1
|
Yan F, Yang M, Sun Y, Tang Q, Yuan L. Case report: Methicillin-resistant Staphylococcus aureus with penicillin susceptible (PS-MRSA): first clinical report from a psychiatric hospital in China. Front Med (Lausanne) 2024; 11:1380369. [PMID: 38638932 PMCID: PMC11024255 DOI: 10.3389/fmed.2024.1380369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
This case report documents the first instance of Penicillin-Susceptible Methicillin-Resistant Staphylococcus aureus (PS-MRSA) in a Chinese psychiatric hospital. The strain was isolated from a patient with Alzheimer's disease who had a lower respiratory tract infection. Clinical and laboratory analyses, including mass spectrometry, antibiotic susceptibility testing, and whole-genome sequencing, confirmed the PS-MRSA strain. In this case, we systematically introduce the clinical symptoms, laboratory findings, and treatment responses associated with this PS-MRSA strain. This discovery offers a new perspective on our understanding of resistance mechanisms and expands our considerations for existing antibiotic treatments. It may fill a gap in the classification of MRSA strains, enhance the spectrum of MRSA resistance, and complete the therapeutic strategies for MRSA.
Collapse
Affiliation(s)
- Fei Yan
- Department of Clinical Laboratory, The Fourth People’s Hospital of Chengdu, Chengdu, China
- Department of Clinical Laboratory, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Mi Yang
- Department of Clinical Laboratory, The Fourth People’s Hospital of Chengdu, Chengdu, China
- Department of Clinical Laboratory, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuting Sun
- Department of Clinical Laboratory, The Fourth People’s Hospital of Chengdu, Chengdu, China
- Department of Clinical Laboratory, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Qin Tang
- Department of Clinical Laboratory, The Fourth People’s Hospital of Chengdu, Chengdu, China
- Department of Clinical Laboratory, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Yuan
- Department of Clinical Laboratory, The Fourth People’s Hospital of Chengdu, Chengdu, China
- Department of Clinical Laboratory, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Choudhury K, Chattopadhyay A, Ghosh SS. Mannosylated Gold Nanoclusters Incorporated with a Repurposed Antihistamine Drug Promethazine for Antibacterial and Antibiofilm Applications. ACS APPLIED BIO MATERIALS 2022; 5:5911-5923. [PMID: 36417570 DOI: 10.1021/acsabm.2c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Drug repurposing presents a workable strategy in tackling antibiotic resistance. Many known drugs have been repurposed for their applications against different targets. Antihistamines that are usually used to treat allergy symptoms can be combined with nanoscale materials to enhance their efficiency. Herein, we explored the antimicrobial properties of a common antihistamine drug, promethazine, in Gram-positive and Gram-negative bacteria. Being positively charged, promethazine was easily incorporated into the mannose-conjugated bovine serum albumin-stabilized promethazine hydrochloride gold nanoclusters. Capping with d-mannose helped in targeting the bacteria by inhibiting their adhesive appendage called pili. Following their uptake, drugs released inside the bacteria caused reactive oxygen species production and membrane permeability alteration, ultimately resulting in bacterial inhibition. Additionally, they were also explored for biofilm eradication. As observed through staining assays, the number of dead cells increased with increasing concentration of drug-loaded gold nanoclusters in the biofilm mass. Therefore, the as-synthesized mannosylated gold nanoclusters incorporated with promethazine were analyzed for potential antibacterial and antibiofilm applications.
