dolphins (Tursiops spp.) are highly social marine mammals and the most common cetacean found in captivity. They communicate using frequency modulated signature whistles, a whistle type that is individually distinctive and used as a contact call. We investigated the vocalisations of ten dolphins housed in three social groups at uShaka Sea World dolphinarium to determine how patterns in acoustic behaviour link to dolphinarium routines. Investigation focused on overnight behaviour, housing decisions, weekly patterns, and transitional periods between the presence and absence of husbandry staff. Recordings were made from 17h00 - 07h00 over 24 nights, spanning May to August 2018. Whistle (including signature whistle) presence and production rate decreased soon after husbandry staff left the facility, was low over night, and increased upon staff arrival. Results indicated elevated arousal states particularly associated with the morning feeding regime. Housing in the pool configuration that allowed observation of staff activities from all social groups was characterised by an increase in whistle presence and rates. Heightened arousal associated with staff presence was reflected in the structural characteristics of signature whistles, particularly maximum frequency, frequency range and number of whistle loops. We identified individual differences in both production rate and the structural modification of signature whistles under different contexts. Overall, these results revealed a link between scheduled activity and associated behavioural responses, which can be used as a baseline for future welfare monitoring where changes from normal behaviour may reflect shifts in welfare state.
Collapse
Affiliation(s)
- Rachel Probert
- Department of Agriculture, Engineering and Science, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
- Sea Search Research and Conservation NPC, Cape Town, South Africa
- * E-mail:
| | - Anna Bastian
- Department of Agriculture, Engineering and Science, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Simon H. Elwen
- Sea Search Research and Conservation NPC, Cape Town, South Africa
- Department of Botany and Zoology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Bridget S. James
- Sea Search Research and Conservation NPC, Cape Town, South Africa
- Department of Botany and Zoology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Tess Gridley
- Sea Search Research and Conservation NPC, Cape Town, South Africa
- Department of Botany and Zoology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Department of Statistical Sciences, Centre for Statistics in Ecology, Environment and Conservation, University of Cape Town, Cape Town, Western Cape, South Africa
| |
Collapse
|
10
|
Moura AE, Shreves K, Pilot M, Andrews KR, Moore DM, Kishida T, Möller L, Natoli A, Gaspari S, McGowen M, Chen I, Gray H, Gore M, Culloch RM, Kiani MS, Willson MS, Bulushi A, Collins T, Baldwin R, Willson A, Minton G, Ponnampalam L, Hoelzel AR. Phylogenomics of the genus Tursiops and closely related Delphininae reveals extensive reticulation among lineages and provides inference about eco-evolutionary drivers. Mol Phylogenet Evol 2020; 146:106756. [DOI: 10.1016/j.ympev.2020.106756] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/02/2020] [Accepted: 01/28/2020] [Indexed: 12/30/2022]
|
11
|
Espada R, Olaya-Ponzone L, Haasova L, Martín E, García-Gómez JC. Hybridization in the wild between Tursiops truncatus (Montagu 1821) and Delphinus delphis (Linnaeus 1758). PLoS One 2019; 14:e0215020. [PMID: 30990845 PMCID: PMC6467441 DOI: 10.1371/journal.pone.0215020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 03/25/2019] [Indexed: 11/18/2022] Open
Abstract
A case of intergeneric hybridization in the wild between a female bottlenose dolphin (Tursiops truncatus) and a short-beaked common dolphin (Delphinus delphis), considered members of 'vulnerable' and 'endangered' subpopulations in the Mediterranean, respectively, by the International Union of Conservation of Nature is described in this paper. The birth of the hybrid was registered in the Bay of Algeciras (southern Spain) in August 2016, and the animal has been tracked on frequent trips aboard dolphin-watching platforms. This unique occurrence is the result of an apparent ongoing interaction (10 years) between a female bottlenose dolphin and common dolphins. The calf has a robust body with length similar to Tursiops, while its lateral striping and coloration are typical of Delphinus. It displays the common dolphin's 'criss-cross' pattern. However, the thoracic patch is lighter than in D. delphis and its dorsal area is light grey, with a 'V' shape under the dorsal fin. This paper also provides a comprehensive mini-review of hybridizations of T. truncatus with other species.
Collapse
Affiliation(s)
- Rocío Espada
- Laboratory of Marine Biology, Department of Zoology, Faculty of Biology, University of Seville, Seville, Spain.,Dolphin Adventure, Gibraltar, United Kingdom
| | - Liliana Olaya-Ponzone
- R+ D+I Biological Research Area, Seville Aquarium, Seville, Spain.,Research Foundation for University of Seville, (FIUS), Seville, Spain
| | | | | | - José C García-Gómez
- Laboratory of Marine Biology, Department of Zoology, Faculty of Biology, University of Seville, Seville, Spain.,R+ D+I Biological Research Area, Seville Aquarium, Seville, Spain
| |
Collapse
|