Collapse
Affiliation(s)
- Konika Choudhury
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Arun Chattopadhyay
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.,Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Siddhartha Sankar Ghosh
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.,Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
3
|
Pleiotropic actions of phenothiazine drugs are detrimental to Gram-negative bacterial persister cells. Commun Biol 2022; 5:217. [PMID: 35264714 PMCID: PMC8907348 DOI: 10.1038/s42003-022-03172-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/15/2022] [Indexed: 12/28/2022] Open
Abstract
Bacterial persister cells are temporarily tolerant to bactericidal antibiotics but are not necessarily dormant and may exhibit physiological activities leading to cell damage. Based on the link between fluoroquinolone-mediated SOS responses and persister cell recovery, we screened chemicals that target fluoroquinolone persisters. Metabolic inhibitors (e.g., phenothiazines) combined with ofloxacin (OFX) perturbed persister levels in metabolically active cell populations. When metabolically stimulated, intrinsically tolerant stationary phase cells also became OFX-sensitive in the presence of phenothiazines. The effects of phenothiazines on cell metabolism and physiology are highly pleiotropic: at sublethal concentrations, phenothiazines reduce cellular metabolic, transcriptional, and translational activities; impair cell repair and recovery mechanisms; transiently perturb membrane integrity; and disrupt proton motive force by dissipating the proton concentration gradient across the cell membrane. Screening a subset of mutant strains lacking membrane-bound proteins revealed the pleiotropic effects of phenothiazines potentially rely on their ability to inhibit a wide range of critical metabolic proteins. Altogether, our study further highlights the complex roles of metabolism in persister cell formation, survival and recovery, and suggests metabolic inhibitors such as phenothiazines can be selectively detrimental to persister cells.
Collapse
|
4
|
Management of life-threatening staphylococcal septic shock in a breastfeeding woman with breast abscess: A case report. Int J Surg Case Rep 2022; 91:106739. [PMID: 35026681 PMCID: PMC8760402 DOI: 10.1016/j.ijscr.2021.106739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/25/2021] [Accepted: 12/26/2021] [Indexed: 11/21/2022] Open
Abstract
Introduction and importance Breast abscess is a common problem in breastfeeding women. However, septic shock secondary to methicillin resistant Staphylococcus aureus (MRSA) from breast abscess is very rare. Successful management of this condition in our center may provide experience of treatment for similar patients. Case presentation A 20-year-old breastfeeding woman with breast abscess was transferred to our center. General condition of the patient deteriorated rapidly to life-threatening septic shock. Culture of pus later demonstrated MRSA infection, with vancomycin susceptibility. Several measures were emergently implemented, including removal of necrotic tissue, continuous catheter irrigation and drainage, intravenous infusion of vancomycin, pumping norepinephrine, fluid resuscitation and transfusion of plasma. The patient was cured and discharged after 10 day's treatment. Clinical discussion Life-threatening septic shock secondary to MRSA in breastfeeding women with breast abscess is very rare. Nevertheless, clinicians should remain vigilant to early symptoms and signs of septic shock. Catheter irrigation and drainage, vancomycin and fluid resuscitation are essential for septic shock in lactational breast abscess. Conclusions We highlight the importance of the diagnosis and management of life-threatening septic shock secondary to MRSA in breast abscess to help us further understand this rare and fatal disease. Life-threatening septic shock secondary to MRSA in a breastfeeding woman with breast abscess is very rare. We should pay more attention to the early symptoms and signs of septic shock. Catheter irrigation and drainage, vancomycin and fluid resuscitation are essential for septic shock in breast abscess.
Collapse
|
5
|
Ronco T, Kappel LH, Aragao MF, Biagi N, Svenningsen S, Christensen JB, Permin A, Saaby L, Holmstrøm K, Klitgaard JK, Sabat AJ, Akkerboom V, Monaco M, Tinelli M, Friedrich AW, Jana B, Olsen RH. Insight Into the Anti-staphylococcal Activity of JBC 1847 at Sub-Inhibitory Concentration. Front Microbiol 2022; 12:786173. [PMID: 35069485 PMCID: PMC8766816 DOI: 10.3389/fmicb.2021.786173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Multidrug-resistant pathogens constitute a serious global issue and, therefore, novel antimicrobials with new modes of action are urgently needed. Here, we investigated the effect of a phenothiazine derivative (JBC 1847) with high antimicrobial activity on Staphylococcus aureus, using a wide range of in vitro assays, flow cytometry, and RNA transcriptomics. The flow cytometry results showed that JBC 1847 rapidly caused depolarization of the cell membrane, while the macromolecule synthesis inhibition assay showed that the synthesis rates of DNA, RNA, cell wall, and proteins, respectively, were strongly decreased. Transcriptome analysis of S. aureus exposed to sub-inhibitory concentrations of JBC 1847 identified a total of 78 downregulated genes, whereas not a single gene was found to be significantly upregulated. Most importantly, there was downregulation of genes involved in adenosintrifosfat (ATP)-dependent pathways, including histidine biosynthesis, which is likely to correlate with the observed lower level of intracellular ATP in JBC 1847-treated cells. Furthermore, we showed that JBC 1847 is bactericidal against both exponentially growing cells and cells in a stationary growth phase. In conclusion, our results showed that the antimicrobial properties of JBC 1847 were primarily caused by depolarization of the cell membrane resulting in dissipation of the proton motive force (PMF), whereby many essential bacterial processes are affected. JBC 1847 resulted in lowered intracellular levels of ATP followed by decreased macromolecule synthesis rate and downregulation of genes essential for the amino acid metabolism in S. aureus. Bacterial compensatory mechanisms for this proposed multi-target activity of JBC 1847 seem to be limited based on the observed very low frequency of resistance toward the compound.
Collapse
Affiliation(s)
- Troels Ronco
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Line H. Kappel
- Research Unit of Molecular Microbiology, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Maria F. Aragao
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niccolo Biagi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Svenningsen
- Department of Chemistry, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jørn B. Christensen
- Department of Chemistry, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Janne K. Klitgaard
- Research Unit of Molecular Microbiology, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Research Unit of Clinical Microbiology, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Artur J. Sabat
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Viktoria Akkerboom
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Monica Monaco
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Tinelli
- Division of Infectious and Tropical Diseases, Hospital of Lodi, Lodi, Italy
| | - Alexander W. Friedrich
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Bimal Jana
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | - Rikke H. Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Liu WT, Chen EZ, Yang L, Peng C, Wang Q, Xu Z, Chen DQ. Emerging resistance mechanisms for 4 types of common anti-MRSA antibiotics in Staphylococcus aureus: A comprehensive review. Microb Pathog 2021; 156:104915. [PMID: 33930416 DOI: 10.1016/j.micpath.2021.104915] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 01/10/2023]
Abstract
Staphylococcus aureus is one of the leading hospital-associated and community-associated pathogens, which has caused a global public health concern. The emergence of methicillin-resistant S. aureus (MRSA) along with the widespread use of different classes of antibiotics has become a significant therapeutic challenge. Antibiotic resistance is a disturbing problem that poses a threat to humans. Treatment options for S. aureus resistant to β-lactam antibiotics include glycopeptide antibiotic, cyclic lipopeptide antibiotic, cephalosporins and oxazolidinone antibiotic. The most representative types of these antibiotics are vancomycin, daptomycin, ceftaroline and linezolid. The frequent use of the first-line drug vancomycin for MRSA treatment has increased the number of resistant strains, namely vancomycin intermediate resistant S. aureus (VISA) and vancomycin resistant S. aureus (VRSA). A systematic literature review of relevant published studies in PubMed before 2020 was conducted. In recent years, there have been some reports on the relevant resistant mechanisms of vancomycin, daptomycin, ceftaroline and linezolid. In this review, we have summarized the antibiotic molecular modes of action and different gene mutants at the whole-genome level, which will aid in further development on new drugs for effective MRSA treatment based on describing different resistance mechanisms of classic antibiotics.
Collapse
Affiliation(s)
- Wan-Ting Liu
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - En-Zhong Chen
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Ling Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Chen Peng
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Qun Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN38163, USA; Research Institute for Food Nutrition and Human Health, Guangzhou, 510640, China; Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand.
| | - Ding-Qiang Chen
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China.
| |
Collapse
|
7
|
Fisher JF, Mobashery S. β-Lactams against the Fortress of the Gram-Positive Staphylococcus aureus Bacterium. Chem Rev 2021; 121:3412-3463. [PMID: 33373523 PMCID: PMC8653850 DOI: 10.1021/acs.chemrev.0c01010] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biological diversity of the unicellular bacteria-whether assessed by shape, food, metabolism, or ecological niche-surely rivals (if not exceeds) that of the multicellular eukaryotes. The relationship between bacteria whose ecological niche is the eukaryote, and the eukaryote, is often symbiosis or stasis. Some bacteria, however, seek advantage in this relationship. One of the most successful-to the disadvantage of the eukaryote-is the small (less than 1 μm diameter) and nearly spherical Staphylococcus aureus bacterium. For decades, successful clinical control of its infection has been accomplished using β-lactam antibiotics such as the penicillins and the cephalosporins. Over these same decades S. aureus has perfected resistance mechanisms against these antibiotics, which are then countered by new generations of β-lactam structure. This review addresses the current breadth of biochemical and microbiological efforts to preserve the future of the β-lactam antibiotics through a better understanding of how S. aureus protects the enzyme targets of the β-lactams, the penicillin-binding proteins. The penicillin-binding proteins are essential enzyme catalysts for the biosynthesis of the cell wall, and understanding how this cell wall is integrated into the protective cell envelope of the bacterium may identify new antibacterials and new adjuvants that preserve the efficacy of the β-lactams.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| |
Collapse
|
8
|
Anti-staphylococcal activity and mode of action of thioridazine photoproducts. Sci Rep 2020; 10:18043. [PMID: 33093568 PMCID: PMC7582912 DOI: 10.1038/s41598-020-74752-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
Antibiotic resistance became an increasing risk for population health threatening our ability to fight infectious diseases. The objective of this study was to evaluate the activity of laser irradiated thioridazine (TZ) against clinically-relevant bacteria in view to fight antibiotic resistance. TZ in ultrapure water solutions was irradiated (1–240 min) with 266 nm pulsed laser radiation. Irradiated solutions were characterized by UV–Vis and FTIR absorption spectroscopy, thin layer chromatography, laser-induced fluorescence, and dynamic surface tension measurements. Molecular docking studies were made to evaluate the molecular mechanisms of photoproducts action against Staphylococcus aureus and MRSA. More general, solutions were evaluated for their antimicrobial and efflux inhibitory activity against a panel of bacteria of clinical relevance. We observed an enhanced antimicrobial activity of TZ photoproducts against Gram-positive bacteria. This was higher than ciprofloxacin effects for methicillin- and ciprofloxacin-resistant Staphylococcus aureus. Molecular docking showed the Penicillin-binding proteins PBP3 and PBP2a inhibition by sulforidazine as a possible mechanism of action against Staphylococcus aureus and MRSA strains, respectively. Irradiated TZ reveals possible advantages in the treatment of infectious diseases produced by antibiotic-resistant Gram-positive bacteria. TZ repurposing and its photoproducts, obtained by laser irradiation, show accelerated and low-costs of development if compared to chemical synthesis.
Collapse
|
9
|
Ronco T, Jørgensen NS, Holmer I, Kromann S, Sheikhsamani E, Permin A, Svenningsen SW, Christensen JB, Olsen RH. A Novel Promazine Derivative Shows High in vitro and in vivo Antimicrobial Activity Against Staphylococcus aureus. Front Microbiol 2020; 11:560798. [PMID: 33101232 PMCID: PMC7555839 DOI: 10.3389/fmicb.2020.560798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/01/2020] [Indexed: 12/29/2022] Open
Abstract
The emergence of multidrug-resistant bacteria constitutes a significant public health issue worldwide. Consequently, there is an urgent clinical need for novel treatment solutions. It has been shown in vitro that phenothiazines can act as adjuvants to antibiotics whereby the minimum inhibitory concentration (MIC) of the antibiotic is decreased. However, phenothiazines do not perform well in vivo, most likely because they can permeate the blood-brain (BBB) barrier and cause severe side-effects to the central nervous system. Therefore, the aim of this study was to synthesize a promazine derivate that would not cross the BBB but retain its properties as antimicrobial helper compound. Surprisingly, in vitro studies showed that the novel compound, JBC 1847 exhibited highly increased antimicrobial activity against eight Gram-positive pathogens (MIC, 0.5-2 mg/L), whereas a disc diffusion assay indicated that the properties as an adjuvant were lost. JBC 1847 showed significant (P < 0.0001) activity against a Staphylococcus aureus strain compared with the vehicle, in an in vivo wound infection model. However, both in vitro and in silico analyses showed that JBC 1847 possesses strong affinity for human plasma proteins and an Ames test showed that generally, it is a non-mutagenic compound. Finally, in silico predictions suggested that the compound was not prone to pass the BBB and had a suitable permeability to the skin. In conclusion, JBC 1847 is therefore suggested to hold potential as a novel topical agent for the clinical treatment of S. aureus skin and soft tissue infections, but pharmacokinetics and pharmacodynamics need to be further investigated.
Collapse
Affiliation(s)
- Troels Ronco
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nadia S Jørgensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Iben Holmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sofie Kromann
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ehsan Sheikhsamani
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University, Mashhad, Iran
| | | | - Søren W Svenningsen
- Department of Chemistry, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jørn B Christensen
- Department of Chemistry, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Rikke H Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Inhibition of Fatty Acid Oxidation as a New Target To Treat Primary Amoebic Meningoencephalitis. Antimicrob Agents Chemother 2020; 64:AAC.00344-20. [PMID: 32513800 PMCID: PMC7526813 DOI: 10.1128/aac.00344-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
Primary amoebic meningoencephalitis (PAM) is a rapidly fatal infection caused by the free-living amoeba Naegleria fowleri. The amoeba migrates along the olfactory nerve to the brain, resulting in seizures, coma, and, eventually, death. Previous research has shown that Naegleria gruberi, a close relative of N. fowleri, prefers lipids over glucose as an energy source. Therefore, we tested several already-approved inhibitors of fatty acid oxidation alongside the currently used drugs amphotericin B and miltefosine. Primary amoebic meningoencephalitis (PAM) is a rapidly fatal infection caused by the free-living amoeba Naegleria fowleri. The amoeba migrates along the olfactory nerve to the brain, resulting in seizures, coma, and, eventually, death. Previous research has shown that Naegleria gruberi, a close relative of N. fowleri, prefers lipids over glucose as an energy source. Therefore, we tested several already-approved inhibitors of fatty acid oxidation alongside the currently used drugs amphotericin B and miltefosine. Our data demonstrate that etomoxir, orlistat, perhexiline, thioridazine, and valproic acid inhibited growth of N. gruberi. We then tested these compounds on N. fowleri and found etomoxir, perhexiline, and thioridazine to be effective growth inhibitors. Hence, not only are lipids the preferred food source for N. gruberi, but also oxidation of fatty acids seems to be essential for growth of N. fowleri. Inhibition of fatty acid oxidation could result in new treatment options, as thioridazine inhibits N. fowleri growth in concentrations that can be reached at the site of infection. It could also potentiate currently used therapy, as checkerboard assays revealed synergy between miltefosine and etomoxir. Animal testing should be performed to confirm the added value of these inhibitors. Although the development of new drugs and randomized controlled trials for this rare disease are nearly impossible, inhibition of fatty acid oxidation seems a promising strategy as we showed effectivity of several drugs that are or have been in use and that thus could be repurposed to treat PAM in the future.
Collapse
|
11
|
Grimsey EM, Piddock LJV. Do phenothiazines possess antimicrobial and efflux inhibitory properties? FEMS Microbiol Rev 2020; 43:577-590. [PMID: 31216574 DOI: 10.1093/femsre/fuz017] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/12/2019] [Indexed: 12/30/2022] Open
Abstract
Antibiotic resistance is a global health concern; the rise of drug-resistant bacterial infections is compromising the medical advances that resulted from the introduction of antibiotics at the beginning of the 20th century. Considering that the presence of mutations within individuals in a bacterial population may allow a subsection to survive and propagate in response to selective pressure, as long as antibiotics are used in the treatment of bacterial infections, development of resistance is an inevitable evolutionary outcome. This, combined with the lack of novel antibiotics being released to the clinical market, means the need to develop alternative strategies to treat these resistant infections is critical. We discuss how the use of antibiotic adjuvants can minimise the appearance and impact of resistance. To this effect, several phenothiazine-derived drugs have been shown to potentiate the activities of antibiotics used to treat infections caused by Gram-positive and Gram-negative bacteria. Outside of their role as antipsychotic medications, we review the evidence to suggest that phenothiazines possess inherent antibacterial and efflux inhibitory properties enabling them to potentially combat drug resistance. We also discuss that understanding their mode of action is essential to facilitate the design of new phenothiazine derivatives or novel agents for use as antibiotic adjuvants.
Collapse
Affiliation(s)
- Elizabeth M Grimsey
- Institute of Microbiology & Infection, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Laura J V Piddock
- Institute of Microbiology & Infection, College of Medical & Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| |
Collapse
|